Global Energetics of Solar Flares and Coronal Mass Ejections

Document Type

Conference Proceeding

Publication Date

11-14-2019

Abstract

We investigate the global energetics and energy closure of various physical processes that are energetically important in solar flares and coronal mass ejections (CMEs), which includes: magnetic energies, thermal energies, nonthermal energies (particle acceleration), direct and indirect plasma heating processes, kinetic CME energies, gravitational CME energies, aerodynamic drag of CMEs, solar energetic particle events, EUV and soft X-ray radiation, white-light, and bolometric energies. Statistics on these forms of energies is obtained from 400 GOES M- and X-class events during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. A primary test addressed in this study is the closure of the various energies, such as the equivalence of the dissipated magnetic energies and the primary dissipated are energies (accelerated particles, direct heating, CME acceleration), which faciliate the energy of secondary processes (plasma heating, shock acceleration) and interactions with the solar wind (aerodynamic drag). Our study demonstrates energy closure in the statistical average, while individual events may have considerable uncertainties, requiring improved nonlinear force-free field models, and particle acceleration models with observationally constrained low-energy cutoffs.

Identifier

85076225763 (Scopus)

Publication Title

Journal of Physics Conference Series

External Full Text Location

https://doi.org/10.1088/1742-6596/1332/1/012002

e-ISSN

17426596

ISSN

17426588

Issue

1

Volume

1332

Grant

NNG04EA00C

Fund Ref

National Aeronautics and Space Administration

This document is currently not available here.

Share

COinS