Accessing dynamic functional connectivity using l0-regularized sparse-smooth inverse covariance estimation from fMRI

Document Type

Article

Publication Date

7-5-2021

Abstract

Inferring dynamic functional connectivity (dFC) from functional magnetic resonance imaging (fMRI) is crucial to understand the time-variant functional inter-relationships among brain regions. Because of the sparse property of functional connectivity networks, sparsity-promoting dFC estimation methods, which are mainly based on l1-norm regularization, are gaining popularity. However, l1-norm regularization cannot provide the maximum sparsity solution as the most natural sparsity promoting norm, the l0-norm. But l0-norm is seldom used to infer sparse dFC because an efficient algorithm to address the non-convexity problem of l0-norm is lacking. In this work, we develop a new l0-norm regularization-based inverse covariance estimation method for estimating dFC from fMRI. This novel method employs l0-norm regularizations on both spatial and temporal scales to enhance the spatial sparsity and temporal smoothness of dFC estimates. To overcome the non-convexity of l0-norm, we further propose an effective optimization algorithm based on the coordinate descent (CD). The performance of the proposed l0-norm-based sparse-smooth regularization (L0-SSR) method is examined using a series of synthetic datasets concerning various types of network topology. We further apply the proposed L0-SSR method to real fMRI data recorded in block-design motor tasks from 45 participants for the exploration of task induced dFC. Results on synthetic and real-world fMRI data show that, the L0-SSR method can achieve more accurate and interpretable dFC estimates than conventional l1-norm-based dFC estimation methods. Hence, the proposed L0-SSR method could serve as a powerful analytical tool to infer highly complex, variable, and sparse dFC patterns.

Identifier

85103108600 (Scopus)

Publication Title

Neurocomputing

External Full Text Location

https://doi.org/10.1016/j.neucom.2021.02.081

e-ISSN

18728286

ISSN

09252312

First Page

147

Last Page

161

Volume

443

Grant

81871443

Fund Ref

National Natural Science Foundation of China

This document is currently not available here.

Share

COinS