Real-space observation of fluctuating antiferromagnetic domains

Document Type

Article

Publication Date

5-1-2022

Abstract

Magnetic domains play a fundamental role in physics of magnetism and its technological applications. Dynamics of antiferromagnetic domains is poorly understood, although antiferromagnets are expected to be extensively used in future electronic devices wherein it determines the stability and operational speed. Dynamics of antiferromagnets also features prominently in the studies of topological quantum matter. Real-space imaging of fluctuating antiferromagnetic domains is therefore highly desired but has never been demonstrated. We use coherent x-ray diffraction to obtain videos of fluctuating micrometer-scale antiferromagnetic domains in Ni2MnTeO6 on time scales from 10-1 to 103 s. In the collinear phase, thermally activated domain wall motion is observed in the vicinity of the Néel temperature. Unexpectedly, the fluctuations persist through the full range of the higher-temperature helical phase. These observations illustrate the high potential significance of the dynamic domain imaging in phase transition studies and in magnetic device research.

Identifier

85131108824 (Scopus)

Publication Title

Science Advances

External Full Text Location

https://doi.org/10.1126/sciadv.abj9493

e-ISSN

23752548

PubMed ID

35622920

Issue

21

Volume

8

Grant

DE-FG02-07ER46382

Fund Ref

National Research Foundation of Korea

This document is currently not available here.

Share

COinS