A Case for Enrichment in Data Management Systems
Document Type
Article
Publication Date
6-1-2022
Abstract
We describe ENRICHDB, a new DBMS technology designed for emerging domains (e.g., sensor-driven smart spaces and social media analytics) that require incoming data to be enriched using expensive functions prior to its usage. To support online processing, today, such enrichment is performed outside of DBMSs, as a static data processing workflow prior to its ingestion into a DBMS. Such a strategy could result in a significant delay from the time when data arrives and when it is enriched and ingested into the DBMS, especially when the enrichment complexity is high. Also, enriching at ingestion could result in wastage of resources if applications do not use/require all data to be enriched. ENRICHDB's design represents a significant departure from the above, where we explore seamless integration of data enrichment all through the data processing pipeline-at ingestion, triggered based on events in the background, and progressively during query processing. The cornerstone of ENRICHDB is a powerful enrichment data and query model that encapsulates enrichment as an operator inside a DBMS enabling it to co-optimize enrichment with query processing. This paper describes this data model and provides a summary of the system implementation.
Identifier
85135462921 (Scopus)
Publication Title
SIGMOD Record
External Full Text Location
https://doi.org/10.1145/3552490.3552497
ISSN
01635808
First Page
38
Last Page
43
Issue
2
Volume
51
Grant
1527536
Fund Ref
National Science Foundation
Recommended Citation
Ghosh, Dhrubajyoti; Gupta, Peeyush; Mehrotra, Sharad; and Sharma, Shantanu, "A Case for Enrichment in Data Management Systems" (2022). Faculty Publications. 2901.
https://digitalcommons.njit.edu/fac_pubs/2901