Facilitating direct compaction tableting of fine cohesive APIs using dry coated fine excipients: Effect of the excipient size and amount of coated silica

Document Type

Article

Publication Date

7-20-2024

Abstract

The possibility of attaining direct compression (DC) tableting using silica coated fine particle sized excipients was examined for high drug loaded (DL) binary blends of APIs. Three APIs, very-cohesive micronized acetaminophen (mAPAP, 7 μm), cohesive acetaminophen (cAPAP, 23 μm), and easy-flowing ibuprofen (IBU, 53 μm), were selected. High DL (60 wt%) binary blends were prepared with different fine-milled MCC-based excipients (ranging 20- 37 μm) with or without A200 silica coating during milling. The blend flowability (flow function coefficient −FFC) and bulk density (BD) of the blends for all three APIs were significantly improved by 1 wt% A200 dry coated MCCs; reaching FFC of 4.28 from 2.14, 7.82 from 2.96, and > 10 from 5.57, for mAPAP, cAPAP, and IBU blends, respectively, compared to the uncoated MCC blends. No negative impact was observed on the tablet tensile strength (TS) by using dry coated MCCs despite lower surface energy of silica. Instead, the desired tablet TS levels were reached or exceeded, even above that for the blends with uncoated milled MCCs. The novelty here is that milled and silica coated fine MCCs could promote DC tableting for cAPAP and IBU blends at 60 wt% DL through adequate flowability and tensile strength, without having to dry coat the APIs. The effect of the silica amount was investigated, indicating lesser had a positive impact on TS, whereas the higher amount had a positive impact on flowability. Thus, the finer excipient size and silica amounts may be adjusted to potentially attain blend DC processability for high DL blends of fine APIs.

Identifier

85196527172 (Scopus)

Publication Title

International Journal of Pharmaceutics

External Full Text Location

https://doi.org/10.1016/j.ijpharm.2024.124359

e-ISSN

18733476

ISSN

03785173

PubMed ID

38901539

Volume

660

Grant

IIP- 1919037

Fund Ref

International Fine Particle Research Institute

This document is currently not available here.

Share

COinS