Effects of peripheral substituents and axial ligands on the electronic structure and properties of iron phthalocyanine

Document Type

Article

Publication Date

11-1-2004

Abstract

The effects of peripheral substituents and axial ligands on the electronic structure and properties of iron phthalocyanine, H16PcFe, have been investigated using a DFT method. Substitution by electron-withdrawing fluorinated groups alters the ground state of H16PcFe and gives rise to large changes in the ionization potentials and electron affinity. For the six-coordinate adducts with acetone, H2O, and pyridine, the axial coordination of two weak-field ligands leads to an intermediate-spin ground state, while the strong-field ligands make the system diamagnetic. The electronic configuration of a ligated iron phthalocyanine is determined mainly by the axial ligand-field strength but can also be affected by peripheral substituents. Axial ligands also exert an effect on ionization potentials and electron affinity and can, as observed experimentally, even change the site of oxidation/reduction.

Identifier

7444249733 (Scopus)

Publication Title

Inorganic Chemistry

External Full Text Location

https://doi.org/10.1021/ic035263j

ISSN

00201669

PubMed ID

15500354

First Page

7151

Last Page

7161

Issue

22

Volume

43

This document is currently not available here.

Share

COinS