Effective steganalysis based on statistical moments of wavelet characteristic function
Document Type
Conference Proceeding
Publication Date
1-1-2005
Abstract
In this paper, an effective steganalysis based on statistical moments of wavelet characteristic function is proposed. It decomposes the test image using two-level Haar wavelet transform into nine subbands (here the image itself is considered as the LL0 subband). For each subband, the characteristic function is calculated. The first and second statistical moments of the characteristic functions from all the subbands are selected to form an 18-dimensional feature vector for steganalysis. The Bayes classifier is utilized in classification. All of the 1096 images from the CorelDraw image database are used in our extensive experimental work. With randomly selected 100 images for training and the remaining 996 images for testing, the proposed steganalysis system can steadily achieve a correct classification rate of 79% for the non-blind Spread Spectrum watermarking algorithm proposed by Cox et al., 88% for the blind Spread Spectrum watermarking algorithm proposed by Piva et al., and 91% for a generic LSB embedding method, thus indicating significant advancement in steganalysis. © 2005 IEEE.
Identifier
24744444102 (Scopus)
ISBN
[0769523153, 9780769523156]
Publication Title
International Conference on Information Technology Coding and Computing ITCC
External Full Text Location
https://doi.org/10.1109/itcc.2005.138
First Page
768
Last Page
773
Volume
1
Recommended Citation
Shi, Yun Q.; Xuan, Guorong; Yang, Chengyun; Gao, Jianjiong; Zhang, Zhenping; Chai, Peiqi; Zou, Dekun; Chen, Chunhua; and Chen, Wen, "Effective steganalysis based on statistical moments of wavelet characteristic function" (2005). Faculty Publications. 19868.
https://digitalcommons.njit.edu/fac_pubs/19868
