Vector-soliton collision dynamics in nonlinear optical fibers
Document Type
Article
Publication Date
5-1-2005
Abstract
We consider the interactions of two identical, orthogonally polarized vector solitons in a nonlinear optical fiber with two polarization directions, described by a coupled pair of nonlinear Schrödinger equations. We study a low-dimensional model system of Hamiltonian ordinary differential equations (ODEs) derived by Ueda and Kath and also studied by Tan and Yang. We derive a further simplified model which has similar dynamics but is more amenable to analysis. Sufficiently fast solitons move by each other without much interaction, but below a critical velocity the solitons may be captured. In certain bands of initial velocities the solitons are initially captured, but separate after passing each other twice, a phenomenon known as the two-bounce or two-pass resonance. We derive an analytic formula for the critical velocity. Using matched asymptotic expansions for separatrix crossing, we determine the location of these "resonance windows.". Numerical simulations of the ODE models show they compare quite well with the asymptotic theory. © 2005 The American Physical Society.
Identifier
26944494063 (Scopus)
Publication Title
Physical Review E Statistical Nonlinear and Soft Matter Physics
External Full Text Location
https://doi.org/10.1103/PhysRevE.71.056605
e-ISSN
15502376
ISSN
15393755
Issue
5
Volume
71
Recommended Citation
Goodman, Roy H. and Haberman, Richard, "Vector-soliton collision dynamics in nonlinear optical fibers" (2005). Faculty Publications. 19702.
https://digitalcommons.njit.edu/fac_pubs/19702
