A fast method for imposing periodic boundary conditions on arbitrarily-shaped lattices in two dimensions

Document Type

Article

Publication Date

2-1-2023

Abstract

A new scheme is presented for imposing periodic boundary conditions on unit cells with arbitrary source distributions. We restrict our attention here to the Poisson, modified Helmholtz, Stokes and modified Stokes equations. The approach extends to the oscillatory equations of mathematical physics, including the Helmholtz and Maxwell equations, but we will address these in a companion paper, since the nature of the problem is somewhat different and includes the consideration of quasiperiodic boundary conditions and resonances. Unlike lattice sum-based methods, the scheme is insensitive to the unit cell's aspect ratio and is easily coupled to adaptive fast multipole methods (FMMs). Our analysis relies on classical “plane-wave” representations of the fundamental solution, and yields an explicit low-rank representation of the field due to all image sources beyond the first layer of neighboring unit cells. When the aspect ratio of the unit cell is large, our scheme can be coupled with the nonuniform fast Fourier transform (NUFFT) to accelerate the evaluation of the induced field. Its performance is illustrated with several numerical examples.

Identifier

85142518504 (Scopus)

Publication Title

Journal of Computational Physics

External Full Text Location

https://doi.org/10.1016/j.jcp.2022.111792

e-ISSN

10902716

ISSN

00219991

Volume

474

This document is currently not available here.

Share

COinS