Manipulation of particles using dielectrophoresis
Document Type
Article
Publication Date
1-1-2006
Abstract
A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of particles of electrorheological suspensions subjected to non-uniform electric fields. At small Reynolds number, the time taken by the particles to collect at the minimums or maximums of the electric field is primarily determined by a parameter defined to be the ratio of the dielectrophoretic and viscous forces. Simulations show that in non-uniform electric fields the collection time is also influenced by a parameter defined by the ratio of the electrostatic particle-particle interaction and dielectrophoretic forces. The collection time decreases as this parameter decreases because when this parameter is less than one, particles move to the regions of high or low electric field regions individually. However, when this parameter is greater than one, particles regroup into chains which then move toward the electric field maximums or minimums without breaking. It is also shown that when the real part of the Clausius-Mosotti factor (β) is negative the positions of the local minimums of the electric field, and thus also the locations where particles collect, can be modified by changing the electric potential boundary conditions. © 2005 Elsevier Ltd. All rights reserved.
Identifier
26444577814 (Scopus)
Publication Title
Mechanics Research Communications
External Full Text Location
https://doi.org/10.1016/j.mechrescom.2005.05.017
ISSN
00936413
First Page
108
Last Page
122
Issue
1
Volume
33
Grant
NSF/CTS-98-73236
Fund Ref
National Science Foundation
Recommended Citation
Kadaksham, J.; Singh, P.; and Aubry, N., "Manipulation of particles using dielectrophoresis" (2006). Faculty Publications. 19127.
https://digitalcommons.njit.edu/fac_pubs/19127
