Manipulation of particles using dielectrophoresis

Document Type

Article

Publication Date

1-1-2006

Abstract

A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of particles of electrorheological suspensions subjected to non-uniform electric fields. At small Reynolds number, the time taken by the particles to collect at the minimums or maximums of the electric field is primarily determined by a parameter defined to be the ratio of the dielectrophoretic and viscous forces. Simulations show that in non-uniform electric fields the collection time is also influenced by a parameter defined by the ratio of the electrostatic particle-particle interaction and dielectrophoretic forces. The collection time decreases as this parameter decreases because when this parameter is less than one, particles move to the regions of high or low electric field regions individually. However, when this parameter is greater than one, particles regroup into chains which then move toward the electric field maximums or minimums without breaking. It is also shown that when the real part of the Clausius-Mosotti factor (β) is negative the positions of the local minimums of the electric field, and thus also the locations where particles collect, can be modified by changing the electric potential boundary conditions. © 2005 Elsevier Ltd. All rights reserved.

Identifier

26444577814 (Scopus)

Publication Title

Mechanics Research Communications

External Full Text Location

https://doi.org/10.1016/j.mechrescom.2005.05.017

ISSN

00936413

First Page

108

Last Page

122

Issue

1

Volume

33

Grant

NSF/CTS-98-73236

Fund Ref

National Science Foundation

This document is currently not available here.

Share

COinS