Surface-programmed microbiome assembly in phycosphere to microplastics contamination

Document Type

Article

Publication Date

9-15-2024

Abstract

Recalcitrance in microplastics accounts for ubiquitous white pollution. Of special interest are the capabilities of microorganisms to accelerate their degradation sustainably. Compared to the well-studied pure cultures in degrading natural polymers, the algal-bacterial symbiotic system is considered as a promising candidate for microplastics removal, cascading bottom-up impacts on ecosystem-scale processes. This study selected and enriched the algae-associated microbial communities hosted by the indigenous isolation Desmodesmus sp. in wastewater treatment plants with micro-polyvinyl chloride, polyethylene terephthalate, polyethylene, and polystyrene contamination. Results elaborated that multiple settled and specific affiliates were recruited by the uniform algae protagonist from the biosphere under manifold microplastic stress. Alteration of distinct chemical functionalities and deformation of polymers provide direct evidence of degradation in phycosphere under illumination. Microplastic-induced phycosphere-derived DOM created spatial gradients of aromatic protein, fulvic and humic acid-like and tryptophan components to expanded niche-width. Surface thermodynamic analysis was conducted to simulate the reciprocal and reversible interaction on algal-bacterial and phycosphere-microplastic interface, revealing the enhancement of transition to stable and irreversible aggregation for functional microbiota colonization and microplastics capture. Furthermore, pangenomic analysis disclosed the genes related to the chemotaxis and the proposed microplastics biodegradation pathway in enriched algal-bacterial microbiome, orchestrating the evidence for common synthetic polymer particles and ultimately to confirm the effectiveness and potential. The present study emphasizes the necessity for future endeavors aimed at fully leveraging the potential of algal-bacterial mutualistic systems within sustainable bioremediation strategies targeting the eradication of microplastic waste.

Identifier

85198590554 (Scopus)

Publication Title

Water Research

External Full Text Location

https://doi.org/10.1016/j.watres.2024.122064

e-ISSN

18792448

ISSN

00431354

PubMed ID

39029396

Volume

262

Grant

2023C03131

Fund Ref

Science and Technology Program of Zhejiang Province

This document is currently not available here.

Share

COinS