PENGU In/AGO and THEMIS conjugate observations of whistler mode chorus waves in the dayside uniform zone under steady solar wind and quiet geomagnetic conditions

Document Type

Article

Publication Date

1-1-2012

Abstract

[1] We perform a case study of conjugate observations of whistler mode chorus waves on the dayside made on 26 July 2008 by three THEMIS spacecraft and ground-based ELF/ VLF receivers at the Automatic Geophysical Observatories (AGO) in Antarctica supported by the U.S. Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) project. The dayside chorus waves were excited during a period of no substorm activity with geomagnetic indices indicating quiet conditions (Dst ∼ -10 nT; AE < 200 nT). The solar wind dynamic pressure was almost constant during the chorus wave intensification. Conjugate observations in the outer magnetosphere confirm that the chorus intensification was localized within the radial distance R = 7-10 RE near noon (12.5 < MLT < 13.5 h). The waves persisted for at least 1.5 h in the same location, where field lines are not accompanied by off-equatorial minimum-B pockets but rather exhibit nearly zero dB/ds, the field-aligned gradient in B-magnitude, over a wide range of magnetic latitudes (∼±20°). The location did not seem to corotate with the Earth or drift with the energetic electrons. The chorus waves consisted of discrete, rising tone elements, propagating away from the magnetic equator, quasi-parallel to the ambient magnetic field (wave-normal angles < 20°). We conclude that the long-lasting, localized, quiet time dayside chorus amplification was due to the nearly zero dB/ds conditions that occur naturally in the dayside uniform zone (DUZ), the transition region between the near-Earth dipole and the compressed, off-equatorial double-minimum field configuration found closer to the magnetopause. We thus suggest that the magnetic field configuration in the dayside outer magnetosphere plays a key role in the generation of dayside chorus waves under quiet geomagnetic conditions. © 2012. American Geophysical Union. All Rights Reserved.

Identifier

84864535305 (Scopus)

Publication Title

Journal of Geophysical Research Space Physics

External Full Text Location

https://doi.org/10.1029/2012JA017708

e-ISSN

21699402

Issue

7

Volume

117

Grant

23340146

Fund Ref

Japan Society for the Promotion of Science

This document is currently not available here.

Share

COinS