Input-queued switching with QoS guarantees

Document Type

Conference Proceeding

Publication Date

12-1-1999

Abstract

Input-queued switching architectures are becoming an attractive alternative for designing very high speed switches owing to its scalability. Tremendous efforts have been made to overcome the throughput problem caused by contentions occurred at the input and output sides of the switches. However, no QoS guarantees can be provided by the current input-queued switch design. In this paper, a frame based scheduling algorithm, referred to as store-sort-and-forward (SSF), is proposed to provide QoS guarantees for input-queued switches without requiring speedup. SSF uses a framing strategy in which the time axis is divided into constant-length frames, each made up of an integer multiple of time slots. Cells arrived during a frame are first held in the input buffers, and are then "sorted-and-transmitted" within the next frame. A bandwidth allocation strategy and a cell admission policy are adopted to regulate the traffic to conform to the (r,T) traffic model. A strict sense 100% throughput is proved to be achievable by rearranging the cell transmission orders in each input buffer, and a sorting algorithm is proposed to order the cell transmission. The SSF algorithm guarantees bounded end-to-end delay and delay jitter. It is proved that a perfect matching can be achieved within N(ln N+O(1)) effective moves. © 1999 IEEE.

Identifier

0032623514 (Scopus)

ISBN

[0780354176, 9780780354173]

Publication Title

Proceedings IEEE INFOCOM

External Full Text Location

https://doi.org/10.1109/INFCOM.1999.751671

ISSN

0743166X

First Page

1152

Last Page

1159

Volume

3

This document is currently not available here.

Share

COinS