Input-queued switching with QoS guarantees
Document Type
Conference Proceeding
Publication Date
12-1-1999
Abstract
Input-queued switching architectures are becoming an attractive alternative for designing very high speed switches owing to its scalability. Tremendous efforts have been made to overcome the throughput problem caused by contentions occurred at the input and output sides of the switches. However, no QoS guarantees can be provided by the current input-queued switch design. In this paper, a frame based scheduling algorithm, referred to as store-sort-and-forward (SSF), is proposed to provide QoS guarantees for input-queued switches without requiring speedup. SSF uses a framing strategy in which the time axis is divided into constant-length frames, each made up of an integer multiple of time slots. Cells arrived during a frame are first held in the input buffers, and are then "sorted-and-transmitted" within the next frame. A bandwidth allocation strategy and a cell admission policy are adopted to regulate the traffic to conform to the (r,T) traffic model. A strict sense 100% throughput is proved to be achievable by rearranging the cell transmission orders in each input buffer, and a sorting algorithm is proposed to order the cell transmission. The SSF algorithm guarantees bounded end-to-end delay and delay jitter. It is proved that a perfect matching can be achieved within N(ln N+O(1)) effective moves. © 1999 IEEE.
Identifier
0032623514 (Scopus)
ISBN
[0780354176, 9780780354173]
Publication Title
Proceedings IEEE INFOCOM
External Full Text Location
https://doi.org/10.1109/INFCOM.1999.751671
ISSN
0743166X
First Page
1152
Last Page
1159
Volume
3
Recommended Citation
Li, Shizhao and Ansari, Nirwan, "Input-queued switching with QoS guarantees" (1999). Faculty Publications. 15899.
https://digitalcommons.njit.edu/fac_pubs/15899
