Electro-hydrodynamic micro-fluidic mixer

Document Type

Article

Publication Date

1-1-2003

Abstract

Fluid mixing in microchannels is needed for many applications ranging from bio-arrays to micro-reactors, but is typically difficult to achieve. A simple geometry micro-mixer is proposed based on the electro-hydrodynamic (EHD) force present when the fluids to be mixed have different electrical properties and are subjected to an electric field. The electrodes are arranged so that the electric field is perpendicular to the interface between the two fluids, creating a transversal secondary flow. The technique is demonstrated experimentally using the flow of two liquids with identical viscosity and density, but different electrical properties. The volume flow rate and average velocity are 0.26 μl s-1 and 4.2 mm s-1, respectively, corresponding to a Reynolds number Re = 0.0174. The effect of a continuous (DC) electric field and two alternating (AC) - sinusoidal and square - electric fields is explored. At the appropriate parameter values, very good mixing takes place in less than 0.1 s, over a very short distance (within a fraction of the width 250 μm of the electrodes). © The Royal Society of Chemistry 2003.

Identifier

4143091025 (Scopus)

Publication Title

Lab on A Chip

External Full Text Location

https://doi.org/10.1039/b306868b

e-ISSN

14730189

ISSN

14730197

First Page

273

Last Page

280

Issue

4

Volume

3

This document is currently not available here.

Share

COinS