Modulating Plaque Inflammation via Targeted mRNA Nanoparticles for the Treatment of Atherosclerosis

Document Type

Article

Publication Date

9-26-2023

Abstract

Atherosclerosis is a common pathology present in many cardiovascular diseases. Although the current therapies (including statins and inhibitors of the serine protease PCSK9) can effectively reduce low-density lipoprotein (LDL) cholesterol levels to guideline-recommended levels, major adverse cardiovascular events still occur frequently. Indeed, the subendothelial retention of lipoproteins in the artery wall triggers multiple events of inflammation in macrophages and is a major contributor to the pathological progression of atherosclerosis. It has been gradually recognized that modulating inflammation is, therefore, an attractive avenue to forestall and treat atherosclerosis and its complications. Unfortunately, challenges with specificity and efficacy in managing plaque inflammation have hindered progress in atherosclerosis treatment. Herein, we report an NP-mediated mRNA therapeutic approach to target atherosclerotic lesional macrophages, modulating inflammation in advanced atherosclerotic lesions for the treatment of atherosclerosis. We demonstrated that the targeted NPs containing IL-10 mRNA colocalized with M2-like macrophages and induced IL-10 production in atherosclerotic plaques following intravenous administration to Western diet (WD)-fed Ldlr-/-mice. Additionally, the lesions showed a significantly alleviated inflammatory response, as evidenced by reduced oxidative stress and macrophage apoptosis, resulting in decreased lipid deposition, diminished necrotic areas, and increased fiber cap thickness. These results demonstrate the successful delivery of mRNA therapeutics to macrophage-enriched plaques in a preclinical model of advanced atherosclerosis, showing that this targeted NP inflammation management approach has great potential for translation into a wide range of clinical applications.

Identifier

85172295315 (Scopus)

Publication Title

ACS Nano

External Full Text Location

https://doi.org/10.1021/acsnano.3c00958

e-ISSN

1936086X

ISSN

19360851

PubMed ID

37669404

First Page

17721

Last Page

17739

Issue

18

Volume

17

Grant

TMSK-2020-008

Fund Ref

National Science Foundation

This document is currently not available here.

Share

COinS