An iterative synthesis approach to Petri net-based deadlock prevention policy for flexible manufacturing systems

Document Type

Article

Publication Date

5-1-2007

Abstract

This paper proposes an iterative synthesis approach to Petri net (PN)-based deadlock prevention policy for flexible manufacturing systems (FMS). Given the PN model (PNM) of an FMS prone to deadlock, the goal is to synthesize a live controlled PNM. Its use for FMS control guarantees its deadlock-free operation and high performance in terms of resource utilization and system throughput. The proposed method is an iterative approach. At each iteration, a first-met bad marking is singled out from the reachability graph of a given PNM. The objective is to prevent this marking from being reached via a place invariant of the PN. A well-established invariant-based control method is used to derive a control place. This process is carried out until the net model becomes live. The proposed method is generally applicable, easy to use, effective, and straightforward although its off-line computation is of exponential complexity. Two FMS are used to show its effectiveness and applicability. © 2007 IEEE.

Identifier

34247199855 (Scopus)

Publication Title

IEEE Transactions on Systems Man and Cybernetics Part A Systems and Humans

External Full Text Location

https://doi.org/10.1109/TSMCA.2007.893484

ISSN

10834427

First Page

362

Last Page

371

Issue

3

Volume

37

Grant

60228004

Fund Ref

National Natural Science Foundation of China

This document is currently not available here.

Share

COinS