Searching musical audio datasets by a batch of multi-variant tracks
Document Type
Conference Proceeding
Publication Date
12-1-2008
Abstract
Multi-variant music tracks are those audio tracks of a particular song which are sung and recorded by different people (i.e., cover songs). As music social clubs grow on the Internet, more and more people like to upload music recordings onto such music social sites to share their own homeproduced albums and participate in Internet singing contests. Therefore it is very important to explore a computerassisted evaluation tool to detect these audio-based multivariant tracks. In this paper we investigate such a task: the original track of a song is embedded in datasets, with a batch of multi-variant audio tracks of this song as input, our retrieval system returns an ordered list by similarity and indicates the position of relevant audio track. To help process multi-variant audio tracks, we suggest a semantic indexing framework and propose the Federated Features (FF) scheme to generate the semantic summarization of audio feature sequences. The conjunction of federated features with three typical similarity searching schemes, K-Nearest Neighbor (KNN), Locality Sensitive Hashing (LSH), and Exact Euclidian LSH (E2LSH), is evaluated. From these findings, a computer-assisted evaluation tool for searching multi-variant audio tracks was developed to search over large musical audio datasets. Copyright 2008 ACM.
Identifier
70450242881 (Scopus)
ISBN
[9781605583129]
Publication Title
Proceedings of the 1st International ACM Conference on Multimedia Information Retrieval Mir2008 Co Located with the 2008 ACM International Conference on Multimedia mm 08
External Full Text Location
https://doi.org/10.1145/1460096.1460117
First Page
121
Last Page
127
Recommended Citation
Yu, Yi; Downie, J. Stephen; Chen, Lei; Oria, Vincent; and Joe, Kazuki, "Searching musical audio datasets by a batch of multi-variant tracks" (2008). Faculty Publications. 12559.
https://digitalcommons.njit.edu/fac_pubs/12559
