Modeling and design of transdermal drug delivery patches containing an external heating device
Document Type
Article
Publication Date
6-9-2011
Abstract
Process modeling and design concepts were implemented to aid in the manufacturing of heat-enhanced transdermal drug-delivery systems. The simulated prototype consists of a corticosterone-loaded polymer patch applied to the skin and connected to a heating device in which an exothermic reaction occurs. To achieve a desired transdermal flux of 1.2×10-5mg/cm2h, this contribution focuses on the influences of the (1) initial reaction rate (-rA0), (2) mass of filler material in the device (m), (3) initial concentration (C0) of medicament in the patch and (4) overall heat transfer coefficient (U). A regression technique yielded the following results: -rA0=3.000×10-2kg/m3s, m=1.251×10-8kg, U=6.124×10J/m2Ks and C0=1.966×10-1kg/m3. When m was fixed at 12.5g, the optimum design required the following specifications: rA0=2.765×10-2kg/m3s, U=1.402×103J/m2Ks and C0=1.941×10-1kg/m3. The priority (Si) of the input factors (i) in reaching the target delivery rate is: SC0>S-rA0>Sm>SU. © 2011 Elsevier Ltd.
Identifier
79955477251 (Scopus)
Publication Title
Computers and Chemical Engineering
External Full Text Location
https://doi.org/10.1016/j.compchemeng.2011.01.006
ISSN
00981354
First Page
1152
Last Page
1163
Issue
6
Volume
35
Recommended Citation
Kim, Kwang Seok and Simon, Laurent, "Modeling and design of transdermal drug delivery patches containing an external heating device" (2011). Faculty Publications. 11322.
https://digitalcommons.njit.edu/fac_pubs/11322
