High-pressure structural stability of multiferroic hexagonal RMnO 3 (R=Y, Ho, Lu)

Document Type

Article

Publication Date

6-27-2011

Abstract

Structural changes in RMnO3 (R= Y, Ho, Lu) under high pressure were examined by synchrotron x-ray diffraction methods at room temperature. Compression occurs more readily in the ab plane than along the c axis. With increased pressure, a pressure-induced hexagonal to orthorhombic phase transition was observed starting at ∼22 GPa for Lu(Y)MnO3. When the pressure is increased to 35 GPa, a small volume fraction of Lu(Y)MnO 3 is converted to the orthorhombic phase and the orthorhombic phase is maintained on pressure release. High-pressure infrared absorption spectroscopy and Mn K-edge near-edge x-ray absorption spectroscopy confirm that the hexagonal P63cm structure is stable below ∼20 GPa and the environment around the Mn ion is not changed. Shifts in the unoccupied p-band density of states with pressure are observed in the Mn K-edge spectra. A schematic pressure-temperature phase diagram is given for the small ion RMnO3 system. © 2011 American Physical Society.

Identifier

79961140585 (Scopus)

Publication Title

Physical Review B Condensed Matter and Materials Physics

External Full Text Location

https://doi.org/10.1103/PhysRevB.83.224113

e-ISSN

1550235X

ISSN

10980121

Issue

22

Volume

83

This document is currently not available here.

Share

COinS