Precise eye detection using discriminating HOG features
Document Type
Conference Proceeding
Publication Date
9-20-2011
Abstract
We present in this paper a precise eye detection method using Discriminating Histograms of Oriented Gradients (DHOG) features. The DHOG feature extraction starts with a Principal Component Analysis (PCA) followed by a whitening transformation on the standard HOG feature space. A discriminant analysis is then performed on the reduced feature space. A set of basis vectors, based on the novel definition of the within-class and between-class scatter vectors and a new criterion vector, is defined through this analysis. The DHOG features are derived in the subspace spanned by these basis vectors. Experiments on Face Recognition Grand Challenge (FRGC) show that (i) DHOG features enhance the discriminating power of HOG features and (ii) our eye detection method outperforms existing methods. © 2011 Springer-Verlag.
Identifier
80052791244 (Scopus)
ISBN
[9783642236716]
Publication Title
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
External Full Text Location
https://doi.org/10.1007/978-3-642-23672-3_54
e-ISSN
16113349
ISSN
03029743
First Page
443
Last Page
450
Issue
PART 1
Volume
6854 LNCS
Recommended Citation
Chen, Shuo and Liu, Chengjun, "Precise eye detection using discriminating HOG features" (2011). Faculty Publications. 11172.
https://digitalcommons.njit.edu/fac_pubs/11172
