STRUCTURE, STABILITY, and EVOLUTION of MAGNETIC FLUX ROPES from the PERSPECTIVE of MAGNETIC TWIST
Document Type
Article
Publication Date
2-20-2016
Abstract
We investigate the evolution of NOAA Active Region (AR) 11817 during 2013 August 10-12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number Tw for each individual field line. The MFR is moderately twisted (|Tw| < 2) and has a well-defined boundary of high squashing factor Q. We found that the field line with the extremum |Tw| is a reliable proxy of the rope axis, and that the MFR's peak |Tw| temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in |Tw| has little effect on the AR's free magnetic energy or any other parameters derived for the whole region, due to its moderate amount and the MFR's relatively small volume, while its decrease after flares is clearly associated with the stepwise decrease in the whole region's free magnetic energy due to the flare. We suggest that Tw may serve as a useful parameter in forewarning the onset of eruption, and therefore, the consequent space weather effects. The helical kink instability is identified as the prime candidate onset mechanism for the considered flares.
Identifier
84960112034 (Scopus)
Publication Title
Astrophysical Journal
External Full Text Location
https://doi.org/10.3847/0004-637X/818/2/148
e-ISSN
15384357
ISSN
0004637X
Issue
2
Volume
818
Grant
1408703
Fund Ref
National Science Foundation
Recommended Citation
Liu, Rui; Kliem, Bernhard; Titov, Viacheslav S.; Chen, Jun; Wang, Yuming; Wang, Haimin; Liu, Chang; Xu, Yan; and Wiegelmann, Thomas, "STRUCTURE, STABILITY, and EVOLUTION of MAGNETIC FLUX ROPES from the PERSPECTIVE of MAGNETIC TWIST" (2016). Faculty Publications. 10674.
https://digitalcommons.njit.edu/fac_pubs/10674
