Joint caching, routing, and channel assignment for collaborative small-cell cellular networks
Document Type
Article
Publication Date
8-1-2016
Abstract
We consider joint caching, routing, and channel assignment for video delivery over coordinated small-cell cellular systems of the future Internet. We formulate the problem of maximizing the throughput of the system as a linear program, in which the number of variables is very large. To address channel interference, our formulation incorporates the conflict graph that arises when wireless links interfere with each other due to simultaneous transmission. We utilize the column generation method to solve the problem by breaking it into a restricted master subproblem that involves a select subset of variables and a collection of pricing subproblems that select the new variable to be introduced into the restricted master problem, if that leads to a better objective function value. To control the complexity of the column generation optimization further, due to the exponential number of independent sets that arise from the conflict graph, we introduce an approximation algorithm that computes a solution that is within ϵ to optimality, at much lower complexity. Our framework demonstrates considerable gains in average transmission rate at which the video data can be delivered to the users, over the state-of-the-art Femtocaching system, of up to 46%. These operational gains in system performance map to analogous gains in video application quality, thereby enhancing the user experience considerably.
Identifier
84983408017 (Scopus)
Publication Title
IEEE Journal on Selected Areas in Communications
External Full Text Location
https://doi.org/10.1109/JSAC.2016.2577199
ISSN
07338716
First Page
2275
Last Page
2284
Issue
8
Volume
34
Grant
CCF-1528030
Fund Ref
National Science Foundation
Recommended Citation
Khreishah, Abdallah; Chakareski, Jacob; and Gharaibeh, Ammar, "Joint caching, routing, and channel assignment for collaborative small-cell cellular networks" (2016). Faculty Publications. 10355.
https://digitalcommons.njit.edu/fac_pubs/10355
