Date of Award

Spring 2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)

Department

Electrical and Computer Engineering

First Advisor

Hongya Ge

Second Advisor

Yeheskel Bar-Ness

Third Advisor

Ali Abdi

Fourth Advisor

Osvaldo Simeone

Fifth Advisor

Hong Libin

Abstract

Multiple-input multiple-output (MIMO) space-time block coded (STBC) wireless communication systems provide reliable data transmissions by exploiting the spatial diversity in fading channels. However, due to component imperfections, the in-phase/quadrature (I/Q) imbalance caused by the non-ideal matching between the relative amplitudes and phases of the I and Q branches always exists in the practical implementation of MIMO STBC communication systems. Such distortion results in a complex conjugate term of the intended signal in the time domain, hence a mirror-image term in the frequency domain, in the data structure. Consequently, I/Q imbalance increases the symbol error rate (SER) drastically in MIMO STBC or STBC MIMO orthogonal frequency division multiplexing (OFDM) communication systems, where both the signal and its complex conjugate are utilized for the information transmission, hence should be mitigated effectively.

In this dissertation, the impact of I/Q imbalance in MIMO STBC systems over flat fading channels, the impact of I/Q imbalance in STBC MIMO-OFDM systems and in time- reversal STBC (TR-STBC) systems over frequency-selective fading channels are studied systematically. With regard to the MIMO STBC and the STBC MIMO-OFDM systems with I/Q imbalance, orthogonal space-time block codes (OSTBCs), quasi-orthogonal STBCs (QOSTBCs) and rotated QOSTBCs (RQOSTBCs) are studied, respectively. By exploiting the special structure of the received signal, low-complexity solutions are provided to mitigate the distortion induced by I/Q imbalance successfully. In addition, to mitigate I/Q imbalance while at the same time to exploit the multipath diversity for STBC OFDM systems over frequency-selective fading channels, a new encoding/decoing scheme for the grouped linear constellation precoded (GLCP) OFDM systems with I/Q imbalance is studied.

In Chapter 1, the objectives of the research are elaborated. In Chapter 2, the various I/Q imbalance models are introduced, and the model used in this dissertation is established. In Chapter 3, the performance degradation caused by I/Q imbalance of the transceivers in MIMO STBC wireless communication systems over flat fading channels and the solutions are studied. A 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail. By exploiting the special structure of the received signal, low-complexity solutions are proposed to mitigate I/Q imbalance successfully.

Since STBCs are developed for frequency-flat fading channels, to achieve the spatial diversity in frequency-selective fading channels, MIMO-OFDM arrangements have been suggested, where STBCs are used across different antennas in conjunction with OFDM. In Chapter 4, the performance degradation caused by I/Q imbalance in STBC MIMO-OFDM wireless systems over frequency-selective fading channels and the solutions are studied. Similarly, a 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail, and low-complexity solutions are proposed to mitigate the distortion effectively.

However, OFDM systems suffer from the loss of the multipath diversity by converting frequency-selective fading channels into parallel frequency-flat fading subchannels. To exploit the multipath diversity and reduce the decoding complexity, GLCP OFDM systems with I/Q imbalance are studied. By judiciously assigning the mirror-subcarrier pair into one group, a new encoding/decoding scheme with a low-complexity is proposed to mitigate I/Q imbalance for GLCP OFDM systems in Chapter 5.

Since OFDM communication systems have high peak-to-average power ratio (PAPR) problem and are sensitive to carrier frequency offset (CFO), to achieve both the spatial and multipath diversity, time-reversal STBC (TR-STBC) communication systems are introduced. In Chapter 6, the I/Q imbalance mitigating solutions in TR-STBC systems, both in the time domain and in the frequency domain, are studied.

Share

COinS