Document Type


Date of Award

Fall 1-31-2009

Degree Name

Doctor of Philosophy in Mechanical Engineering - (Ph.D.)


Mechanical Engineering

First Advisor

Edward L. Dreyzin

Second Advisor

Boris Khusid

Third Advisor

Kwabena A. Narh

Fourth Advisor

Suhithi M. Peiris

Fifth Advisor

Mirko Schoenitz


Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1 -50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103 -104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved.

This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 -0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was developed to describe the experiments. Experiments with different jet velocities in air environment were performed to validate the model.

The interaction of the laser beam with particles is particle size dependent and a narrow range of particle sizes (around 3.4 µm) is heated most effectively. Therefore, the heat transfer model needs to be analyzed only for the particles with this specific size, which greatly simplifies the interpretation of experiments. Describing heating of a micron sized metal particle involves the transition regime heat transfer. A modified Fuchs model was used to describe the heat transfer in this study.

In addition to dry air environment, the experimental technique was also used with other oxidizing environments, including O2, H2O, CO2 and mixtures thereof. It was observed that particle size capable of maintaining a vapor phase flame is a function of the environment. Arrhenius model kinetics parameters for Al ignition in O2, CO2 and H2O environments were determined.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.