Document Type

Dissertation

Date of Award

Spring 5-31-2008

Degree Name

Doctor of Philosophy in Chemical Engineering - (Ph.D.)

Department

Chemical Engineering

First Advisor

Lev N. Krasnoperov

Second Advisor

Basil Baltzis

Third Advisor

Rajesh N. Dave

Fourth Advisor

Dana E. Knox

Fifth Advisor

Frank J. Owens

Abstract

The aim of the present work was to address the hazardous vulnerability of energetic materials to accidental initiation. An improved form of the explosive RDX with a significantly reduced sensitivity to stimuli including shock and impact was sought. The direction of this research was to investigate the effect of RDX crystal size reduction down to nano-scale dimensions on the sensitivity characteristics. Although size reduction of energetic crystals has been demonstrated often to result in a sensitivity reduction, the effect at the nano-scale particle size has not been investigated.

To generate nanocrystalline RDX a recrystallization process was developed based on rapid expansion of supercritical solutions (RESS). Compressed carbon dioxide was utilized as the solvent for RDX. Effect of key process parameters including the pre-expansion temperature and pressure, post-expansion pressure, and nozzle dimensions was investigated experimentally and via mathematical modeling.

The RESS process yielded pure RDX with a mean crystal size ranging from around 100 to 1000 nm with a relatively narrow size distribution and near spherical particle shape. Continuous processing with efficient particle collection and solvent recycling was accomplished enabling bulk production.

The sensitivity of RDX recrystallized by RESS was tested to stimuli including electrostatic discharge, impact, and shock was tested. Both pure samples as well as wax-based formulations were tested. Two types of recrystallized RDX were tested, Type A and Type B, with a corresponding specific surface area of around 20 and 6 m2/g. Both samples exhibited a significantly lower sensitivity to shock and impact compared to the reference 4.8 micron RDX. The coarser Type B nano RDX was found to be the least sensitive with all the tests. This indicates the existence of a minimum in sensitivity with crystal size.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.