Date of Award

Spring 2006

Document Type


Degree Name

Doctor of Philosophy in Chemical Engineering - (Ph.D.)


Chemical Engineering

First Advisor

Michael Chien-Yueh Huang

Second Advisor

Sanjay V. Malhotra

Third Advisor

Costas G. Gogos

Fourth Advisor

Marino Xanthos

Fifth Advisor

Jing Wu

Sixth Advisor

KwalkTae Hoon Kwalk Tae Hoon


Room temperature ionic liquids (ILs), with their unique physical and chemical properties, have been of great interest in various areas of chemical science and engineering during the last decade. In this dissertation, polyurea and polyamide films with surface nanostructures were synthesized by interfacial polymerization (IP) with ILs without stirring. Both polymers were prepared at the interface between n-hexane and a series of 1 -alkyl-3-methylimidazolium ILs.

Nanoporous or nanofibrous polymer morphologies with various sizes ranging from 50 to 500 nm and geometries, depending on the ILs used, were observed by scanning electron microscopy (SEM). A correlation length of ~20nm and a suppression of three-dimensional (3-D) crystalline structure of the polyurea were found by small angle X-ray scattering (SAXS) and X-ray diffraction (XRD), respectively. FTIR spectra showed no significant changes in the chemical composition of the polymer by the employment of ILs. The peculiar nanostructure of the polymer could be ascribed to the intermolecular interactions between the ILs and the polymer, which affected the development of the polymer morphology.

The polyamides prepared with ILs showed larger intrinsic viscosities, and consequently higher molecular weights, compared to the one prepared without ILs; this could be due to the prevention of the side reaction between sebacoyl chloride and water. The enhancement of the molecular weight renders a better thermal stability to the polyamide film, as revealed by thermogravimetric analysis (TGA) which showed a higher decomposition temperature.

Coating of fine particulates with polyurea by IP has been developed. With increasing stirring speed in the coating process, a decreased mean particle size and a narrower particle size distribution, as well as a lower coating weight percentage were found by particle size analysis and TGA, respectively. A Porous coating layer was formed in the IP coating in the presence of ILs.

The reaction kinetics of Nylon 610 film formation with ILs were studied by measuring the product mass at different reaction times. The polymer film ceased to grow in the late stage of the reaction due to the diffusion barrier formed by the film. The characteristic time marking the cessation of the film growth was found to be dependent on the initial reactant concentrations. The evolution of the polymer molecular weight with reaction time was monitored by intrinsic viscosity measurements. It is found that the molecular weight leveled off faster than the film growth under the same reactant concentrations. Based on our experimental studies, a simplified diffusion-controlled mathematical model of IP with ILs was developed, in which the effective diffusivity in the polymer film decayed with the square of time. The model was used to fit the measured growth rate of the polymer film and the fitting results showed a conspicuously good agreement between the model and the experimental data.

Physical properties of ILs relevant to the biphasic systems were also studied in this work. The interfacial tensions between organic solvents and ILs were found to decrease with ascending alkyl chain length attached to the imidazolium cations. In general, the interfacial tensions between ILs and aromatic solvents are lower than the ones with aliphatic solvents; this is attributed to the π-π interactions between ILs and the aromatic solvent. Self-aggregation of IL molecules in aqueous solutions and self-aggregation of ethanol in ILs are suggested based on the interfacial tension measurements. These properties are important in multi-phase chemical processes.

Our study has demonstrated the potential application of ionic liquids in the interfacial polymerization of polymers with nanoscale structures.