Document Type


Date of Award

Spring 5-31-2006

Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)


Electrical and Computer Engineering

First Advisor

Nirwan Ansari

Second Advisor

Swades K. De

Third Advisor

Kevin W. Lu

Fourth Advisor

Roberto Rojas-Cessa

Fifth Advisor

Sirin Tekinay


Ethernet passive optical networks (EPONs) address the first mile of the communication infrastructure between the service provider central offices and the customer sites. As a low-cost, high speed technology, EPONs are deemed as the solution to the bottleneck problem of the broadband access network.

A major feature of EPONs is the utility of a shared upstream channel among the end users. Only a single optical network unit (GNU) may transmit during a timeslot to avoid data collisions. In order to provide diverse quality of service (QoS), the bandwidth management of the upstream channel is essential for the successful implementation of EPONs, and thus, an efficient medium access control is required to facilitate statistical multiplexing among local traffics.

This dissertation addresses the upstream bandwidth allocation over EPONs. An efficient mechanism, i.e., limited sharing with traffic prediction (LSTP), has been proposed to arbitrate the upstream bandwidth among ONUs. The MultiPoint Control Protocol (MPCP) messages, which are stipulated by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force, are adopted by LSTP to facilitate the dynamic bandwidth negotiation between an GNU and the OLT. The bandwidth requirement of an ONU includes the already enqueued frames and the predicted incoming frames during the waiting time. The OLT arbitrates the bandwidth assignment based on the queue status report from an GNU, the traffic prediction, and the agreed service contract.

With respect to the performance evaluation, theoretical analysis on the frame loss, the frame delay, and the queue length has been conducted. The quantitative results demonstrate that 1) the innovative LSTP mechanism dynamically allocates the upstream bandwidth among multiple ONUs; 2) the traffic predictor at the OLT delivers satisfactory prediction for the bursty self-similar traffic, and thereby, contributing to the reduction of frame loss, frame delay, and queue length; and 3) the bandwidth arbitration at the OLT effectively restricts the aggressive bandwidth competition among ONUs by adopting the service level agreement (SLA) parameter as the upper bound. Aside from analysis, the LSTP mechanism has been substantiated by experimental simulations.

In order to differentiate the service provisioning among diverse users, LSTP is further enhanced with the support of dynamic bandwidth negotiation based on multiple queues. The incoming traffics are first classified into three classes, and then enqueued into the corresponding queues. A traffic predictor is dedicated to one class of traffic from an GNU. Service differentiation among classes are provided by the combination of queuing and scheduling at the GNU side. At the OLT side, the bandwidth allocation for each class of traffic is based on the reported queue status and the traffic prediction, and is upper-bounded by the SLA parameter. Experimental simulations have justified the feasibility of providing service differentiation over the broadband EPONs.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.