Document Type


Date of Award

Spring 5-31-2006

Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)


Electrical and Computer Engineering

First Advisor

Hongya Ge

Second Advisor

Swades K. De

Third Advisor

Teunis J. Ott

Fourth Advisor

Roy R. You

Fifth Advisor

MengChu Zhou


In recent years, the idea of wireless sensor networks has gathered a great deal of attention. A distributed wireless sensor network may have hundreds of small sensor nodes. Each individual sensor contains both processing and communication elements and is designed in some degree to monitor the environmental events specified by the end user of the network. Information about the environment is gathered by sensors and delivered to a remote collector.

This research conducts an investigation with respect to the energy efficiency and the cross-layer design in wireless sensor networks. Motivated by the multipath utilization and transmit diversity capability of space-time block codes (STBC), a new energy efficient cooperative routing algorithm using the STBC is proposed. Furthermore, the steady state performance of the network is analyzed via a Markov chain model. The proposed approach in this dissertation can significantly reduce the energy consumption and improve the power efficiency.

This work also studies the application of differential STBC for wireless multi-hop sensor networks over fading channels. Using differential STBC, multiple sensors are selected acting as parallel relay nodes to receive and relay collected data. The proposed technique offers low complexity, since it does not need to track or estimate the time-varying channel coefficients. Analysis and simulation results show that the new approach can improve the system performance.

This dissertation models the cooperative relay method for sensor networks using a Markov chain and an M/G/1 queuing system. The analytical and simulation results indicate system improvements in terms of throughput and end-to-end delay. Moreover, the impact of network resource constraints on the performance of multi-hop sensor networks with cooperative relay is also investigated. The system performance under assumptions of infinite buffer or finite buffer sizes is studied, the go through delay and the packet drop probability are improved compared to traditional single relay method.

Moreover, a packet collision model for crucial nodes in wireless sensor networks is introduced. Using such a model, a space and network diversity combining (SNDC) method is designed to separate the collision at the collector. The network performance in terms of throughput, delay, energy consumption and efficiency are analyzed and evaluated.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.