Date of Award

Spring 2016

Document Type


Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)


Electrical and Computer Engineering

First Advisor

Osvaldo Simeone

Second Advisor

Alexander Haimovich

Third Advisor

Joerg Kliewer

Fourth Advisor

Ali Abdi

Fifth Advisor

Onur Sahin


This dissertation focuses on cloud-assisted radio technologies for communication, including mobile cloud computing and Cloud Radio Access Network (C-RAN), and for radar systems.

This dissertation first concentrates on cloud-aided communications. Mobile cloud computing, which allows mobile users to run computationally heavy applications on battery limited devices, such as cell phones, is considered initially. Mobile cloud computing enables the offloading of computation-intensive applications from a mobile device to a cloud processor via a wireless interface. The interplay between offloading decisions at the application layer and physical-layer parameters, which determine the energy and latency associated with the mobile-cloud communication, motivates the inter-layer optimization of fine-grained task offloading across both layers. This problem is modeled by using application call graphs, and the joint optimization of application-layer and physical-layer parameters is carried out via a message passing algorithm by minimizing the total energy expenditure of the mobile user.

The concept of cloud radio is also being considered for the development of two cellular architectures known as Distributed RAN (D-RAN) and C-RAN, whereby the baseband processing of base stations is carried out in a remote Baseband Processing Unit (BBU). These architectures can reduce the capital and operating expenses of dense deployments at the cost of increasing the communication latency. The effect of this latency, which is due to the fronthaul transmission between the Remote Radio Head (RRH) and the BBU, is then studied for implementation of Hybrid Automatic Repeat Request (HARQ) protocols. Specifically, two novel solutions are proposed, which are based on the control-data separation architecture. The trade-offs involving resources such as the number of transmitting and receiving antennas, transmission power and the blocklength of the transmitted codeword, and the performance of the proposed solutions is investigated in analysis and numerical results.

The detection of a target in radar systems requires processing of the signal that is received by the sensors. Similar to cloud radio access networks in communications, this processing of the signals can be carried out in a remote Fusion Center (FC) that is connected to all sensors via limited-capacity fronthaul links. The last part of this dissertation is dedicated to exploring the application of cloud radio to radar systems. In particular, the problem of maximizing the detection performance at the FC jointly over the code vector used by the transmitting antenna and over the statistics of the noise introduced by quantization at the sensors for fronthaul transmission is investigated by adopting the information-theoretic criterion of the Bhattacharyya distance and information-theoretic bounds on the quantization rate.