Document Type


Date of Award

Spring 5-31-2004

Degree Name

Doctor of Philosophy in Computing Sciences - (Ph.D.)


Computer Science

First Advisor

Alexander Thomasian

Second Advisor

Joseph Y-T. Leung

Third Advisor

Wojciech Rytter

Fourth Advisor

Vincent Oria

Fifth Advisor

Jian Yang


Similarity search in high-dimensional data spaces is a popular paradigm for many modern database applications, such as content based image retrieval, time series analysis in financial and marketing databases, and data mining. Objects are represented as high-dimensional points or vectors based on their important features. Object similarity is then measured by the distance between feature vectors and similarity search is implemented via range queries or k-Nearest Neighbor (k-NN) queries.

Implementing k-NN queries via a sequential scan of large tables of feature vectors is computationally expensive. Building multi-dimensional indexes on the feature vectors for k-NN search also tends to be unsatisfactory when the dimensionality is high. This is due to the poor index performance caused by the dimensionality curse.

Dimensionality reduction using the Singular Value Decomposition method is the approach adopted in this study to deal with high-dimensional data. Noting that for many real-world datasets, data distribution tends to be heterogeneous, dimensionality reduction on the entire dataset may cause a significant loss of information. More efficient representation is sought by clustering the data into homogeneous subsets of points, and applying dimensionality reduction to each cluster respectively, i.e., utilizing local rather than global dimensionality reduction.

The thesis deals with the improvement of the efficiency of query processing associated with local dimensionality reduction methods, such as the Clustering and Singular Value Decomposition (CSVD) and the Local Dimensionality Reduction (LDR) methods. Variations in the implementation of CSVD are considered and the two methods are compared from the viewpoint of the compression ratio, CPU time, and retrieval efficiency.

An exact k-NN algorithm is presented for local dimensionality reduction methods by extending an existing multi-step k-NN search algorithm, which is designed for global dimensionality reduction. Experimental results show that the new method requires less CPU time than the approximate method proposed original for CSVD at a comparable level of accuracy.

Optimal subspace dimensionality reduction has the intent of minimizing total query cost. The problem is complicated in that each cluster can retain a different number of dimensions. A hybrid method is presented, combining the best features of the CSVD and LDR methods, to find optimal subspace dimensionalities for clusters generated by local dimensionality reduction methods. The experiments show that the proposed method works well for both real-world datasets and synthetic datasets.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.