Document Type

Dissertation

Date of Award

Fall 2017

Degree Name

Doctor of Philosophy in Computing Sciences - (Ph.D.)

Department

Computer Science

First Advisor

Vincent Oria

Second Advisor

James Geller

Third Advisor

Dimitri Theodoratos

Fourth Advisor

Frank Y. Shih

Fifth Advisor

Pierre Gouton

Sixth Advisor

Roger Zimmerman

Abstract

Multimedia is the main source for online learning materials, such as videos, slides and textbooks, and its size is growing with the popularity of online programs offered by Universities and Massive Open Online Courses (MOOCs). The increasing amount of multimedia learning resources available online makes it very challenging to browse through the materials or find where a specific concept of interest is covered. To enable semantic search on the lecture materials, their content must be annotated and indexed. Manual annotation of learning materials such as videos is tedious and cannot be envisioned for the growing quantity of online materials. One of the most commonly used methods for learning video annotation is to index the video, based on the transcript obtained from translating the audio track of the video into text. Existing speech to text translators require extensive training especially for non-native English speakers and are known to have low accuracy.

This dissertation proposes to index the slides, based on the keywords. The keywords extracted from the textbook index and the presentation slides are the basis of the indexing scheme. Two types of lecture videos are generally used (i.e., classroom recording using a regular camera or slide presentation screen captures using specific software) and their quality varies widely. The screen capture videos, have generally a good quality and sometimes come with metadata. But often, metadata is not reliable and hence image processing techniques are used to segment the videos. Since the learning videos have a static background of slide, it is challenging to detect the shot boundaries. Comparative analysis of the state of the art techniques to determine best feature descriptors suitable for detecting transitions in a learning video is presented in this dissertation. The videos are indexed with keywords obtained from slides and a correspondence is established by segmenting the video temporally using feature descriptors to match and align the video segments with the presentation slides converted into images. The classroom recordings using regular video cameras often have poor illumination with objects partially or totally occluded. For such videos, slide localization techniques based on segmentation and heuristics is presented to improve the accuracy of the transition detection.

A region prioritized ranking mechanism is proposed that integrates the keyword location in the presentation into the ranking of the slides when searching for a slide that covers a given keyword. This helps in getting the most relevant results first. With the increasing size of course materials gathered online, a user looking to understand a given concept can get overwhelmed. The standard way of learning and the concept of “one size fits all” is no longer the best way to learn for millennials. Personalized concept recommendation is presented according to the user’s background knowledge.

Finally, the contributions of this dissertation have been integrated into the Ultimate Course Search (UCS), a tool for an effective search of course materials. UCS integrates presentation, lecture videos and textbook content into a single platform with topic based search capabilities and easy navigation of lecture materials.

Share

COinS