Date of Award

Summer 2002

Document Type


Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)


Electrical and Computer Engineering

First Advisor

Symeon Papavassiliou

Second Advisor

Ali N. Akansu

Third Advisor

Constantine N. Manikopoulos

Fourth Advisor

Edwin Hou

Fifth Advisor

Mario Joa-NG


The basic philosophy of personal communication services is to provide user-to-user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad-hoc networking environments a necessity and not just a desire. Multicast protocols in mobile adhoc networks have been an area of active research for the past few years.

In this dissertation, protocols and architectures for supporting multicast services are proposed, analyzed and evaluated in mobile ad-hoc wireless networks. In the first chapter, the activities and recent advances are summarized in this work-in-progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad-hoc networking environments and by surveying several existing multicasting protocols. a classification of the current multicast protocols is presented, the functionality of the individual existing protocols is discussed, and a qualitative comparison of their characteristics is provided according to several distinct features and performance parameters.

In the second chapter, a novel mobility-based clustering strategy that facilitates the support of multicast routing and mobility management is presented in mobile ad-hoc networks. In the proposed structure, mobile nodes are organized into nonoverlapping clusters which have adaptive variable-sizes according to their respective mobility. The mobility-based clustering (MBC) approach which is proposed uses combination of both physical and logical partitions of the network (i.e. geographic proximity and functional relation between nodes, such as mobility pattern etc.).

In the third chapter, an entropy-based modeling framework for supporting and evaluating the stability is proposed in mobile ad-hoc wireless networks. The basic motivations of the proposed modeling approach stem from the commonality observed in the location uncertainty in mobile ad-hoc wireless networks and the concept of entropy.

In the fourth chapter, a Mobility-based Hybrid Multicast Routing (MHMR) protocol suitable for mobile ad-hoc networks is proposed. The MHMR uses the MBC algorithm as the underlying structure. The main features that the proposed protocol introduces are the following: a) mobility based clustering and group based hierarchical structure, in order to effectively support the stability and scalability, b) group based (limited) mesh structure and forwarding tree concepts, in order to support the robustness of the mesh topologies which provides "limited" redundancy and the efficiency of tree forwarding simultaneously, and c) combination of proactive and reactive concepts which provide the low route acquisition delay of proactive techniques and the low overhead of reactive methods.

In the fifth chapter, an architecture for supporting geomulticast services with high message delivery accuracy is presented in mobile ad-hoc wireless networks. Geomulticast is a specialized location-dependent multicasting technique, where messages are multicast to some specific user groups within a specific zone. An analytical framework which is used to evaluate the various geomulticast architectures and protocols is also developed and presented. The last chapter concludes the dissertation.