Document Type


Date of Award

Summer 8-31-2000

Degree Name

Doctor of Philosophy in Computing Sciences - (Ph.D.)


Computer and Information Science

First Advisor

Jason T. L. Wang

Second Advisor

James A. McHugh

Third Advisor

Frank Y. Shih

Fourth Advisor

Daochuan Hung

Fifth Advisor

Michael Halper


Knowledge discovery, in databases, also known as data mining, is aimed to find significant information from a set of data. The knowledge to be mined from the dataset may refer to patterns, association rules, classification and clustering rules, and so forth. In this dissertation, we present a neural network approach to finding knowledge in biological databases. Specifically, we propose new methods to process biological sequences in two case studies: the classification of protein sequences and the prediction of E. Coli promoters in DNA sequences. Our proposed methods, based oil neural network architectures combine techniques ranging from Bayesian inference, coding theory, feature selection, dimensionality reduction, to dynamic programming and machine learning algorithms. Empirical studies show that the proposed methods outperform previously published methods and have excellent performance on the latest dataset. We have implemented the proposed algorithms into an infrastructure, called Genome Mining, developed for biosequence classification and recognition.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.