Date of Award

Fall 2010

Document Type


Degree Name

Doctor of Philosophy in Applied Physics - (Ph.D.)


Federated Physics Department

First Advisor

Dale E. Gary

Second Advisor

Haimin Wang

Third Advisor

Daniel Ely Murnick

Fourth Advisor

Tao Zhou

Fifth Advisor

T. S. Bastian


Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density.

The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (> 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (~ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher field strength is required. These areas of discrepancy are found to coincide with the foot points of hot X-ray loops over the sunspot's penumbra. The results and the extrapolation are used to explore the coronal configuration needed to explain the observations, from which it is found that the bulk of radio and X-ray free-free emission emanates from two loop systems, distinguished by the location of their loop foot points. The proposed stratification may explain the observed distribution of column emission measure and the differences in this quantity as obtained from X-rays or radio emission.

Included in

Other Physics Commons