Document Type


Date of Award


Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)


Electrical and Computer Engineering

First Advisor

Pramod Abichandani

Second Advisor

Moshe Kam

Third Advisor

MengChu Zhou

Fourth Advisor

Cong Wang

Fifth Advisor

Prateek Shekhar


Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages over a single sUAV platform. These advantages include improved task efficiency, reduced task completion time, improved fault tolerance, and higher task flexibility. However, their deployment in an outdoor environment is challenging due to the presence of wind gusts. The coordinated motion of a multi-sUAV system in the presence of wind disturbances is a challenging problem when considering collision avoidance (safety), scalability, and communication connectivity. Performing wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if the wind on the planned route leads to actuator saturation. In a multi-sUAV system, each sUAV has to locally counter the wind disturbance while maintaining the safety of the system. Such continuous manipulation of the control effort for multiple sUAVs under uncertain environmental conditions is computationally taxing and can lead to reduced efficiency and safety concerns. Additionally, modern day sUAV systems are susceptible to cyberattacks due to their use of commercial wireless communication infrastructure.

This dissertation aims to address these multi-faceted challenges related to the operation of outdoor rotor-based multi-sUAV systems. A comprehensive review of four representative techniques to measure and estimate wind speed and direction using rotor-based sUAVs is discussed. After developing a clear understanding of the role wind gusts play in quadrotor motion, two decentralized motion planners for a multi-quadrotor system are implemented and experimentally evaluated in the presence of wind disturbances. The first planner is rooted in the reinforcement learning (RL) technique of state-action-reward-state-action (SARSA) to provide generalized path plans in the presence of wind disturbances. While this planner provides feasible trajectories for the quadrotors, it does not provide guarantees of collision avoidance. The second planner implements a receding horizon (RH) mixed-integer nonlinear programming (MINLP) model that is integrated with control barrier functions (CBFs) to guarantee collision-free transit of the multiple quadrotors in the presence of wind disturbances. Finally, a novel communication protocol using Ethereum blockchain-based smart contracts is presented to address the challenge of secure wireless communication.

The U.S. sUAV market is expected to be worth $92 Billion by 2030. The Association for Unmanned Vehicle Systems International (AUVSI) noted in its seminal economic report that UAVs would be responsible for creating 100,000 jobs by 2025 in the U.S. The rapid proliferation of drone technology in various applications has led to an increasing need for professionals skilled in sUAV piloting, designing, fabricating, repairing, and programming. Engineering educators have recognized this demand for certified sUAV professionals.

This dissertation aims to address this growing sUAV-market need by evaluating two active learning-based instructional approaches designed for undergraduate sUAV education. The two approaches leverages the interactive-constructive-active-passive (ICAP) framework of engagement and explores the use of Competition based Learning (CBL) and Project based Learning (PBL). The CBL approach is implemented through a drone building and piloting competition that featured 97 students from undergraduate and graduate programs at NJIT. The competition focused on 1) drone assembly, testing, and validation using commercial off-the-shelf (COTS) parts, 2) simulation of drone flight missions, and 3) manual and semi-autonomous drone piloting were implemented. The effective student learning experience from this competition served as the basis of a new undergraduate course on drone science fundamentals at NJIT. This undergraduate course focused on the three foundational pillars of drone careers: 1) drone programming using Python, 2) designing and fabricating drones using Computer-Aided Design (CAD) and rapid prototyping, and 3) the US Federal Aviation Administration (FAA) Part 107 Commercial small Unmanned Aerial Vehicles (sUAVs) pilot test. Multiple assessment methods are applied to examine the students’ gains in sUAV skills and knowledge and student attitudes towards an active learning-based approach for sUAV education. The use of active learning techniques to address these challenges lead to meaningful student engagement and positive gains in the learning outcomes as indicated by quantitative and qualitative assessments.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.