Document Type


Date of Award

Fall 12-31-2018

Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)


Electrical and Computer Engineering

First Advisor

Nirwan Ansari

Second Advisor

Ali Abdi

Third Advisor

Abdallah Khreishah

Fourth Advisor

Roberto Rojas-Cessa

Fifth Advisor

Guiling Wang


Internet of Things (IoT) aims to bridge everyday physical objects via the Internet. Traditional energy-constrained wireless devices are powered by fixed energy sources like batteries, but they may require frequent battery replacements or recharging. Wireless Energy Harvesting (EH), as a promising solution, can potentially eliminate the need of recharging or replacing the batteries. Unlike other types of green energy sources, wireless EH does not depend on nature and is thus a reliable source of energy for charging devices. Meanwhile, the rapid growth of IoT devices and wireless applications is likely to demand for more operating frequency bands. Although the frequency spectrum is currently scarce, owing to inefficient conventional regulatory policies, a considerable amount of the radio spectrum is greatly underutilized. Cognitive radio (CR) can be exploited to mitigate the spectrum scarcity problem of IoT applications by leveraging the spectrum holes. Therefore, transforming the IoT network into a cognitive based IoT network is essential to utilizing the available spectrum opportunistically.

To address the two aforementioned issues, a novel model is proposed to leverage wireless EH and CR for IoT. In particular, the sum rate of users is maximized for a CR-based IoT network enabled with wireless EH. Users operate in a time switching fashion, and each time slot is partitioned into three non-overlapping parts devoted for EH, spectrum sensing and data transmission. There is a trade-off among the lengths of these three operations and thus the time slot structure is to be optimized. The general problem of joint resource allocation and EH optimization is formulated as a mixed integer nonlinear programming task which is NP-hard and intractable. Therefore, a sub-channel allocation scheme is first proposed to approximately satisfy users rate requirements and remove the integer constraints. In the second step, the general optimization problem is reduced to a convex optimization task. Another optimization framework is also designed to capture a fundamental tradeoff between energy efficiency (EE) and spectral efficiency for an EH-enabled IoT network. In particular, an EE maximization problem is formulated by taking into consideration of user buffer occupancy, data rate fairness, energy causality constraints and interference constraints. Then, a low complexity heuristic algorithm is proposed to solve the resource allocation and EE optimization problem. The proposed algorithm is shown to be capable of achieving a near optimal solution with polynomial complexity.

To support Machine Type Communications (MTC) in next generation mobile networks, NarrowBand-IoT (NB-IoT) has emerged as a promising solution to provide extended coverage and low energy consumption for low cost MTC devices. However, the existing orthogonal multiple access scheme in NB-IoT cannot provide connectivity for a massive number of MTC devices. In parallel with the development of NB-IoT, Non-Orthogonal Multiple Access (NOMA), introduced for the fifth generation wireless networks, is deemed to significantly improve the network capacity by providing massive connectivity through sharing the same spectral resources. To leverage NOMA in the context of NB-IoT, a power domain NOMA scheme is proposed with user clustering for an NB-IoT system. In particular, the MTC devices are assigned to different ranks within the NOMA clusters where they transmit over the same frequency resources. Then, an optimization problem is formulated to maximize the total throughput of the network by optimizing the resource allocation of MTC devices and NOMA clustering while satisfying the transmission power and quality of service requirements. Furthermore, an efficient heuristic algorithm is designed to solve the proposed optimization problem by jointly optimizing NOMA clustering and resource allocation of MTC devices.