
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1990

Design of spatial linkages for dwell function generation Design of spatial linkages for dwell function generation

Donald F. Kelly
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Kelly, Donald F., "Design of spatial linkages for dwell function generation" (1990). Theses. 2783.
https://digitalcommons.njit.edu/theses/2783

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F2783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2783?utm_source=digitalcommons.njit.edu%2Ftheses%2F2783&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: Design of Spatial Linkages for Dwell Function Generation

Donald F. Kelly, Master of Science in Mechanical Engineering

Thesis directed by: Associate Professor Raj S. Sodhi

Certain single-loop spatial linkages containing spherical pairs may be used as dwell

function generators. Analysis and design of these linkages, however, may be too

complex for the practicing engineer.

In this study a method is presented, where the set of link lengths representing a

linkage are determined from a smaller set of design parameters. Graphical relationships

are also found between the design parameters and functional requirements for dwell,

such as output function amplitude and dwell range. These graphs may be used as

design charts, and design becomes the calculation of link lengths from design

parameters chosen to satisfy the functional requirements.

This method is applied to RRSC, RSRC, and RSCP dwell linkages. Design

parameters and design charts for these linkages are developed and presented here.

) DESIGN OF SPATIAL LINKAGES

FOR DWELL FUNCTION GENERATION

by

Donaldb F. Kelly

A Thesis

Submitted to the Faculty of the Graduate Division of the

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

May, 1990

APPROVAL SHEET

Title of Thesis: Design of Spatial Linkages for Dwell Function Generation

Name of Candidate: Donald F. Kelly

Master of Science in Mechanical Engineering, 1990

Thesis and Abstract Approved:

Dr. Raj S. Sodhi Date

Associate Professor

Department of Mechanical Engineering

\•&

Date

Date

VITA

Name: Donald F. Kelly

Permanent address:

Degree and date to be conferred: MSME, 1990

Date of Birth:

Place of Birth:

Secondary education: Manalapan High School, 1981

Collegiate institutions attended Dates Degree Date of Degree

Brookdale Community 1983 AS 1985

College 1985

New Jersey Institute 1986 BSME 1988

of Technology 1988

New Jersey Institute 1988 MSME 1990

of Technology 1990

Major: Mechanical Engineering

Position: Designer

Foster Wheeler Corporation

Clinton, New Jersey, 08809

Copyright © 1990 by Donald F. Kelly

ALL RIGHTS RESERVED

To my Mother and Father

ii

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to his advisor, Dr. Raj S.

Sodhi, for his guidance and moral suport throughout this research.

iii

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Introductory Remarks and Definitions 1

1.2 Background 3

1.3 Notation Used in this Thesis 4

1.4 Scope And Purpose of this Thesis 6

1.5 Discussion of Spatial Dwell Mechanisms 7

1.6 Axiomatic Design a 11

2 ANALYSIS METHODS FOR SPATIAL MECHANISMS 13

2.1 Tools Used 20

3 APPLICATION TO SOME DWELL LINKAGES 22

3.1 The RRSC Linkage 22

3.1.1 Quadruple Dwell 28

3.1.2 Double Angular Dwell 37

3.1.3 Double Translational Dwell 43

3.1.4 Single Angular Dwell 46

3.2 The RSRC Linkage 66

3.3 The RSCP Linkage 72

iv

Page

4 DISCUSSION OF RESULTS 82

4.1 Design for Dwell Using the Tables 82

4.1.1 Double Angular Dwell 83

4.1.2 Double Translational Dwell 84

4.1.3 Single Angular Dwell 85

4.1.4 Single Translational Dwell (Absolute Span) . . 86

4.1.5 Single Translational Dwell (Normalized Span) 87

4.2 Results in Terms of Axiomatic Design 87

4.3 Other Issues 90

5 CONCLUSION 93

6 REFERENCES 95

APPENDIX A: DESIGN CHARTS 100

APPENDIX B: TK SOLVER MODELS FOR LINKAGES . . 120

APPENDIX C: EXPLANATION AND CODE FOR

SPACELINKS PROGRAM 129

LIST OF FIGURES

Page

1. Schematic Representation of Spatial Joints 1

2. Method of Developing Planar Dwell Linkages 9

3. Modeling of Cylinder Joint with Two Transformations 16

4. Initial and Final Coordinate Systems for Spherical Joint 18

5. Transformation Modeling of Spherical Joint with Three

Revolute Pairs 19

6. RRSC Configuration, with Definitions of Link Lengths 23

7. Projection of RRSC onto XZ Plane 26

8. Projection of RRSC onto YZ Plane 27

9. Projection of RRSC.4d at Crank Angle 90° onto XZ Plane .. . 29

10. Projection of RRSC.4d at Crank Angle 90° onto YZ Plane,

Showing Assembly Requirement 31

11. Link Length Curves for RRSC.4d 33

12. Cylinder Joint Output for RRSC.4d 34

13. Angular Dwell Ranges for RRSC.4d 35

14. Translational Dwell Ranges for RRSC.4d 36

15. Projection of RRSC.2ad at Crank Angle 0° onto XZ Plane . . . 40

vi

Page

16. One Percent Dwell Ranges for RRSC.2ad 41

17. Five Percent Dwell Ranges for RRSC.2ad 42

18. Projection of RRSC.2ad at Crank Angle 90° onto YZ Plane 44

19. One Percent Dwell Ranges for RRSC.2td 47

20. Five Percent Dwell Ranges for RRSC.2td 48

21. Projection of RRSC.lad at Crank Angle 90° onto XZ Plane . . 49

22. Intersection of CS Arc with RR Circles for RRSC.lad 50

23. Angle 8 and Perpendicular Bisettor for RRSC.lad 52

24. Tangents to Circle from Point M 54

25. If Pivot V is Above Point U then N is Rightmost Intersection

of Arc With Circle 55

26. Half-span v for RRSC.lad 57

27. One Percent Dwell Ranges for RRSC.lad (B = 0.5) 58

28. Five Percent Dwell Ranges for RRSC.lad (B = 0.5) 59

29. One Percent Dwell Ranges for RRSC.lad (B = 1.0) 60

30. Five Percent Dwell Ranges for RRSC.lad (B = 1.0) 61

31. One Percent Dwell Ranges for RRSC.lad (B = 1.5) 62

32. Five Percent Dwell Ranges for RRSC.lad (B = 1.5) 63

vii

Page

33. One Percent Dwell Ranges for RRSC.lad (B = 2.0) 64

34. Five Percent Dwell Ranges for RRSC.lad (B = 2.0) 65

35. RSRC Configuration, with Definitions of Link Lengths 67

36. Projection of RSRC onto YZ Plane 70

37. One Percent Dwell Ranges for RSRC 73

38. Five Percent Dwell Ranges for RSRC 74

39. RSCP Configuration, with Definitions of Link Lengths 75

40. Elliptical Path Osculates with Circle at Point A 76

41. Projection of RSCP onto XY Plane 79

42. Dwell Ranges for RSCP 81

•

viz'

CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks and Definitions

A mechanism may be defined as "a mechanical device that...transfers motion and/or

force from a source to an output." Linkages, or kinematic chains, are a subset of this

group, and consist of rigid bodies (the links) connected by joints permitting certain

relative motions to achieve the desired overall motion [16]. In the context of this thesis,

the term linkage is limited to exclude such machine elements as gears, belts and pulleys,

and cams; in other words, higher pairs are not used in linkages as they are defined here.

Some typical examples of linkages would be the crank-slider mechanism and the planar

four-bar mechanism. •

Both of these examples are members of the class of planar mechanisms, the

constituent parts of which are constrained to move in parallel planes. These devices are

more easily analyzed using two dimensional mechanics, and so are more familiar and

more commonly used than the more general class of spatial mechanisms. Spatial

mechanisms are not constrained to planar motions, and thus they are more versatile than

the planar mechanisms. The design of certain spatial linkages is addressed in this

thesis.

One further remark, in relation to the above examples, may be made. These

examples are types, or classes of linkages; the number of links and general

configuration of the system are specified, but the particular dimensions of the

component links are not. Choosing a general linkage class is known as type or number

1

synthesis, and the subsequent choice of the link dimensions is called dimensional

synthesis. In this thesis, a linkage type or class is called a linkage configuration, while

the result of a dimensional synthesis is called a particular linkage, or simply a linkage.

All linkages are particular cases of some corresponding linkage configuration.

In many mechanism design problems, the output motion is required to be

stationary for some portion of the input motion. This type of output is known as a

dwell, and several machine elements, such as cams or geneva mechanisms, may be

used to produce dwell motions. In some situations, and particularly at high speeds,

these machine elements suffer from shock and dynamic effects. Linkages consisting of

rigid bodies in permanent contact may in some cases offer a design solution that avoids

these problems. A further advantage with linkages is that they are easier to manufacture

compared to elements such as cams, and so are less expensive.

The drawback to using linkages for dwell applications is that a true dwell, where

the output is absolutely stationary for a finite portion of the input cycle, is impossible

for a linkage to achieve, since the output motion of a linkage is continuous in all

derivatives with respect to the input motion. True dwell is not always necessary,

however, and an approximate dwell (called a hesitation) can be produced by making all

the derivatives of the output, up to a certain level, instantaneously equal to zero at the

hesitation point [6]. This produces a motion that is instantaneously stationary at the

point of hesitation, and nearly stationary nearby. In this thesis, all dwells are

approximate, and the terms dwell and hesitation are used interchangeably.

2

1.2 Background

Although spatial linkages are more difficult to work with than planar linkages, over the

past fifty years spatial linkage kinematics have been modeled successfully with a variety

of techniques. K.H. Hunt has used analytic geometry [7], particularly curves of

intersection between regions generated by the endpoints of open chains [8]; J. Rastegar

has developed a similar method [15]. A. Wilhelm has applied projective geometry to

spherical and other spatial mechanisms [27]. Other treatments include dual numbers

and screw algebra [4], dual number quaternion algebra [28], matrices [3,16,22], and

tensor methods [11]. The matrix technique is the basis of many commercial mechanism

analysis programs because the technique is general and the lends itself well to numerical

solutions[9,16,21]. Other computer methods, based on optimization techniques[25]

and least-square methods[1], have application to synthesis of spatial linkages.
6

B.L. Harding studied the linkage motion requirements for producing a hesitation,

or approximate dwell, and developed a technique for synthesis of dwell linkages using

point-path mechanisms and path curvature theory [6]. Since then, Harding's

techniques have been extensively developed for the planar case, and planar dwell

linkage design has been automated by Kota, Erdman and Riley, using computer-based

expert systems [12-14]. For the spatial case, K.H Hunt's geometric techniques have

been applied by Hunt and Shrivastava to the problems of identifying and analyzing

dwell linkages [18,19].

3

1.3 Nomenclature and Notation Explanation
gik

For the linkages studied in this paper, the lower pairs used are the revolute, or pin joint,

the prismatic, or slider joint, the spherical or ball-and-socket joint, and the cylindrical

joint; these pairs are represented by the capital letters R, P, S, and C, respectively. The

links themselves are numbered, starting with 1 for the frame and continuing with the

link connected to the frame by the pair containing the input variable.

Linkage configurations are named by the pairs that they contain, in the same order

in which they connect the links, and a particular joint in the linkage is specified by

subscripts indicating which links it connects. Thus the RRSC linkage contains a pin

joint connecting the frame to link 2, another pin joint connecting link 2 to link 3, a

spherical joint connecting links 3 and 4, and a cylindrical joint connecting link 4 to the

frame. The second joint in this linkage is specified uniquely by R23. In illustrations of

linkages, joints are represented schematically as shown in Figure 1.

The primary mathematical entities used in this thesis are scalar variables

representing link lengths and joint variables, vectors, and matrices. Link lengths are

represented by lowercase italics, joint and other angles by Greek letters, vectors by

boldface letters, and matrices are represented by capitalized Roman letters. When a link

length is normalized, it will be represented by the roman capital equivalent of its

original symbol; whether a capital letter represents a normalized link length or a matrix

will be clear by the context in which it appears. Other scalar variables that may be

introduced will use lowercase Roman and Greek letters.

4

5

Figure 1: Schematic Representation of Spatial Joints

1.4 Scope and Purpose of Thesis

The purpose of this thesis is threefold: first, to examine the kinematic necessities of

design for dwell in spatial linkages; second, to adapt a method of kinematic analysis for

use on a personal computer; and third, to study several spatial linkages with dwell

potential, and from this develop a series of design charts to obtain suitable dwell

motions from these linkages.

The scope of the first objective will be limited to position analysis only, and will

attempt to answer the question: what are the necessary objectives when designing a

spatial mechanism to produce dwell motion, beyond those needed for general

mechanism design? Such design issues as transmission angles, branch problems, and

the ability of the input crank to fully rotate are important, but are not uniquely germane

to the dwell design problem. Separate criteria for identifying acceptable dwell designs,

to be used in conjunction with the other elements of linkage design, will be presented

here.

To perform the positional analyses implied above, a general method of modeling

and analyzing the linkages studied must be available. The method of modeling linkages

as transformations in homogeneous coordinates was chosen, and a library of

subroutines was written for use in the general position analysis of any single-loop

linkage. For many linkages, however, this matrix technique may be too elaborate, and

a simpler alternative method, based on projective geometry, was used where possible.

The ultimate goal is to use the two proceeding objectives to produce something

useful for the design of dwell linkages. Several spatial linkage configurations identified

as having dwell potential were studied in terms of dwell criteria, and the results are

6

given in graphical form in this thesis. The mechanisms studied were the RRSC, the

RSRC, and the RS CP linkages.

1.5 Discussion of Spatial Dwell Linkages

When linkages are classified according to function, they generally fall into three groups:

point-path mechanisms, function generators, and motion generators. In the point-path

mechanism, the objective is to have some point on a floating link follow a specified

path, while for the motion generator, the entire rigid body motion of the floating link

(or the moving lamina associated with it) is specified. The function generator produces

a motion such that one joint variable for a joint connected to the frame is a specified

function of a joint variable for another joint (the input) connected to the frame. The

dwell linkages considered here are all function generators.

One property of the functions generated by linkages is that they are continuous in

all their derivatives. Because of this property, dwells are only approximate, but the

shocks associated with discontinuities in the function's derivatives do not occur.

Further, under the conditions where the assumption of rigid links holds (ie. for

sufficiently stiff links, or low inertial and other forces), these linkages avoid the

dynamic effects, such as phase lag and spring surging, seen in cam and follower

systems.

The main drawback to using linkages for dwell, aside from the approximate nature

of the dwell motion, is that since the derivatives (especially jerk) of the output are low

near the dwell point, large accelerations may occur in the output function as the motion

resumes.

7

The method of identifying spatial dwell linkages may be more easily broached by

considering methods used in the planar case [6]. To produce a planar dwell linkage, a

point-path mechanism is synthesized so that the path contains a portion that is nearly

straight or that has a nearly constant curvature. (Cusps and inflection points in the path

may also be used to produce dwells, but the above cases are sufficient for illustration

purposes.) A second loop is constructed as shown in Figure 2, so that a link that has

the same length as the radius of the curve is connected by a pin to the moving pivot of

the new crank, or a slider joint is tangent to a nearly straight-line portion of the curve.

The new crank will exhibit dwell motion when the point is in the linear or constant-

curvature portion of its path. This is equivalent to finding a second (open-loop) point

path linkage, whose path is constrained, by the path of the closed loop point to

experience a dwell condition.

For spatial linkages, an analogous method was developed by Hunt to investigate

the motion of possible configurations. In this method[8], a point on the end of an open

loop linkage (or kinematic chain) generates a curve, surface, or volume of all the points

it can reach. The intersection of this generated region with that from a point on another

open loop creates, under favorable conditions, a curve of intersection; if the two open

loops are joined at a points of intersection by a spherical joint, a closed loop is formed,

and the locus of possible positions of the spherical joint is the curve of intersection.

Geometric analysis of this curve can tell much about the mechanism thus constructed.

In terms of dwell mechanisms, the design strategy is to find the conditions under

which, when the output joint variable is held motionless at the dwell point, the

generated surface of the output chain contains a path that osculates (intersects another

curve at three or more infinitesimally separated points, or in other words has a common

8

9

Figure 2: Method of Developing Planar Dwell Linkages

10

tangent and center of curvature at a point of intersection with some other curve) with the

curve of intersection (the path of the spherical joint). Thus a dwell linkage synthesized

in this fashion will have, in general, at least one spherical joint, and will, in addition to

constraints on its dimensions to assure full crank range of motion, transmission

effectiveness, and so on, have parlitional constraints on its dimensions to assure the

presence of this osculation[19]. Again, the linkage is synthesized by making an open-

loop path generator conform to a path that produces a dwell, but in the three

dimensional case the intersection of the two open chains is what produces the path,

rather than an input point-path mechanism, and so only one loop is necessary.

In designing for approximate dwell motion, there are three new functional

requirements. The first of these is the overall shape of the output function, which

would include the number and placement of the hesitations. The second functional

requirement is the total span of motion traversed by the function, and can be thought of

as the amplitude of the output function. The third, which must be specified for each

dwell, is the range, in terms of input motion, that the output remains approximately

stationary. Since the dwell is approximate, a tolerance is applied: the accuracy of the

dwell is the percentage of span that the output deviates from its position at the exact

dwell point; and dwell ranges are given meaning by the application of a dwell accuracy.

Thus one may meaningfully speak of a "forty degree dwell range, with an accuracy of

one percent," which would mean that the input crank rotates 40 degrees while the

output variable deviates less than one percent of the total span from the dwell position.

For a dwell linkage configuration, therefore, a study must be made of the overall

output function shape, the total span of the output, and the dwell ranges for given

accuracies, for all possible sets of link dimensions producing dwell conditions. This

would give the designer the information he needs to choose intelligently from among

the possible configurations, and develop the linkage he needs for his application.

1.6 Axiomatic Design

Concepts such as functional requirements and design parameters are part of a new

theory of design, known as axiomatic design and developed by N. P. Suh [23, 24]. In

this theory, functional requirements are a set of independent requirements that the

completed design must meet, and design parameters are a set of variables relating to the

design choices available in any particular design; the vector of functional requirements

is a vector function of the design parameter vector.

The theory of axiomatic design is basdd on two axioms postulated by Suh. The

first, called the Independence Axiom, states that designs in which the design parameters

are independent of each other, with respect to the vector function relating them to the

functional requirements, are superior to designs in which the design parameters are not

independent. The Independence Axiom has a direct bearing on the approach taken in

this thesis, as this approach deals with the relationships between functional

requirements and design parameters. The second axiom, which is known as the

Information Axiom and is less important to this thesis, states that of the designs

satisfying the Independence Axiom, the design requiring the least descriptive

information is the best design.

Some consequences of the Independence Axiom may be stated in the following

manner: for functional requirement vector F and design parameter vector P, related by

11

vector function v such that F = v(P), then the best designs are those in which the

Jacobian of v is a diagonal matrix, since each design parameter affects exactly one

functional requirement and the parameters are thus independent. Designs meeting this

requirement are known as uncoupled designs. Less desirable are decoupled, or quasi-

coupled, designs, in which the Jacobian of v is a triangular matrix; in these designs the

parameters are not independent, but by solving for the parameters using forward or

back substitution, some independence may be maintained. The least desirable design is

the coupled design, where the design parameters cannot be made independent.

A consideration of these results and the Information Axiom leads to the conclusion

that the best designs have the same number of functional requirements as design

parameters.

The Axiomatic Design approach supplies a conceptual framework for the

classification and evaluation of dwell linkages. The functional requirements for dwell

motion are given above; a method of analysis will be presented below to develop design

parameters for dwell linkages.

12

CHAPTER TWO

ANALYSIS OF THE SPATIAL MECHANISMS

The analysis of a linkage configuration with dwell potential must start by finding

the constraints necessary to assure a properly functioning linkage, and those necessary

to assure a dwell condition; these constraints are used to develop design parameters for

the dwell linkage configuration. Then for the particular linkages allowed by these

constraints and prescribed by the design parameters, a position analysis must be made

to find the actual values for the functional requirements. The first portion of the

analysis is performed by using Hunt and Shrivastava's analytical geometry

techniques[8, 18, 19]. The second portionis performed either through the matrix-

numerical position analysis or the projective geometry technique mentioned above.

For a given linkage configuration, the information, such as link lengths and

offsets, may be represented as a vector in a "linkage-" or "design space," with one

component for each link dimension or offset. Particular linkages may then be

represented as points in this design space. The constraints assuring proper linkage

function are usually inequality constraints, so they define regions in the design space in

which are found acceptable linkages. The constraints assuring dwell motion are usually

equality constraints, so they reduce the number of independent variables needed to find

the acceptable dwell linkages. The sets of acceptable dwell linkage vectors are curves

or surfaces in the design space, and are vector functions of some new set of

parameters, which themselves usually have some physical meaning in terms of the

13

linkage configuration. The parameters may also be considered components in a new,

and smaller, "parameter space," the points of which map, through the vector function,

into the dwell linkage points in the design space. The identification of the constraints

and the development of the parameters and vector functions depend on the particular

linkage configuration considered, and are left to the sections dealing with each

configuration.

Once the parameters, mapping function, and constraints are known, dimension

synthesis becomes simply choosing a point in parameter space, and checking that the

resulting point in design space is in the acceptable region. Design for dwell is thus the

task of choosing a linkage configuration and finding a point in its parameter space to

meet the functional requirements. In general, the first functional requirement, the

overall shape of the output function, is a function of the linkage configuration, while
d

the span and the dwell ranges are functions of the parameters.

Once the configuration is chosen to meet the first functional requirement, the

designer may consult some mapping of parameters to the span and dwell ranges to find

the linkage fitting his requirements. In fact, the designer need not even consider the

span of the output at this point since the output function may be cascaded through an

amplification mechanism (pulley, rack and pinion, or another linkage) to scale the

original output. Thus the primary concern of the designer is the dwell range.

The dwell range as a function of the parameters must at this point be found from a

positional analysis of the linkage as the input crank is rotated. One analysis method that

may be used is based on the well known matrix method, as used by such commercial

packages as IMP and IDEAS, and presented in [16]. A brief recapitulation is presented

here.

14

15

A point (x, y, z) is represented in homogeneous coordinates by the vector (column

matrix) [x, y, z, 1]T. The transformation of a point's coordinates from one coordinate

system to another by translation or rotation may be performed by an appropriate

premultiplication by a 4x4 transformation matrix. In other words, for a point P, if Pb

is the homogeneous coordinate vector of P in coordinate system B, and Pa is the vector

in system A, then Pa -ab Pb,ere Sab is the matrix used to move from system A to P b,

system B. A sequence of transformations can be represented by the product of the

individual transformation matrices, and is called a concatenation of the transformations.

A joint connecting two links may be represented as one or more coordinate

transformations, where the new coordinate system lies on the new link and the old

system lies on the old link. A kinematic chain would then be represented as a

concatenation of the joint transformations, and a closed loop would also be represented

by a concatenation of the link transformations, but with the important property that the

product of the transformations must be the 4x4 identity matrix (since the final link

returns to the starting point). Some examples of useful joints are given here for

illustration.

In Figure 3 a cylindrical pair is shown connecting Link i with Link j. The old

coordinate system (X0, Y0, Z0) lies along Link i with the origin coincident with the pair

at the far end of the link, and the new coordinate system (X2, Y2, Z2) lies on Link j,

with the origin coincident with the Cij pair. The transformation for the cylindrical pair

is a concatenation of two transformations. The first transformation is a translation Li

along the X0 axis to the Cij pair, then a rotation 0 about the translated Zo axis to reach

the interim (X1, Y1, Z1) coordinate system. The second transformation is a translation

T along the Zi axis to the origin of the new coordinate system. The joint variables for

16

Figure 3: Modeling of Cylinder Joint with Two Transformations

the C.. pair are 0 and T. Revolute pairs may be modeled using only the first

transformation, and prismatic pairs can be modeled using a 0 of zero.

A spherical pair Ski is shown connecting Links i and j in Figure 4. This joint is

modeled by considering it to behave as three revolute pairs as shown in Figure 5. This

joint is modeled with three transformations, corresponding to the three joint variables of

the spherical pair or the three revolute pairs. The first transformation translates along

Link i from the old origin (X0, Y0, Zo) to the center of the sphere, then rotates 01 about

the new Y axis. The second transformation is a rotation of 02 about the X axis, and the

third transformation is a rotation of 03 about the Z axis. In figures 4 and 5 only the

original and final coordinate systems are shown, and the rotations 01 and 03 are made

equal to zero, to simplify the presentation. Other concatenations of three

transformations may be used to represent this pair, depending on the configuration of

the three revolute pairs used to represent it.

The position analysis of the single closed loop linkage becomes a problem of

finding the values for the unspecified (dependent) joint variables for the given input

values. This, in turn, is actually solving the problem S - I = 0, where S is the matrix

product of all the joint transformation matrices, and is a nonlinear matrix function of all

the joint variables, and I is the identity matrix. This is solved using the an adaptation of

the iterative Newton-Raphson root-finding technique. This iterative technique depends

on using partial derivatives of S with respect to each of the joint variables, and finds

successively closer approximations to the true solution, given a sufficiently close initial

guess.

These techniques have been implemented in a group of subroutines that together

form a way of modeling and determining the position of any single loop linkage. These

17

18

Figure 4: Initial and Final Coordinate Systems for Spherical Joint

19

Figure 5: Transformation Modeling of Spherical Joint
with Three Revolute Pairs

routines were written in THINK Con the Macintosh, and are based on the use of the

matrix data types and routines in the commercial NuTools Numerical library for

THINK C, as well as a series of "code primitives" that perform the elementary

manipulations. A listing of these routines, along with a more complete description of

their function and the techniques on which they are based, may be found in

Appendix A.

A second method of position analysis, which is based on projections of the linkage

onto convenient planes to reveal simple geometric relationships, may also be used on

the spatial linkages presented here. This technique in effect reduces the spatial analysis

to a set of planar analyses; its major advantages over the matrix technique are the

simplicity of its application and the ease and speed of solution of the resulting models.

The projective geometry approach does not lend itself easily to a universal modeling

technique, however, so the technique must be re-derived for each linkage. Because it is

different for each linkage, and because it is best demonstrated by example, the

projective geometry approach will be presented when it is applied. The projective

geometry approach was used wherever it was convenient, and the matrix technique was

only used to demonstrate its application.

2.1 Tools Used

As was mentioned earlier, the matrix analysis technique was implemented on an Apple

Macintosh Plus, and was coded in THINK C version 4.0 with the NuTools Numerical

version 1.2 numerical routine library. The mapping function between design

parameters and link lengths for a configuration is a nonlinear system of equations, and

20

the projective geometry technique also leads to systems of nonlinear equations; these

were manipulated using TK Solver Plus version 1.1, an equation solving program, on

the Macintosh Plus. This program can solve for unknowns in systems of equations,

and can automatically apply a Newton-Raphson root finding algorithm if it cannot

directly solve for an unknown variable. Most of the data for the design charts were

generated by TK Solver models for the mechanisms. The design charts themselves

were created by TempleGraph, a graphing program available on Sun workstations in

the NJIT Computer-Aided Engineering Laboratory. Other drawings were created in

MacDraft on the Macintosh.

21

CHAPTER THREE

APPLICATION TO SOME DWELL LINKAGES

The foregoing analysis was applied to three spatial linkages with dwell potential.

Two of these, the RRSC linkage and the RSRC linkage, were studied in previous

literature [18, 19], and the third, the RSCP dwell linkage, is introduced here.

3.1 The RRSC Mechanism

The RRSC mechanism is the most complex linkage configuration considered in this

thesis. The overall configuration is as shown in Figure 6. Link 1 is the frame, the
•

revolute joint R12 is the input crank, and the cylinder C41 is the output. There are two

possible output variables, corresponding to the two joint variables of C41. The major

dimensions are given as crank length q, Link 3 length b, Link 4 length r, and the line of

action of C41, which is parallel to the Z-axis and offset from it by p vertically and h in

the -X direction. All link lengths and offsets are considered to be greater than or equal

to zero in this thesis. In this application, the link lengths p, r, b, and h are normalized

with respect to crank length q to become P, R, B, and H, which are used as the

coordinates of the RRSC linkage space. This linkage configuration was studied

extensively by Hunt and Shrivastava [18, 19], who identified the conditions for proper

linkage function and dwell motion.

The RRSC linkage may be split into two open kinematic chains by removing the S

pair. The endpoint of the R12R23 chain produces a torus, with major diameter of Q=1

22

23

Figure 6: RRSC Configuration, with definitions of Link Lengths

24

and minor diameter B, as its reachable space. The cylindrical joint C14 produces an

infinite cylinder of diameter R.

This general linkage configuration gives rise to four different dwell linkage

configurations characterized by the number and position of dwell points: a single dwell

point on the angular output variable, two identical dwell points 180° apart on the

angular variable, two identical dwell points 180° apart on the translational output

variable, and four dwell points 90° apart, alternating between translational and

rotational dwells. These configurations are labeled here as RRSC.lad, RRSC.2ad,

RRSC.2td, RRSC.4d, respectively, for convenience. All dwell points in these

linkages are at the the extrema of the output functions.

Hunt and Shrivastava have identified the necessary conditions for dwell in these

linkages [19]. For the RRSC.lad configuration, the equality constraint is given as:

For RRSC.2td, the constraints are:

The RRSC.2ad constraints are (1) and (2), and the RRSC.4d constraints are (1), (2),

and (3). Thus the RRSC.4d configuration, which has four link dimensions and three

25

equality constraints, would be expected to have one design parameter; the RRSC.2ad

and RRSC.2td would each have two design parameters, and the RRS C. lad

configuration would have three design parameters.

Full crank rotation is the only general constraint considered in this thesis. The

conditions assuring crank rotability will be considered separately for each of the four

dwell configurations.

The RRSC linkage may be studied using the projective geometry technique. By

projecting the link lengths onto the XZ-plane (Figure 7), the following relationships

may be found:

where a is the crank angle, 13 is the joint variable for R23, and y is the angular joint

variable for C41, as shown in the figure. These may be solved simultaneously for

and y, and a projection onto the YZ-plane (Figure 8) produces an equation for the

translational variable T for C41:

26

Figure 7: Projection of RRSC onto XZ Plane

27

Figure 8: Projection of RRSC onto YZ Plane

28

3.1.1 Quadruple Dwell This is the most constrained of the RRSC configurations;

the constraints are reiterated here:

Since H = 0, a subspace of the original (R, P, B, H) linkage space will be used,

namely (R, P, B). This reduces our linkage space; a parameter space must now be

found to map into the subspace. Again; Hunt and Shrivastava have found a single

parameter to describe this linkage [18]. This parameter, 4r, is half the total span of the
•

angular output, as shown in Figure 9. The values of R and P are explicit functions of

v, given as:

and B may be found from the solution to the cubic equation:

29

Figure 9: Projection of RRSC.4d at Crank Angle 0° onto XZ Plane

where

A further useful equation given in [18] is the relationship between the translational

half-span Tmax, and the link lengths:

To assure crank rotability, only one inequality constraint must be considered. This

is the constraint assuring that the links can be assembled in certain critical positions,

namely at crank angles 90° and 270°. In these positions the position of the spherical

joint reaches its minimum Z value; as illustrated in Figure 10, the inequality

will ensure that the linkage will assemble at this point, thus also assuring full crank

rotation. Inequality (12) is valid for all of the RRSC dwell configurations where H = 0

is true. In the RRSC.4d configuration, this inequality constraint is always satisfied;

this may be demonstrated by considering Equation (3), rewritten as

30

Figure 10: Projection of RRSC.4d at crank angle 90° onto
YZ Plane, showing Assembly Requirement

31

32

where

Thus for the RRSC.4d configuration, and for all RRSC dwell configurations

where Equations (2) and (3) hold, the crank is fully rotatable for all particular linkages.

.
To fmd some particular RRSC.4d linkages, a TK Solver model was made, using

equations (7) through (11). The particular linkage dimensions for several values of i

were determined automatically by the TK Solver program. These are given graphically

in Figure 11, and agree with Hunt and Shrivastava's results.

SpaceLinks was then used to determine the general shape of the output functions.

A matrix transformation model was developed for the RRSC configuration, and is

given in Appendix C. A typical RRSC.4d linkage (NJ = 45°) was analyzed, and the

translational and angular outputs, normalized with respect to their half-spans, were

graphed. These are shown in Figure 12, where the dwell points are readily visible at

crank angles 0°, 90°, 180°, and 270°.

The final results for the RRSC.4d linkage configuration are given in Figures 13

and 14; these are the graphs relating the angular half-span to the dwell range, for dwell

accuracies of one and five percent. These were produced using SpaceLinks in batch

37

mode, using the results from the TK Solver link length model, but several new

equations were added to find the dwell range and the dwell accuracy (or tolerance). For

the angular output:

For the translational output:

These equations were solved for the range, given v (thus also the link lengths),

and the tolerance required. These graphs may be used to design a double dwell linkage

with respect to either of the output variables, or a quadruple dwell linkage.

3.1.2 Double Angular Dwell By removing Equation (3) as a constraint on

RRSC.4d, the translational dwell condition may be removed. This produces the

38

RRSC.2ad configuration, which has two identical dwells at the extrema of the angular

output function, separated by a crank angle of 180°. The dwell conditions are reiterated

here:

Again, H = 0 and so the (R, P, B) subspace may be used; this removes one

variable and one constraint. This configuration may be described by two parameters,

as there are three remaining design variables and one remaining equality constraint.

Since this configuration produces angular dwell and is similar to the RRSC.4d

configuration, one sensible choice for a parameter would be the angular half-span used

in the RRSC.4d configuration. Before this parameter can be used, however, a

demonstration must be made of its validity in this new and less constrained case.

For this configuration, Equation (1) may be rewritten as:

This is a hyperbola in the variables R and (P-B); it also describes a right triangle

where one leg is unity (or Q, which equals one), the other leg is P-B, and the

hypotenuse is R. When the crank angle is zero, this relationship forces the R23 joint

variable to be 90°, and the projection of link lengths onto the XZ-plane is as shown in

39

Figure 15. From the figure, the relationship between P-B and Ni is

which is equivalent to Equation (8). An equation for R in terms of v may also be

found from the figure; this equation is equivalent to Equation (7). The angular half-

span v therefore may be used as one parameter. The other parameter was chosen to be

the normalized link length B.

Since H = 0 for this configuration, crank rotability is equivalent to Inequality (12);

since Equation (3) no longer holds, however, full rotation is not assured for all possible

linkages, and the rotability constraint must be checked. This may be more conveniently

accomplished in the parameter space than in the design (link length) space, so the

inequality was converted to

A TK Solver model was developed to study this configuration. Equations (4), (5),

(7), (8), (14), and (15), and Inequality (21), were incorporated in the model, and the

TK Solver program automatically solved for curves of constant dwell range. These

curves were plotted along with the results of a C program which calculated B for the

equality portion of (21); these plots are given in Figures 16 and 17.

40

Figure 15: Projection of RRSC.2ad at Crank Angle 0° onto XZ Plane

8

C
8

C

II
00
C

VP

43

3.1.3 Double Translational Dwell This linkage configuration has two equality

constraints and four design variables. The equality constraints are shown again here:

By considering only the (R, P, B) subspace, the number of variables may be

reduced to three and the number of equality constraints to one, thus two parameters

define the dwell curve through the design space. There is no need for a crank rotation

constraint, as Equation (3) guarantees that Inequality (12) always holds.

As in the angular dwell case, the half-span may be used as one parameter; in the

translational dwell case, however, the half-span is not N' but Tmax, the maximum

normalized distance that the cylinder travels from the point of intersection of its axis

with the R12 axis. For the quadruple dwell case, equation (11) was given by Hunt and

Shrivastava to relate several link lengths with Tmax. For the less restrictive RRSC.2td

case, however, this equation must be shown to be valid, and other relationships derived

to generate a parameter space and mapping function.

Consider Figure 18, where the RRSC.2td configuration, with a crank angle of

90°, the position of maximum translational displacement, is projected onto the YZ

plane. The link length relationship

44

Figure 18: Projection of RRSC.2ad at Crank Angle 90°

45

may be combined with equation (3) to give

which may be reduced to

which is equivalent to equation (11). Combining equation (24) with equation (3) gives

thus, given T as a parameter, a logical choice for the other parameter would be P; then

R could be given as

and the mapping function is complete.

46

Equations (25) and (26) were incorporated into a TX Solver program with

equations (4) - (6) and (17) - (18), and curves of constant dwell range were

automatically solved for, to produce the graphs in Figures 19 and 20.

3.1.4 Single Angular Dwell This configuration has only one equality constraint,

so it should have three parameters. Since H is not necessarily zero in this case, the full

(R, P, B, H) design space must be used; further, v as it was previously defined will no

longer serve as the angular half-span or as a parameter. This configuration requires a

new approach.

In this configuration, the only constraint required to produce the dwell is equation

(1). This produces the right triangle shown in Figure 21 when crank angle a is zero.

Thus the spherical pair for all RRSC. 1 ad linkages must pass through the point

(1, 0, B).

For this linkage to be able to rotate, two conditions must be met. In Figure 22,

the two circles are the section cut by the XZ plane through the reachable space of the

Ri2R23 open chain (a torus); the Ci4S43 open chain is represented by an arc that must

pass through the top of the leftmost circle (point M) to satisfy the dwell condition. The

first condition for crank rotatability is that the arc must intersect the rightmost circle

(point N); the second condition is that no point on the arc, between points M and N,

may lie outside of the region defined by

IZI <B (27)

49

Figure 21: Projection of RRSC.1ad at Crank angle 90° onto XZ Plane

50

Figure 22: Intersection of CS Arc with RR Circles for RRSC.1 ad

51

This last condition may be satisfied by either inequality (12) or

The first condition for crank rotatability is the motivation for the choice of

parameters in the RRSC. lad linkage. As shown in Figure 23, the point N on the

rightmost circle may be defined by the radius B and an angle 0, measured from the top

of the circle, and the fixed pivot for the arc must lie on the perpendicular bisector of the

line segment between M and N. This perpendicular bisector is a line that may be

represented as a point and a scalar multiple (r) of a two dimensional vector. The point

chosen was the midpoint of the line segment, and the vector chosen was the vector

from the midpoint to point M, rotated 90°. .The equations for the fixed pivot position

may be written as:

Thus B, 0, and ti may be used as design parameters:

52

Figure 23: Angle e and Perpendicular Bisector for RRSC.1 ad

53

and R can be found by substituting equations (31) and (32) into equation (1):

Rotatability constraints will be left in the link length forms of inequalities (12) and (28)

for convenience.

The new parameters 0 and ti also have limiting values placed on them. Since H

and P are both greater than zero, the intersection point must lie on the major arc of the

rightmost circle between the points of intersection of the circle with the tangent lines

passing through M, as shown in Figure 24. Thus the limits on 0 are:
8

There are two possible intersection points between the arc and the rightmost circle;

the intersection point defined by 0 must be the rightmost of these two. This may be

assured by making the pivot point be above and to the right of a line through N and the

center of the circle, as shown in Figure 25. This line intersects the perpendicular

bisector as shown in the figure, and as long as inequality (34) holds, this intersection

point will exist, and ti must be larger than or equal to the ti that defines this point on the

perpendicular bisector. The value of ti for this point may be found by the simultaneous

solution of the equations of the two lines, and is given by:

54

Figure 24: Tangents to Circle from Point M

55

Figure 25: If Pivot V is Above Point U then N is Rightmost
Intersection of Arc with Circle

56

The span may be found by considering the right triangle formed by M, the

midpoint of MN, and the fixed pivot of the arc, as shown in Figure 26. Since the

distance from the midpoint to the pivot is always ti times the distance from the midpoint

to point M, the angle Ni shown in the figure, which is the half-span for RRSC. 1 ad is

dependent solely on t:

Equations (4) and (5) define the output function, and these were combined with

equations (31) -(33) and (35) - (36), and inequalities (12), (28), and (34) in a TK

Solver model; range and tolerance were represented by:

These were solved, for different values of B, for curves of constant range, and

these results were graphed as the design charts given in Figures 27 through 34.

57

Figure 26: Half-span ilf for RRSC.lad

65

09

Half-span Phi (degrees)

1--k t%..) c4.) -P LA ON
0 0 0 0 0 0

O

O

8 O O. F
igur e

 30
: 5

%
 D

w
e
ll R

ang
es fo

r R
R

S
C

.lad
 (B

 =
 1.0)

-1=k.
O

i--+
S.

00
0

g
II
00

0

. . . 1 II : II

I 8 ' 8

I9

Half-span Phi (degrees)

0

---- —- 0
v;) 0 1--i tsa c.x) -0. Lit
0000000

N (..4 41. Lit ON
00000 0

/

0

Fi g
u
re 32 : 5%

 D
w

ell R
anges f or R

R
SC

.lad (B

0

N.)
LA
O

II II

O
O

£9

66

3.2 The RSRC Mechanism

Another linkage configuration that will produce dwell motion is the RSRC linkage.

The general configuration is given in Figure 35. The revolute R12 is the input joint,

while the output is the translational component of C41. Crank length r, Link 4 length q,

vertical offset f, and cylinder displacement p are all normalized with respect to coupler

length b to produce R, Q, F, and P; the design space is (R, Q, F). This linkage

configuration was also identified and studied by Hunt and Shrivastava [19].

This linkage experiences a dwell in the cylinder displacement P at a crank angle of

zero. If the translational component of C41 is held stationary, the reachable space of

C14R43 is a torus; revolute R12 produces a circle as its reachable space. According to

Hunt and Shrivastava, a section Z = F taken through the torus such that

will have a "dumb-bell"-shaped curve, and this curve will osculate with the circular

crank path if

67

Fig 35: RSRC Configuration, with definitions of Link Lengths

68

The inequality constraint ensuring full crank rotation is

This configuration will have two parameters, since it has a three-dimensional

design space and one equality constraint. The design variable Q was chosen as one

parameter, and a new variable Z = Q - F was chosen as the other. The relationship

allows inequality (40) to be rewritten as

and equation (41) as

The relationship between P and crank angle 0 is given in [19], but this relationship

is incorrect. The correct relationship is derived here.

The position of S23, in XYZ coordinates, is (R cos 0, R sin 0, F). The length of

69

Link 3 forces the position of R34 to satisfy

•
whereµ is defined as shown in Figure 36. Since

where

70

Figure 36: Projection of RSRC onto YZ Plane

71

and

Equation (39) can be solved for P with the quadratic formula:

Hunt and Shrivastava give the value of P at the dwell point as

and the total span of P as

Equations (42), (44) and (49) - (53) were combined in a TK Solver file to produce

72

a model of this linkage. Dwell range and tolerance were computed using

Curves of constant dwell range for tolerances of one and five percent were

calculated, and are given in Figures 37 and 38.

3.2 The RSCP Mechanism

This linkage configuration was identified by Hunt and Shrivastava as having dwell

potential, but a dwell linkage was not developed. One configuration that will produce

dwell motion is given in Figure 39. The revolute R12 is the input joint, and the slider

P41 is the output joint. Coupler length b, vertical offset p, and slider displacement d

are all normalized with respect to crank length q to produce B, P, and D. The design

space consists of B, P, and a, the angle that the axis of R12 makes with the Z-axis.

The open kinematic chains made by R12 and P14C43 may be used to find the

conditions for a dwell output. The output will experience a dwell at its minimum

displacement when the crank angle is zero; if the slider is held stationary at this point,

the generated surface of the output is an infinite cylinder. The path of the crank must

osculate, at crank angle 0°, with a circular section through the cylinder. The projection

of the crank path onto the XY-plane, as shown in Figure 40, is an ellipse with a major

1.50 2.00

Normalized
3.00 2.50

• . 4. !

. : 1-----+ -r +-.1"--"-.1 . • .• ., 1 •••• : • 1 • 5 i
....--

• .5 I...
... -.- ...

.....• • • • 1.. 4r.
I . 4. •eze I. -- .. I

----- -I- -1-
11
• • •
6 I 2 •

• 1

I

'
.I

1

 o

!

i J. :

--r.:-

-r

I
1 9.4 . • 0 I . -.-

r
1 9 •

.1.
.... .

•

... •

Si

. . .
4
1 . .a............. .

5 •••

... ...

.I.
fl . : f . . . : . I. .

 + + + . • . . , _ „.„
1 1- •• 5 1 .4.

-•- -.

4.,..

1

-.-

.
. 4,--,......„%.

. I •9 I i., .

. I
TS.--

I 1 _ L -- r —
i. „ t......-
: •

I 1 i i ...
• : • • • -.- 1 1 1 •

—----wh••••...
lat -- . -

• I 1.•
-am.--
.... I ... • . e

.. .
.'"'"‘"- . : .

—. +
i" •

1 • ...,
•
•„....e.

 + • +
...........,..... : e

. .1.55. • .- I j. ...
----- -5 ---ar•5450..-- - + A

• 1 5 5 I I 1 1 i J. J.

I 1 I 1 • • • • . •i . •I

—......i.
• ...5•11
1‘..

.....

. 1 2

.. 42.•11........

I
I

•••4.--"

0.•
1
a 1

•-•

a....
JO
1
. 1 ..L

... I. 15"...".
5
5

1

...1. .
O •••

I

•• — 1.. t er.......-.1.-----•:...—
.... ! . 1 1 1 I 1

9 1
.11..

I 1 1 1 1
• I 1 I

II

... ;t. .
I

..,.

...... 1 . ---- 1 ..
.

1 ..0-

1 --- 4 ...

. . .
a* ----

.

..... 5 5 1 1 I

. 4 : +

. A. J.
. . i
•

+ J. +
•

+
•

+ + + + - - - • 5-
• 1 1 • • • I r 5 1 1 1 5 1

• • • 1 •
1 1 1

-----4- 1• 1
i i .5. i i ••• 1 1

I
..... ... •11. .0. ••• ..9 rt. ..,I .I..

•
..F •1• . .0. .1..

---""T . T .
I

1 5 5 5
T . . .

5
I I 1 I

5 I 1 1
1 1
9 11 I 1

I 1 1
1 1 1 1

I I I I I I I I I I 1 I 1 I I I

Figure 38: 5% Dwell Ranges for RSRC
1.00

0.25
1.00

N
or

m
al

iz
ed

 Z

0.75

0.50

Minimum

R=70

R=-80

R=90

R=100

75

Figure 39: RSCP Configuration, with definitions of Link Lengths

76

Figure 40: Elliptical Path Osculates with Circle at Point A

77

axis of 2 and a minor axis of 2 cos a, the equation of this ellipse is

The crank path will osculate properly if the radius of curvature of the ellipse at

X = 0 is equal to B, that is,

This is the equality constraint for the RSCP dwell mechanism, and gives B as a

function of a. One constraint to ensure prqper linkage motion in this case is that a can

never be zero, as two possible branches would then share a common position at crank

angle zero, and the linkage motion would be indeterminate. For full crank rotatability,

the only constraint is that B must be greater than or equal to one, and that is assured by

equation (57) and a nonzero a.

There are three design variables and one equality constraint, so two design

parameters are expected; a and P may be used as the design parameters. Since it will

be shown below that P does not affect the dwell constraint or the functional relationship

between input and output, that is, since P has no affect on the functional requirements

considered here, the choice of P may be ignored in this thesis. Thus a is the only

necessary design parameter, and the parameter space has only one dimension.

The input/output relationship may be found by considering the projection of the

78

linkage onto the XY-plane, as shown in Figure 41. The position of the spherical pair

follows the path of an ellipse:

where 0 is the crank angle. Link length B is then the hypotenuse of a right triangle,

one of whose sides is Y, and so

Since Y is zero at the maximum and minimum values for D, the span is

The dwell ranges and tolerances were given by

Equations (57) - (63) were combined in a TIC Solver model and the ranges for one

Projection of 0
sin 0

fi

D

X

Y
A

•
•
•

1 O

cos() cosa

O

79

Figure 41: Projection of RSCP onto XY Plane

80

and five percent dwells were found for different values of a. These ranges are given as

curves in Figure 42, and they may be used to design a dwell linkage.

CHAPTER FOUR

DISCUSSION OF RESULTS

The method developed in this study was applied to three mechanism

configurations, and generated design procedures for six types of dwell function

generator: one quadruple dwell, one double angular dwell, one double translational

dwell, and one single angular dwell from the RRSC configuration, and a single

translational dwell from each of the RSRC and RSCP configurations. The quadruple

dwell RRSC.4d mechanism is unique among these linkages since its output is

distributed across two output functions. Each output function among these linkages is

symmetric about the dwell points, and the dwells on any one output function are evenly

spaced and identical. 6

New parameters were introduced for these linkages. A single design parameter

was introduced for the quadruple dwell mechanism and for the RSCP dwell

mechanism, two design parameters were introduced for each of the double angular

dwell, double translational dwell, and RSRC dwell mechanisms, and three were

introduced for the single angular dwell mechanism.

4.1 Design for Dwell Using the Tables

These linkages may be used to design for certain dwell functions. To apply these

mechanisms to the design of a dwell function generator, the designer must first decide

on the nature of the output function, particularly on the number and placement of the

dwell regions, and on the type of output (translational or rotational). Then the dwell

82

ranges and tolerances must be chosen, and the total span of the function. (For

translational dwell, a choice must also be made between the two types of span

available, an absolute span or a normalized span.) With these design decisions the

functional requirements are completely determined.

The choices of output function type and number of dwell points determine the

specific linkage configuration, thus the design parameters, to be used. Other functional

requirements such as span and dwell ranges are met by the proper choice of these

design parameters. Other design parameters that may be introduced are the degree of

amplification (if any) applied to the output, and the overall size of the linkage. The

design charts are collected in Appendix A for convenience; some examples of design

are given here to illustrate their use.

4.1.1 Double Angular Dwell An angular output function is required that contains

two identical dwells 180° apart, at the maximum and minimum values for the function.

The span is to be 100°, and the dwell ranges are to be 80°, with an acceptable deviation

of 5% of the span.

This function may be synthesized by the RRSC.2ad mechanism. The half-span

phi is 50° and the dwell range is 80°; on the design chart for 5% dwell ranges for

RRSC.2ad (Figure 17), this is satisfied by a B of 0.3. The parameter vector is thus

83

84

fully defined, and the link lengths may be found from Equations (7) and (20):

These are the normalized link lengths and may be scaled to any convenient size.

4.1.2 Double Translational Dwell A translational function is required that

contains two identical dwells 180° apart. The span must be four times the input crank

length and the dwell range is to be 70°; a tolerance of 5% of the span is acceptable.

This function may be produced by the RRSC.2td linkage. From Figure 20, the

parameter P for a normalized half-span of two and a 70° dwell range is 0.68. The

normalized link lengths may be found from Equations (25) and (26):

4.1.3 Single Angular Dwell A rotational function containing one dwell is

required, with a range of 85° and a span of 1200; a tolerance of 1% is acceptable.

An RRSC. 1 ad linkage will be used to solve for this function. The half-span is

60°, the dwell range is 85°, and the tolerance is 1%; several solutions are possible.

From Figure 31, two solutions are found (0 = 60° and 0 = 1450), and from Figure 33,

a third solution is found at 0 = 20°. The three linkages are found from Equations

(31) - (33) and (36):

Solution 1: B = 1.5, 0 = 60°, v = 60° (t = 0.5774):

B = 1.5

H = 1.5 (sin 60° + 0.577 + 0.577 cos 60°) / 2 = 0.866
8

P = 1.5 (1 + cos 60° + 0.577 sin 60°) / 2 + 0.577 = 2.08

R = [(1 + 0.866)2 + (2.08 - 1.5)210.5 = 1.95

Solution 2: B = 1.5, 0 = 145°, v = 60° et = 0.5774):

B = 1.5

H = 1.5 (sin 145° + 0.577 + 0.577 cos 145°) / 2 = 1.22

P= 1.5 (1 + cos 145° + 0.577 sin 145°) / 2 + 0.577 = 0.961

R = [(1 + 1.22)2 + (0.961 - 1.5)210.5 = 2.28

85

86

Solution 3: B = 2.0, 0 = 20°, v = 60° (t = 0.5774):

B = 2.0

H = 2.0 (sin 20° + 0.577 + 0.577 cos 20°) / 2 = 0.377

P = 2.0 (1 + cos 20° + 0.577 sin 20°) / 2 + 0.577 = 2.71

R = [(1 + 0.377)2 + (2.71 - 2.0)210.5 = 1.55

4.1.5 Single Translational Dwell (Absolute Span) A translational function is

required that contains a dwell at one extreme position. The span needed is three inches

(an absolute span), and the dwell range is 100°, with a tolerance of 1% required.

This may be solved by the RSCP linkage. The design chart in this case is

Figure 42, where a 120° dwell range with 1% tolerance is satisfied by an a of 17.5°.

The normalized span is therefore 1.907, and so the linkage must be scaled up by

choosing the crank length to be 1.573". The link length p may arbitrarily chosen as 1"

to produce the linkage:

87

4.1.6 Single Translational Dwell (Normalized Span) A translational function

is required that experiences a single dwell. The normalized span is to be two, and the

dwell range is to be 50°, with an acceptable tolerance of 1%.

This function may be produced by the RSRC linkage. From Figure 37, a 50°

dwell range will be produced by the linkage when Q = 2.0 and Z = 0.70. The link

lengths are found from Equations (42) and (44):

Q = 2.0

F = 2.0 - 0.70 = 0.30

R = (2.0 - 0.70) (1.0 - 0.702)0 5 / 0.70 = 0.306

span = 0.612

This linkage does not yet produce the desired output; the function must be

cascaded through an amplifting mechanism. The amplification factor should be

2.0/0.612 = 3.27.

4.2 Results in Terms of Axiomatic Design

A convenient way to categorize the dwell linkages studied here is through the

conceptual framework of Axiomatic Design, particularly the Independence Axiom. The

three categories a design may fall into, in terms of the Independence Axiom, are

uncoupled designs, where the design parameters are independent of each other, coupled

designs, where the design parameters are not independent of each other, and decoupled

or quasicoupled designs, where the design parameters may be considered independent

when solved for in the proper order. Uncoupled designs are the most desirable, and

coupled designs are the least desirable.

The choice of which linkage configuration to use determines the subsequent

number and types of choices; this choice may thus be considered to be at a more

antecedent level in the design heirarchy. Once a linkage configuration is chosen, one

design parameter (the configuration) and one functional requirement (the overall shape

of the output function) may be eliminated from consideration; the remaining functional

requirements are the span of the output function and the dwell ranges. (There is

normally one dwell range, thus one functional requirement, for each dwell, but the

output functions in this study have only one dwell range each since all the dwells on a

single output function are identical.) The remaining design parameters are those

introduced in the analysis of the linkage and an amplification factor on the output

function, if the output is cascaded through an amplifying linkage. The total scale of the

linkage, that is, the size of the normalizing link, may also be considered a design

parameter, especially for the translational dwell mechanishas with an absolute output

span, but is usually left to subsequent levels of the design heirarchy. The design

parameters and functional requirements of the dwell linkages may be examined to

determine the type of design.

The quadruple dwell mechanism RRSC.4d has, other than the scaling factor, three

design parameters: the half span phi and two output amplification factors. It has four

functional requirements: span and dwell range for each of its output functions. Thus

this linkage configuration cannot be made independent since there are more functional

requirements than design parameters; the same design parameter determines both dwell

ranges, and the design is coupled.

88

The double angular dwell linkage RRSC.2ad has two design parameters; the two

functional requirements are the span and the dwell range. Since the span is solely a

function of the half span parameter phi, and the dwell range is a function of both phi

and the other parameter B, this design is decoupled. By the same logic, the double

translational dwell linkage RRSC.2td is also decoupled; a scaling factor may be added

for absolute spans, making the design less than optimum since there are more design

parameters than functional requirements.

The RRSC. lad single angular dwell linkage has three design parameters, one of

which is a half span parameter. Since the only functional requirements are the span and

the dwell range, and the span is determined solely by the half span parameter while the

dwell range is determined by all three parameters, this design is also decoupled.

However, this design also is less than optimum since there are more design parameters

than need be.

The RSRC single translational dwell linkage has two functional requirements and

two design parameters introduced in the analysis; since both span and dwell range are

functions of both design parameters, this is a coupled design. The design can be

decoupled by introducing a scaling factor for absolute spans or an amplification factor

for normalized spans; however, the resulting decoupled design now has more design

parameters than functional requirements and so is less than optimum.

The RSCP single translational dwell linkage has two functional requirements; the

three design parameters for this linkage are the parameter introduced in the analysis, a

scaling or amplification factor for the span, and the normalized link length P, which has

no affect on the functional requirements. This is also a decoupled design with one

extraneous design parameter.

89

The linkages studied here, with the exception of the quadruple dwell linkage, are

all decoupled. In certain regions of the parameter space, the dwell curves for several of

the linkages approximate horizontal lines, and in those regions the designs are

approximately uncoupled. This is the case for RRSC.2ad when v is between 45° and

120° and 1% dwell range is between 60° and 80°, and when v is between 45° and 120°

and 5% dwell range is between 80° and 1000; and for RRSC.2td when Tmax is between

1.5 and 2.5 and the 5% dwell range is between 40° and 70°. The RRS C. 1 ad design

curves have points where the tangents are approximately hoizontal, but these regions

are very restricted compared with the regions in the RRSC.2ad and RRSC.2td cases.

4.3 Other Issues

Using the design charts developed here, a limited number of dwell function generators

may be synthesized. The technique developed in this study may be applied to many

other linkages, however, and should be, to expand the range of dwell function designs

available. Other areas that must be addressed are such requirements of good linkage

design as transmission effectiveness, and issues related to dynamic effects, such as

vibration and distortion of the output function. In subsequent research, these design

issues may possibly be incorporated into this design paradigm as constraints that limit

the acceptable regions of design space; in the meantime, the linkages synthesized using

this technique may be used as a starting point for mechanism and machine design, and

further analysis and refinement of the design may be required to produce a completely

acceptable mechanism.

Another area that may be addressed in future research is the use of stronger and

90

91

weaker dwell requirements for the intersecting paths. The number of infinitesimally

separated points shared by both curves is three in this study, thus the order of tangency

is two (or, the order of osculation is one). A greater or smaller order of tangency

between the curves will produce output functions with larger or smaller dwell ranges,

respectively. Other dwell types that may be added are those that resume travel in the

same direction after the dwell point as before it.

Several remarks may be made in closing about the methods of analysis. One is

that a problem exists with the technique of reducing the design space, and that is that

the equality constraints used to develop the design parameters may not describe rational

curves through the design space, and so a single set of design parameters may not

describe the entire locus of dwell linkages. This problem may be avoided in some

cases if the acceptable region of the design space contains only one branch of the curve,
m

but some linkage configurations will have more than one branch in the acceptable

region, and will need more than one parameter vector and mapping function. In other

linkage configurations, such as the RSRC configuration, a convenient parameter vector

may produce non-unique points in the range for some points in the domain (that is, the

mapping relationship is not a function). For the RSRC configuration, this means that,

although the span is equal to twice the normalized link length R, the link length R was

not used as a parameter since it would have resulted in multuple solutions for either F

or Q, and the parameters were chosen otherwise.

The final remark concerns the kinematic analysis methods used in this research.

The matrix technique, once a program was developed to implement it, was the more

general of the two methods and could model any closed loop linkage, but when tested,

the program was too slow for practical use. When the RRSC.4d linkage was analyzed,

each new position needed between three and five iterations to converge, and each

iteration took about six seconds. Thus finding the joint variables for crank angles up to

sixty degrees by one degree increments could take up to twenty minutes. For the

mutiple analyses needed to find the design curves, this program was prohibitively

slow. The problem may have been that the SpaceLink program is on a slow platform

(the Macintosh Plus CPU is a Motorola MC 68000 chip with a clock rate of 7.83

megahertz) or that the nested-function way SpaceLinks implements the matrix technique

slows performance. An analysis of the RRSC.4d linkage using IMP on the Mechanical

Engineering Sun system ran in about ninety seconds, so the technique can be

potentially fast enough for interactive mechanism design and analysis.

92

CHAPTER FIVE

CONCLUSION

A method was developed in this study to simplify the design of spatial dwell

linkages by reducing the number of design choices; this method was applied to several

spatial linkages, and produced reduced sets of design parameters for these linkages.

Other techniques were developed for position analysis of spatial linkages on the

personal computer, and these were applied to the linkages studied, to determine the

relationships between the design parameters and the functional requirements for dwell

motion design. This application resulted in sets of design charts which may be used by

practicing engineers to develop dwell linkages.

This technique of reducing the desigeparameters appears to be a useful way of

dealing with the design of dwell linkages. The resulting design charts are easily applied

to design problems, and the method of identifying and analyzing linkage configurations

with dwell potential, upon which the parameter reduction technique is based, may be

applied to many spatial linkages. Thus design for dwell function generation may

eventually be performed using a wide range of function types and linkage

configurations, forming a library of easily designed mechanisms. Further, the linkages

themselves may be more easily classified and evaluated according to the categories of

axiomatic design.

Two methods of position analysis were applied to the linkages studied in this

study. One, the matrix method, was generally applicable to any single loop linkage,

but was also prohibitively slow. The other, using projective geometry, had to be

93

94

reapplied and derived separately for each linkage configuration, but resulted in simpler

models that could be solved more quickly and easily. Thus the matrix program

SpaceLinks would be considered only a backup for those linkages that might not be

amenable to the simpler geometric approach.

More work is needed to develop this design parameter technique fully as a method

for dwell function generator synthesis, but in this study the technique has been

demonstrated to be valid.

CHAPTER SIX

REFERENCES

[1] Alizade, R.I., A.V. Rao, and G.N. Sandor,"Optimum Synthesis of Two-Degree-

of-Freedom Planar and Spatial Function Generating Mechanisms Using the

Penalty Function Approach," Polytechnic Institute of Baku, USSR, Journal of

Engineering for Industry (Trans. ASME), vol. 97, series B, no. 2, May 1985, pp.

629-634.

[2] Burden, R.L. and J.D. Faires, Numerical Analysis (3rd ed.), (Boston: Prindle,

Weber, and Schmidt, 1985).

[3] Denavit, J. and R.S. Hartenberg, "A Kinematic Notation for Lower-Pair

Mechanisms Based on Matrices," Journal of Applied Mechanics vol. 22, June

1955, (Trans. ASME v. 77), pp. 215-221.

[4] Dimentberg, F.M., "A General Method for the Investigation of Finite

Displacements of Spatial Mechanisms and Certain Cases of Passive Constraints,"

Trudi Semin. po Teor Mash. Mekh. Akad., Nauk USSR, vol. 5, no. 17, 1948,

pp. 5-39.

[5] Hain, K. "Design Curves for Linkages and their Use," Proceedings of the Institute

of Mechanical Engineers, (London), vol. 186 paper no. 59 for Meet Sept. 5,

1972, pp 845-854.

[6] Harding, B.L. "Hesitation," Journal of Engineering for Industry (Trans ASME),

pp. 205-212, May 1965.

[7] Hunt, K.H. Kinematic Geometry of Mechanisms, (Oxford: Oxford University

Press, 1978).

95

96

[8] Jenkins, E.M., F.R.E Crossley, and K.H. Hunt, "-Gross Motion Attributes of

Certain Spatial Mechanisms," Journal of Engineering for Industry (Trans ASME),

pp. 83-90, Feb 1969.

[9] JML Research, Incorporated, The Integrated Mechanisms Program: Language

Specification and User's Manual, (Madison, Wisconsin: JML Research,

Incorporated, 1986).

[10] Jwo, Chin-Hung and G.K. Matthew, "Five Multiply Separated Positions Dwell

Linkage," University of Florida, Design Engineering Technical Conference,

Columbus, OH Oct. 5-8, 1986. (ASME sponsored)

[11] Kislitsen, C.G., "Tensor Methods in the Theory of Spatial Mechanisms," Trudi

Semin. po Teor Mash. Mekh. Akact, Nauk USSR, vol. 14, no. 54, 1954, pp. 51-

75.

[12] Kota, S., A.G. Erdman, and D.R. Riley, "Development of a Knowledge Base for

Designing Linkage-Type Dwell Mechanisms: Part 1: Theory," Journal of

Mechanisms, Transmissions, and Automation in Design (Trans ASME), vol. 109,

Sept 1987, pp. 308-315.

[13] Kota, S., A.G. Erdman, and D.R. Riley, "Development of a Knowledge Base for

Designing Linkage-Type Dwell Mechanisms: Part 2: Application," Journal of

Mechanisms, Transmissions, and Automation in Design (Trans ASME), vol. 109,

Sept 1987, pp. 316-321.

[14] Kota, S., A.G. Erdman, and D.R. Riley, "Minn-Dwell — Computer-Aided Design

and Analysis of Linkage-Type Dwell Mechanisms," Proceedings of the

International Computers in Engineering Conference and Exhibit 1987 (vol. 2)

(New York: The American Society of Mechanical Engineers, 1987).

97

[15] Rastegar, J. "On the Derivation of Grashof-Type Movability Conditions With

Transmission Angle Limitations for Spatial MeChanisms," Journal of Mechanisms,

Transmissions, and Automation in Design (Trans. ASME), vol. 111, pp. 519-

523, Dec.1989.

[16] Sandor, G.N. and A.G. Erdman, Advanced Mechanism Design: Analysis and

Synthesis, vol.2 (Englewood Cliffs, NJ: Prentice-Hall, 1984).

[17] Shoup, T.E., Numerical Methods for the Personal Computer, (Englewood Cliffs,

NJ: Prentice-Hall, 1983).

[18] Shrivastava, A.K. and K.H. Hunt, "Quadruple Dwell from a Four-Bar Spatial

Linkage," Journal of Mechanisms, vol. 6, pp. 241-245 (Great Britain: Pergamon

Press, 1971).

[19] Shrivastava, A.K. and K.H. Hunt, "Dwell Motion from Spatial Linkages,"

Journal of Engineering for Industry (Trans ASME), pp. 511-518, May 1973.

[20] Sodhi, R.S., A.J. Wilhelm, and T.E. Shoup, "Design of a Four-Revolute

Spherical Function Generator with Transmission Effectiveness by Curve

Matching," Mechanism and Machine Theory vol. 20, no. 6, pp. 577-585, 1985.

(Pergamon Press Ltd.)

[21] Structural Dynamics Research Corporation, I-DEAS: Geomod Solid Modeling and

Design: User Guide, (Milford, Ohio: Structural Dynamics Research Corporation,

1986).

[22] Suh, C.H., "Differential Displacement Matrices and the Generation of Screw Axis

Surfaces in Kinematics," Transactions of the ASME, Journal of Engineering for

Industry, Feb. 1971, pp. 1-10.

[23] Suh, N.P., The Principles of Design, (not yet published).

[24] Suh, N.P., et al., Manufacturing Engineering, (not yet published).

[25] Sutherland, G.H. and B. Roth, "Improved Least-Square Method for Designing

Function-Generating Mechanisms," Ohio State University, Columbus, ASME

Paper no. 74-DET-4 for Meeting Oct. 6-10, 1974.

[26] Tesar, D. and A. Chaudhari, "Cycloid Dwell Linkage Design Charts based on

Four Multiply Separated Positions," University of Florida, Gainesville, ASME

paper no. 74-DET-61 for Meeting Oct. 5-9, 1974.

[27] Wilhelm, A. J., Design of Spatial Linkages for Function Generation by Curve

Matching, Master's Thesis, Wichita State University, 1984.

[28] Yang, A.T., Application of Quaternion Algebra and Dual Numbers to the Analysis

of Spatial Mechanisms, Ph.D. Dis'sertation, University of Columbia, 1963.

98

APPENDIX A

DESIGN CHARTS

The design charts developed in the body of this thesis are collected here for more

convenient use.

99

MI

801

UT

O
R.

til1/44D

Half-span Phi (degrees)

. L/1 ts...) Lea6. ON 8 0 0 0 0 0

_..,.........,..e
:

'I../
/ —# ___

/
T e
,--.a
I

/
de

4/.

 .,....
.

....---

e

e

. ••
••

0..... .

Je'•••••
•

•
•.'

..
..... -------

•••••••r•m••••••••••••

.....

..... arraaaa•••

. ..
..... •

.". •

.....

.....

.....

•

'

.

• ,

,

•
....1..

.. -- --

.

•

I

I

1.........L.--

%
•

I--....
IT

•

..

i t
I
I

i
I.

. •......—

I• I /
•

e
• . • AI el" --- -\ gi... — ,...1.,

4
.,..., Da...maga

----- •
lee

oft.... • goo eosin. •
i

 * owammda n

/ Mama • I .-----1•••••••••••„ -• .. •

• /

740" • 41•4•Mma• l•

/

..ma

/

___. . • . • ./__________ i • • .____

_.....• • / ,.......t. _ . ._____

1....• •

Nam...a I. • t __ • 1••••••••••

/
7 4

1 ,04•••• • D .1101 • ../.. • ••••••••m

/

/ /

11 IP

---,
V ,.

•••• :
.•••••••••• a....... amaamo * •mamm.••

 •7fraa..... o•a........ • •

.0 If

omat•aa •••jpan.a. o ••••••• mr••••••••=ea • • •

•• le

le

 ..di - • —......— •-...—
I

........ • w..... • —.....--. • , —

 . / ••••••mann, r. • Daaromm•

aama • • p ••••••••••••Ms• p. • •

F
i g

u
r
e
 32

: 5%
 D

w
ell R

an
g
es f o

r R
R

S
C

.1
 ad

 (B
 =

 1
.5)

O

O

th.7,
CD ©

CD
CD

to
O

000 0 § •—k

1.•+

0 0 0 0

R.
tat O

Half-span Phi (degrees)

O

Un

Crci
cIng

'NET

Crq
o

CAD
CD
CA

N
VI

•
..... --

/ /

i
.e.—r
7.--

/

11.--.0.....r.......r

/ ,
7-......7......

.

•
i

•
/
..... ..

.

..•

... /

0/

____,

.

/..
/

.

de

..... _.......7

---.74-----

.. _______

..0"

_

•

00'
 •

• .

•

........

..

.

••

........---

/ /
r.--- ../... • Imre. mdl 4••••••••••••• • • Ma a 'a...a MI

_.../..i •....... fa/ .1 • 0 Mi•Mb Pr • ••••••• •••• • • .••••••• m.

1 . • ••••••-••..m.... . 0 4 •• MilDelin oc•••••••••

,..•••••• or. ma. • ••••••••••••••••• I m.o. d 1•••••ma,m1

10.••••• m••••••••••• '• t•••••••••

 • ormwm•••••••• I* r • •..........

 AMID ••••••••••••=0••• A ... I I .• ingla•W

 • •• g• •• •••• a. n , •

.=•••••••• • a m..••••••rom • •••••••mo

 • ma.. •b••••• • • 4. ---

11.00..1••••= MM. dn. •••••1•1•••• ID 0 • • mm••••••0

• M.. ••• MM. •••••••••••• • % 1., =•••••••1

1.•••parob :
40.°1 .

..... OMB •••••••.= • 1 • • • 1•••••••••m:

O.°

...7.3,...0 -......-.-----

-........ am • 1..•=m•m• • I • .41•ma 4.

r••

O 0
co 0 -Q Lc • ts.) (..+4 4=6 Ut

• 0 0 0 0 0

t,1 I

7z170 1 7v7z)
II I II II II
4:)100,001
0 1 (-11 0•L

+3
ii

01

1.50 2.00

Normalized Q
3.00 2.50

il

0i. -r
1
1

.......1.
nr .

•
1

.• m . as a t 1..m.....6

..
:

S
I
1

! III
1 1
0 1

4- f
.
I
1

4

4-
.21.„.J.L:

: .. :
.01

J.

.0.4

I
0 1 11

8 0
1 8 •

4. 4...„.......4. :
0 .. • , . : .

9
1 1
4

1
8

.
46 1 JL

1
0
0

1 •
8 . 49.

WO
• 1

. •••

i
0

4.•
.0 . •

1

8
4

1

•

. •

..

:

i I:
9 2
8 8
I f -r
1
0 0 . • . .
1
4
• i •••
1.. m...1. .

4..
•

i

: 4.
8
9 . .

i .
..i.

i
1

±
1 . .
0 • ..8

.". :
1

I
0 il III II
1 1
4 0

0

1 8 : -r f
8 1

T....-.
0 . . . 1 .. la .. r --
qbe......--IP -I- -IF - - - - --
11

1
9

8
8

8 1
II

A. 1
4. JL

 .

1
4 I

4
8 1 . AI
0 . 0

.. I .9. ...

0

_.....4.

--"-I-

I.

•

0 4'
e

JO

;
4 • .40 "'
..

• 0

+ 4.
8
t :

0

t---7.7.4.'4.---16
1

. . -:.
....

4
_...

I

+
1

:

1 9106

.....1"
:

1 46

1 .

.. I.

+

... ..---,40,.......zz.....

.

..... .L

1

J.

+ +
I

: m.....
..... 0

I
46

1

9 • .
....I.'

......
...

•

i
i

..
. a.* •4 ---ar•-1•011----2- I. I I
8
1

46 46
. •

0
.r : 0

0

 4. .
I •r ...

.... .0 . .

4.

 +
.i
..

; ..

0

1

•
1

s
.
8 ...
0

,...,........_.

.4

+

1

—r-
.

........

.....

0

+
I

:

0
4

s

An

...

t

 +
I
1
0
0
Am 46

0 . J.
.........

9

46

4. ...

1

4

0

+ 1.....—,
0
1

4-•-•- .
I

1 46

. .

1
9
I

0

•
1
8
.

........r

'—'. ...t.

•

......

—.....i.

.
1
0

0

:

1
0
0

•

I

4.

jL

4-

4 : .
-1. -1.

1 1 1
0 1
1 1

...0

0
1
1

: I
.0. lr

1 0
4

41.
1

1 1 8
8 1 0

I I 1

. :
. Ji.

:

1 jL

.0. .0.

0 8

8 8

1 1

J.

1 46

.0.

1 1

1 1

1 1

.
0

4
9

I 1

jL 1

.1. .0.

1 2
0 1
1 0

1 I

I

1

1

.0.

1
I
4

I

.0.

.0.

1
:
1

1

J.

.0.

1
0

1
8
0

I

.0.

8
0

 1 jL

1

1

I

.0-

1
1
•

1

4

I

.........

1
0
.

I

Figure 38: 5% Dwell Ranges for RSRC
1.00

0.25
1.00

N
or

m
al

iz
ed

 Z

0.75

0.50

Minimum
R = 70
R = 80
R = 90
R = 100

APPENDIX B

TK SOLVER MODELS

The following pages contain the TK Solver models used for the linkages studied in

this thesis.

119

B.1 RRSC.4d Link Length Model

St Input Name Output Unit Comment

L 35 phi deg half span parameter

L 1.7434468 R link 4 length

L 1.5987812 P vertical offset

L .17063315 B link 3 length

x .81915204 dummy variable

y .57357644 dummy variable

L theta6 -55 deg cylinder rotation

alpha deg crank angle

beta deg R23 angle

gamma del cylinder rotation

T cylinder translation

L Rule

* x = cos(phi)

* y = sin(phi)

* R = 1/y

* P = x/y + B

* (B/R) ^3 - (1-2*x)*(B/R)^2 + (1-x+x*x) * (B/R) = (1-x) /2

* theta6 = phi-pi()/2

* cos(alpha) * (1 + B*sin(beta)) = R*sin(gamma)

* B*cos(beta) + R*cos(gamma) = P

* T = sin(alpha) * (1 + B*sin(beta))

120

B.2 RRSC.2ad Linkage Model

St Input Name Output Unit Comment

L 45 phil half-span design parameter

L phi2 .2445948 B design parameter

1 q crank length

r 1.4142136 link 4 length

p 1.2445948 cylinder height

b .2445948 link 3 length

L alpha 25 crank angle

L „ beta 20.562981 R23 angle

L gamma 44.1 cylinder angle

L t .45892569 cylinder translation
e

50 range' dwell range

.01 dev tolerance on dwell range

margin .07497605 margin > 0 for full crank
rotation

L Rule

* cosd(alpha)*(q + b*sind(beta)) = r*sind(gamma)

* b*cosd(beta) + r*cosd(gamma) = p

* t = sind(alpha)*(q + b*sind(beta))

* range = 2*alpha

* gamma = (1 - 2*dev)*phil

* r = 1/sind(phil)

* p = r*cosd(phil) + phi2

121

* b = phi2

* margin = 2*phi2 -(1-cosd(phil))/sind(plii1)

B.3 RRSC.2td Linkage Model

St Input Name Output Unit Comment

L 1.7 phiT translational half-span par
ameter

LG 1.62 phiP P parameter

1 q length of link#2

b 2.0009476 length of link#3

r 2.2071796 length of link#4

p .88287186 height offset of cylinder

alpha 60 R12 (crank) angle

LG 136 beta R23 joint angle

gamma 39.856485 C41 joint angle

t 2.45 translational position

60 range, dwell range

.01 dev tolerance on range

S Rule

* r=q*phiP*phiT

* p = q*phiP

* b = q*sqrt((phiPA2+1)*(phiT-1)A2)

* cosd(alpha)*(q + b*sind(beta)) = r*sind(gamma)

122

* b*cosd(beta) + r*cosd(gamma) = p

* t = sind(alpha)*(q + b*sind(beta))

* alpha = 90 - range/2

* t = (1 - 2*dev)*phiT

B.4 RRSC.lad Linkage Model

St Input Name Output Unit Comment

2 b link #3 length (parameter)

L 125 alpha deg parameter

tau 5.6712818 parameter

h 9.7433475' -x offset

p 10.743347 vertical offset

r 13.851557 link #4 length

alphMax 270 deg maximum value for alpha

tauMin -.1026341 minimum value for tau

L 10 phi deg half-span angle

span 20 deg total span

mu 50.859984 deg gamma for crank angle 0

crank 62.677062 deg crank angle

beta 24.917253 deg R23 joint angle

gamma 49.859984 deg output variable

range 125.35412 deg dwell range

.05 tol dwell tolerance

good 5.773916 good >= 0 for good linkage

margin -1.10821 margin > 0 or h > 1

123

dum2 -.2455756 used to find tauMin

duml 2.3927285 Used to find tauMin

c -.5735764 cos(alpha)

s .81915204 sin(alpha)

S Rule

* h = 0.5*b*(sin(alpha) + tau - tau*cos(alpha))

* p = 0.5*b*(1 + cos(alpha) + tau*sin(alpha)) + tau

* r = sqrt((h + 1)^2 + (p - b)^2)

* alphMax = pi() + 2*atan(b/2)

* tauMin = dum2 / duml

* span = 2*phi

* phi = atan2(1, tau)

* dum2 = c*(0.5*b*s - 1) - 0.5*b*4*(1 + c)

* duml = 0.5*b*c*(c - 1) + s*(1 + 0.5*b*s)

* s = sin(alpha)

* c = cos(alpha)

* cos(crank)*(1 + b*sin(beta)) = r*sin(gamma) - h

* b*cos(beta) + r*cos(gamma) = p

* range = 2*crank

* tol = (mu - gamma) / span

* margin =b-r+ p

* mu = atan2(h+1, p-b)

* good = gval()

124

B.5 RSRC Linkage Model

St Input Name Output Unit Comment

L 1.1 phiQ Q parameter

LG .85 phiZ Z parameter 0<Z<1

q 2 length of link#4

1 b length of link#3

f 1.0128157 height offset of R12

r .16372778 length of link #2

span • .32745555. span of output

L theta 50 crank angle (input)

L p .30693931' X offset of C41 (output)

duml .21048437 dummy variable

dum2 -.0296058 dummy variable

dum3 1.0205521 dummy variable

margin 7.9473976 margin > 0 for proper link
age

100 range dwell range

.05 dev deviation from dwell point

p0 .32331208 p at dwell point

S Rule

* q = b * phiQ

* f = b* (phiQ - phiZ)

* r = b * (phiQ - phiZ) * sqrt(1 - phiZ^2) / phiZ

* span = 2*r

125

* duml = 2*r*cosd(theta)

* dum2 = qA2 + rA2 + fA2 - 2*q*dum3 - bA2

* dum3 = sqrt(fA2 + r"2 * (sind(theta))A2)

* p = 0.5 * (duml + sqrt(dum1A2 - 4 * dum2))

* margin = (q + 1)1'2 - fA2 - rA2

* range = 2*theta

* dev = (p0 - p)/ span

* p0 = q*r/f

B.6 RSCP Linkage Model

St Input Name Output 'Unit Comment

L 2.5 alpha parameter angle

B 1.0009527 link 3 length

theta 92.382246 crank angle

D .10180929 output (displacement)

x -.0415265 dummy variable

y .99913576 dummy variable

span 1.9980964 span of output

LG 184.76449 range dwell range

.05 dev tolerance on dwell range

Dmin .00190446 minimum displacement

S Rule

* B = 1/cosd(alpha)

* D = sqrt(BA2 - yA2) - x

126

* x = cosd(alpha)*cosd(theta)

* y = sind(theta)

* span = 2*cosd(alpha)

* range = 2*theta

* Dmin = B - span/2

* dev = (D - Dmin)/span

127

APPENDIX C

EXPLANATION AND CODE FOR SPACELINKS PROGRAM

The linkages studied in this thesis were all modeled and analyzed using the

homogeneous coordinate transformation matrix technique mentioned in the

Introduction; the purpose of this Appendix is to explore this technique more fully,

especially regarding position analysis, and how the method was used in the SpaceLinks

linkage analysis program. The use of SpaceLinks for modeling and analyzing linkages

will also be explained.

The modeling of a linkage starts with the modeling of its joints. Each joint is

represented by a concatenation of transformation matrices, one for each joint variable or

degree of freedom; the linkage itself is represented by the concatenation of the joint

models. If the joint variables have their proper values, the total transformation matrix

should be equal to the 4x4 identity matrix. This is equivalent to the equation S - I = 0,

where S is the transformation matrix for the entire model (and thus is a function of all

the joint variables), I is the identity matrix, and 0 is the 4x4 zero matrix. This is a root-

finding problem, and the technique used here is based on the well known Newton-

Raphson method for fmding the roots of an equation.

The Newton-Raphson method is basically iterative: given an initial guess of the

root, a closer approximation is found. This method converges rapidly, provided that the

initial guess is close to the root. For a scalar function of only one variable, the solution

x to f(x) = 0 is found from the iterative formula x := x - f(x)/f(x); for a vector

function of a vector variable the iterative formula for x: F(x) = 0 is x := x - y where

128

129

J(x) y = F(x) and J is the Jacobian of F. For the solution of S(q)-I=0, the method is

based on the iterative formula

The SpaceLink application was written in THINK C, using Nicus' NuTools:

Numerical library of numerical subroutines, and is based on a set of data types to hold

the model, and a set of subroutines to manipulate these data types. Using these data

types and "code primitives," other subroutines create and analyze the model, and finally

a Macintosh "application shell" controls program flow, file I/O, and the user interface.

This explanation focuses mainly on the, data types and code primitives; the application

shell will not be discussed.

The first data type used in the code primitives is the NuTools matrix data type.

This is used to hold all matrices in the various routines; also, one column matrice holds

all the joint and link length variables associated with the model. The other data type

definition is for a type called "data" in the program. This consists of a structure of six

integers, which hold the information needed for one transformation. The first field

holds the type of elementary transformation represented, and the next five fields hold

the positions in the variable matrix of the relevant variables for this transformation. In

the program, a block of memory is dynamically allocated to hold all the

transformations, and pointers to the transformations are what is usually passed as a

parameter.

Of the analysis subroutines, the most basic is the "transformO" function, which

performs a matrix multiplication corresponding to the transformation desired. This

function is called by the "get s()" function, which returns a matrix corresponding to a

concatenation of transformations; the "invert s0" function inverts this concatenation

matrix. The "get r()" function calls "get s0" and "invert_s()," and the "get d0"

function uses the results returned by "get s0." These two functions return intermediate

column matrices used to solve for Aq. The above four interdependent functions are the

"code primitives" called by the "iterate()" function to update the q column matrix;

"iterate()" also returns the infinity norm of Aq as a measure of how accurate the new

approximation is.

In the SpaceLinks program, the "iterate()" function is called in a loop which

terminates when the desired accuracy is reached or when the Newton-Raphson fails to

converge.

C. 1 Use of the SpaceLinks Program

The SpaceLinks application shell is based on the Macintosh interface. Program control

is accomplished through menus for file input and output, and position analysis and

display. The types of analysis available are position analysis of a single linkage, batch

processing of several position analyses, and batch processing of analysis of position

changes from a reference position.

There is no provision for interactive input of linkage models; SpaceLinks can only

read previously prepared linkage files. These files are character-based files of type

'TEXT' and so they can be prepared on any word processor. Since SpaceLinks

supports Desk Accessories, these text files may be prepared by DA text editors, such as

MockWrite and miniWRITER, without exiting SpaceLinks.

130

The first task in developing a SpaceLinks model is the choice of the

transformations to represent the linkage. Several rules must be followed for a

successful choice of transformations:

I. There is at least one transformation for each joint variable.

II. The concatenation of transformations must return to the original position and

orientation.

III. Only certain transformations are legal in SpaceLinks. There are nine legal

transformations:

1. Translation followed by rotation about X-axis.

2. Translation followed by rotation about Y-axis.

3. Translation followed by rotation about Z-axis.

4. Translation followed by screw motion along X-axis.

5. Translation followed by screw motion along Y-axis.

6. Translation followed by screw motion along Z-axis.

7. Translation, followed by translation along X-axis.

8. Translation, followed by translation along Y-axis.

9. Translation, followed by translation along Z-axis.

IV. In transformations involving rotation (transformations 1 - 6), only the rotation

angle may be a joint variable. All other parameters of the transformation

must be constants.

131

132

Once the transformations have been chosen, the joint variables and other

transformation parameters must be listed. These are placed in the following order: first

come the dependent joint variables, then the independent variable (such as crank angle,

or other linkage input), any indeterminate joint variables, and finally all constant

transformation parameters such as link lengths. These are numbered starting from zero

to form the components of the q column matrix. Values for all of these components

must be known at least approximately for the model in its first position.

The text file is written from the above data. The first line contains the number of

transformations and the number of parameters, and the second line contains the number

of dependent variables and the position of the independent variable in the parameter

vector.

The next lines contain information on the transformations, one transformation per

line. Each transformation is represented by six integers:

1. The type of transformation (1 - 9).

2. Position of X-translation component in parameter vector.

3. Position of X-translation component in parameter vector.

4. Position of X-translation component in parameter vector.

5. Position of rotation angle in parameter vector.

6. Position of screw parameter in parameter vector.

A negative integer is used to represent transformation components that do not

apply to a particular transformation, for example, the sixth integer for Transformation

Type 1 may be represented by -1.

The next line contains the number of transformation parameters, followed by the

number one. The final lines of the model contain the values of the parameter vector.

Throughout the text file, the numbers may be separated by any number of any

whitespace characters (such as blank spaces or tabs).

C.1.1 Example Model: RRSC The• RRSC mechanism was modeled and studied

using SpaceLinks. The model is developed here. There are seven transformations:

1. Rotation of 01 about Z-axis.

2. Translation (1, 0, 0) followed by rotation of 02 about Y-axis.

3. Translation B, 0) followed by rotation of 03 about Z-axis.

4. Rotation of 04 about Y-axis.

5. Rotation of 05 about X-axis.

6. Translation (-R, 0, 0) followed by rotation of 06 about Y-axis.

7. Translation (0, -T, -P), where P is considered constant.

133

134

There are eleven transformation parameters:

0. Negative of Translational Output: -T (C41 translational variable).

1. 02 (R23 variable).

2.03 (S34 variable).

3. 04 (S34 variable).

4. 05 (S34 variable).

5. 06 (C41 rotational variable).

6.01 (R12 variable - independent variable).

7. Link 2 Length: Q =1.

8. Link 3 Length: B.
•

9. Negative of Link 4 Length -R.

10. Negative of Vertical offset: -P.

135

The linkage model is given below, with the values of the transformation parameter

matrix, for RRSC. lad with phi = 90° and thetal = 0°, included:

711

76

6

3 -1 -1 -16-1

27 -1 -11 -1

3 -1 -182 -1

2 -1 -1 -13 -1

1-1 -1 -14 -1

29 -1 -15 -1

8 -1010 -1 -1

1 11

0.00.00.00.00.00.00.01.00.648 -1.0 -0.648

The program code follows.

C.2 linkage.h

/* header file for the linkage program *1
1* by Don Kelly, January 1990 */

typedef struct {
int n;
int dx;
int dy;
int dz;
int ang;
int lead;
} data;

void f setup(HLE *theFile, matrix *var, data **p, long *error);
void setup(matrix *var, data **p, long *error);
void transform(matrix *s, matrix *var, data *p, long *error);
void get_s(int k, matrix *s, matrix *var, data *p, long *error);
void invert s(matrix *s, matrix *sinv, long *error);
void get r(matrix *r, matrix *var, data *p, long *error);
void get d(matrix *s, matrix *d, matrix *var, data *p, long *error);
double iterate(matrix *var, data *p, long *error);

void Windowlnit(void); •
void AdjustMenus(void);
void BuildMenus(void);
void IsWNE1mplemented(void);
void bye(void);
void do menu(long mResult);
void Loop(void);
Boolean IsDAWindow(WindowPtr whichWindow);

void MoveToNextLine(FILE *theFile);
void GetNewLinkage(matrix *var, data **p, long *error);
void DumpPositionAnalysis(FILE *outFile, matrix *pos, long *error);
void WriteOutput(FILE *theOutFile, double firstVar, double secondVar, long

*error);
void CloseLinkage(void);
Boolean ReadNextTrial(matrix *var, char *outFileName, double *span, long

*outVar, long *error);

void ViewCurrentPosition(matrix *thePos);
void ViewPositionAnalysis(void);
void ScrollMyWindow(void);
void DrawMyMessage(char *myMessage);
void SayFirstMessage(void);
void SetSolverControl(int *steps, double *increment, double *runLength);
void UpdateScreen(Boolean updateFlag);

136

137

void WriteMessage(char *messageString);

void InitSolver(void);
void RunSolution(void);
void FindPosition(void);
void TempWrite(void);
void ListProcess(void);

#ifndef THIS IS_MAIN_
extern FILE *gTheInFile;
extern int nvar, ndep, ntsan, pindep;

/* OTHER GLOBALS (MENUS, EVENT RECORDS, ETC.) TO GO HERE */
extern MenuHandle gMyMenus[7];

extern WindowPtr gMyWindow;
extern int gMaxRow, gCurRow;
extern Rect gDragRect;

extern EventRecord gTheEvent.
extern Boolean gWNEImplemented;

extern matrix gVar, gPositionAnalysis;
extern data *gTheLinkage;
extern long gErrorFlag;
extern unsigned int gStatusFlag;
extern int lastWritten;
extern int nextSent;
extern char *messageList[15];

#endif

/* DEFINES FOR MENU BARS, HEMS, AND OTHER RESOURCES */

#define BASE_RES_ID
400

#define applelD 400
#define filePD 401
#define editID 402
#define runID 403
#define viewID 404
#define continuelD 100
#define optionsID 101

#define appleM 0
#define fileM 1
#define editM 2
#define runM 3
#define viewM 4
Maine continueM 5
#define optionsM 6

#define aboutItem 1

#define openItem 1
#define closeItem 2
#defme saveLItem 3
#defme saveKItem 4
#define quitItem 5

#define undoItem 1
#define cutItem 3
#define copyItem 4
#defme pasteItem 5
#define clearItem 6

#define posItem 1
#define listPosItem 2
#define listDevItem 3
#define stopItem 5
#define continueItem 6
#define optionsItem 8

#d.efine vCurrentItem 1
#define vAnalysisItem 2

#define resumeItem 1
#define fileOnlyItem 2
#define nextFileItem 3

#define appendItem 1
#define solverItem 2

/* DEFINITIONS FOR ERROR MESSAGES */

#define D_BADINPUT 20001L
#define D PNOROOM 20002L
#define DMISMATCH 20003L
#define D_BADMODEL 20101L
Caine D_NOCONVERGENCE

20501L

/* DEFINITIONS FOR STATUS FLAGS */

#define isInited 1
#defme runPosAn 2
#define runLPos 4
#define runLDev 8
#define isListProcess 16
#define isInterrupted 32
#define appOnAbort 64
#define viewOldPos 128
#define messagesFull 256

139

#define abortFlag 16384
#define quitFlag 32768
#define everyFlag 65535

C.3 MechMain.c

/* Main Program file for linkage analysis program, *1
1* by Donald Kelly (January 1990) */

#include<NuToolsNumericalP.h>
#define _THIS_IS_MAIN_
#include "linkage.h"

PILE *gTheInFile = NULL;
int nvar = 0; /* number of variables in the parameter matrix *1
int ndep = 6;

int
/* number of dependent variables */

ntran = 0;
1* number of transformations *1

int pindep = 0;
1* position of independent variable in parameter matrix *1

•
1* GLOBAL VARIABLES FOR MENUS, EVENTS GO HERE

441

MenuHandle gMyMenus[7];

WindowPtr gMyWindow;
int gMaxRow, gCurRow;
Rect gDragRect;

EventRecord gTheEvent;
Boolean gWNEImplemented;
matrix gVar, gPositionAnalysis;
data *gTheLinkage;
long gErrorFlag;
unsigned int gStatusFlag = 64;

int lastWritten = 0;
int nextSent = 0;
char *messageList[151;

main()

long error,

INIT MAC;

SysBeep(12);
BuildMenus();
SysBeep(12);
WindowInit();
IsWNEImplemented();
gVar = InitM(&error);
gPositionAnalysis = InitM(&error);
InitSolver();
SayFirstMessage();

while(!(gStatusFlag & quitFiag))
Loop();

}

bye();
}

void BuildMenus()
{

Handle myMenuBar;
int

myMenuBar = GetNewMBar(BASE RES_ID);
SefflenuBar(myMenuBar);
for(i = 0 ; i <= viewM ; ++i)

gMyMenus[i] = GetMHanclle(BASE_RES_ID + i);

AddResMenu(gMyMenus[appleM], DRVR');

gMyMenus[continueM] = GetMenu(continueID);
gMyMenus[optionsM] = GetMenu(optionsID);
InsertMenu(gMyMenus[continueM], -1);
InsertMenu(gMyMenus[optionsM], -1);
CheckItem(gMyMenus[optionsM], appendItem, TRUE);

DrawMenuBar0;

}

void WindowInito
{

Rect theWindowRect;
int

gMyWindow = GetNewWindow(BASE_RES_ID, OL, -1L);
SetPort(gMyWindow);

theWindowRect = gMyWindow->portRect;

140

gMaxRow = theWindowRect.bottom - theWindowRect.top - 15;
gCurRow = 0;

gDragRect = screenBits.bounds;
gDragRect.left += 30;
gDragRect.right -= 30;
gDragRect.bottom -= 30;

TextFont(monaco);
TextSize(12);

ShowWindow(gMyWindow);
SelectWindow(gMyWindow);

for(i = 0 ; i < 15 ; ++i)
rnessageList[i] = (char*) malloc(256L);

void IsWNEImplemented()
{

gWNElmplemented = (NGetTrapAddress(0x60, ToolTrap) != NGetTrapAd-
dress(0x9F, ToolTrap));

}

void Loop()
{

int wpart;
WindowPtr wptr;
Boolean yesEvent;

if(gWNElmplemented)
yesEvent = WaitNextEvent(everyEvent, &gTheEvent, OL, OL);

else {
SystemTask();
yesEvent = GetNextEvent(everyEvent, &gTheEvent);

if(yesEvent)
switch(gTheEvent.what)

case mouseDown :
if(!(gStatusFlag & (runPosAn + runLPos + runLDev)) II
(gStatusFlag & islnterrupted))

wpart = FindWindow(gTheEvent.where, &wptr);
switch(wpart) {

case inMenuBar :

AdjustMenus();

do menu(MenuSelect(gTheEvent.where));

141

break;
case inSysWindow :

SystemClick(&gTheEvent, wptr);

break;
case inContent :

SelectWindow(wptr);

break;
case inDrag

DragWindow(wptr, gTheEvent.where, &gDragRect);

break;
default :

break;

break;
case keyDown :

if(gTheEvent.modifiers & cmdKey) {
AdjustMenus();
do_menu(MenuKey(gTheEvent.message & charCodeMask));

break;
case activateEvt

break;
case updateEvt

if((WindowPtr) gTheEvent.message == gMyWindow)
Beg-inUpdate(gTheEvent.message);
UpdateScreencIRUE);
EndUpdate(gTheEvent.message);

}
break;

default : •
break;

}

void do menu(mResult)
long mResult;

register int theItem, theMenu;
int
Str255 name;

142

if(mResult != OL) I
theItem = LoWord(mResult);
theMenu = HiWord(mResult);

switch(theMenu)
case appleID :

if(theItem == aboutltem)
NoteAlert(BASERES_ID, OL);

} else {
GetItem(gMyMenus[appleM], theltem, &name);
OpenDeskAcc(&name);

}
break;

case filelD :
switch(theltem)

case openItem
GetNewLinkage(&gVar, &gTheLinkage, &gErrorFlag);
SelectWindow(gMyWindow);
break;

case closeltem :
CloseLinkage();
break;

case quitltem :
gStatusFlag 1= quitFlag;
gStatusFlag -= (gStatusFlag & islnterrupted);
break; •

default :
break;

}
break;

case editlD :
if(!SysternEdit(theItem-1)) SysBeep(2);
break;

case viewID :
if(theltem == vCurrentltem)

ViewCurrentPosition(&gVar);
else SysBeep(16);
break;

case runID :
case continuelD :
case optionsID

DoRunMenu(mResult);
break;

default :
SysBeep(16);
break;

}
HiliteMenu(0);
DrawMenuBarO;

143

Boolean IsDAWindow(whichWindow)
WindowPtr whichWindow;

{
if(whichWindow == OL)

return(FALSE);
else

return(((WindowPeek)whichWindow)->windowKind < 0);

void AdjustMenus()
{

if(IsDAWindow(FrontWindow())) f
Enableltem(gMyMenus[editM], undoltem);
EnableItem(gMyMenus[editM], cutItem);
EnableItem(gMyMenus[editM], copyltem);
EnableItem(gMyMenus[editM], pasteltem);
EnableItem(gMyMenus[editM], clearltem);

} else
Disableltem(gMyMenus[editM], undoltem);
DisableItem(gMyMenus[editM], cutltem);
DisableItem(gMyMenus[editM], copyltem);
DisableItem(gMyMenus[editM], pasteltem);

}
DisableItem(gMyMenus[editM], clearltem);

}

void bye()
{

long error;
int i;

DeallocateM(&gVar, &error);
DeallocateM(&gPositionAnalysis, &error);
free(gTheLinkage);
if(gTheInFile)

CloseLinkage();
for(i = 0 ; i < 15 ; ++i)

free(messageList[i]);

C.4 MechSolve.c

/* file containing the analysis routines, and their control */
/* routines, for the Mechanism Program. This, along with */
/* position routines.c, is the heart of this program - all the */

144

/* rest is just a shell for easier use. Don Kelly, Jan 1990 */

#include <NuToolsNumericalF.h>
#include "linkage.h"

static matrix oldPosition;
static int numSteps = 2;
static long theOutVar = 5L;
static double runLength = 1.5707961;
static double runIncrement = 0.1745329;
static double theSpan, dwellPosition;
ALE *theOutFile = NULL;

void InitSolver()
{

if(gStatusFlag & iiInited) return;
oldPosition = InitM(&gErrorFlag);
gStatusFlag 1= isInited;

void RunSolution()
{

double stopVal, stepSize;
int numPassed, i;

EnableItem(gMyMenus[runM], stopltem);
DisableItem(gMyMenus[viewla 0);
DisableItem(gMyMenus[runM], posItem);
Disableltem(gMyMenus[runM], listPosltem);
Disableltem(gMyMenus[runM], listDevltem);
Disablehem(gMyMenus[runM], optionsltem);
DisableItem(gMyMenus[fileM], openitem);
Disablehem(gMyMenus[fileM], closeltem);
WriteMessage("In RunSolutionO\O");
HiliteMenu(0);
DrawMenuBarO;
SelectWindow(gMyWindow);

stopVal = gVar.mat[pindep][0] + runLength;
stepSize = runlncrement/numSteps;
while(!(gStatusFlag & (quitFlag + abortFlag)) && !gErrorFlag)

do {
FindPosition();

} while(gStatusFlag & islnterrupted);
if(! (gStatusFlag & (quitFlag + abortFlag)))

TempWrite();

if(gVar.mat[pindep][0] >= stopVal)
gStatusFlag -= gStatusFlag & (runPosAn + runLPos + runLDev);
gStatusFlag 1= abortFlag;

145

} else
if(!(gStatusFlag & (abortFlag + quitFlag)))

gVar.mat[pindep] [0] += stepSize;

for(i =1 ; i < numSteps && !gErrorFlag && !(gStatusFlag & (quitFlag +
abortFlag)) ; ++i, gVar.mat[pindep][0] += stepSize) {

FindPosition();
while(gStatusFlag & isInterrupted)

Loop();

if((gStatusFlag & (abortFlag + quitFlag)) && (gStatusFlag & (runPosAn +
runLPos+ runLDev)) && (gStatusFlag & appOnAbort))

WriteMessage("Data from unfinished run:\O");
TempWrite();

gStatusFlag -= (gStatusFlag & ahottFlag);
EnableItem(gMyMenus[fileM], closeltem);
EnableItem(gMyMenus[runM], posltem);
Enableltem(gMyMenus[runM], listPosItem);
Enablehem(gMyMenus[runM], listDevltem);
Enablehem(gMyMenus[runM], optionsltem);
Enableltem(gMyMenus[viewM], 0);
Disableltem(gMyMenus[runM], stopltem);
Disablellem(gMyMenus[runM], continueltem);
WriteMessage(Mdting RunSolution\O");
gStatusFlag -= gStatusFlag & (runPosAn + runLPos + runLDev);
1* CODE NOT DONE YET! */

void DoRunMenu(mResult)
long mResult;

{
int theMenu, theltem;

theMenu = HiWord(mResult);
theltem = LoWord(mResult);

switch(theMenu)
case runID:

switch(theltem) {
case posItem :

gStatusFlag 1= runPosAn;
DisableItem(gMyMenus[continueM], fileOnlyltem);
Disableltem(gMyMenus[continueM], nextFileltem);

146

RunSolution();
break;

case listPosItem :
gStatusFlag 1= runLPos;
Enableltem(gMyMenus[continueM], ftleOnlyItem);
EnableItem(gMyMenus[continueM], nextFileltem);
ListProcess();
break;

case listDevItem :
gStatusFlag 1= runLDev;
EnableItem(gMyMenus[continueM], fileOnlyltem);
EnableItem(gMyMenus[continueM], nextFileltem);
ListProcess ();
break;

case stopltem :
if(gStatusFlag & islnterrupted)

gStatusFlag 1= abortFlag;
gStatusFlag -= (gStatusFlag & isListProcess);
SetItem(gMyMenus[runM], stopltem, "\pStop");

else {
EnableItem(gMyMenus[runK, continueltem);
EnableItem(gMyMenus[viewM], 0);
SetItem(gMyMenus[runM], stopltem, "\pAbort");
WriteMessage("Solution run interrupted\O");

gStatusFlag A= islnterrupted;
Enableltem(gMyMenus[runM], optionsltem);
break;

default :
break;

break;
case continuelD :

DisableItem(gMyMenus[runM], optionsltem);
DisableItem(gMyMenus[run], continueltem);
Disableltem(gMyMenus[viewM], 0);
Setltem(gMyMenus[runM], stopItem, "\pStop");
gStatusFlag A= islnterrupted;
switch(theltem)

case fileOnlyItem :
gStatusFlag -= (gStatusFlag & isListProcess);
break;

case nextFileltem :
gStatusFlag1= abortFlag;
break;

default :
break;

SelectWindow(gMyWindow);
WriteMessage("Solution resumecN)");
break;

147

case optionslD
switch(theItem)

case appendItem
if(gStatusFlag & appOnAbort)

Checkltem(gMyMenus[optionsM], appendItem, FALSE);
else

CheckItem(gMyMenus[optionsM], appendItem, TRUE);
gStatusFlag A= appOnAbort;
break;

case solverItem
SetSolverControl(&numSteps, &runlncrement, &runLength);
break;

default :
break;

}
break;

default :
break;

}

void FindPosition()
{

int

1-°°P();

for(i = 0 ; i < 15 && I gErrorMag && !(gStatusElag & (abortFlag + quitFlag +
isInterrupted)) ; ++i) {

if(iterate(&gVar, gTheLinkage, &gErrorFlag) <= le-6) break;
Loop();

}
if(i =15) gErrorFlag = D_NOCONVERGENCE;

}

void TempWrite() •
{

int numPassed;
char *theString;

if(gStatusFlag & isListProcess)
if(gStatusFlag & runLDev)

WriteOutput(theOutFile, gVar.mat[pindep][0],
fabs(gVar.mat[theOutVar][0] - dwellPosition)/theSpan, &gErrorFlag);

else
WriteOutput(theOutFile, gVar.mat[pindep] [0], gVar.mat[theOutVar][0],
&gErrorFlag);

148

theString = (char *) malloc(256L);
if(!theString)

WriteMessage("Sorry, can't write data!\0");
else {

numPassed = sprintf(theString, "%10.6g %10.6g", gVar.mat[pindep][0],
gVar.mat[theOutVar][0]);
WriteMessage(theString);
free(theString);

}

void ListProcess()

char *outFileName;
int whatsRunning, junk;

outFileName = (char *) malloc(100L);
if(!outFileName) return;

gStatusFlag 1= isListProcess;
whatsRunning = gStatusFlag & (runLPos + runLDev);

while(! (gStatusFlag & quitFlag) && (gStatusFlag & isListProcess) &&
!gErrorFlag && ReadNextTrial(&gVar, outFileName, &theSpan, &theOutVar,
&gErrorFlag)) {

gStatusFlag 1= whatsRunning;
theOutFile = fopen(outFileName, "a");
if(!theOutFile)

gStatusFlag A= isListProcess;
else {

dwellPosition = gVar.mat[theOutVar][0];
gStatusFlag 1= whatsRunning;
RunSolution();
junk = fclose(theOutFile);

free(outFileName);
gStatusFlag -= (gStatusFlag & whatsRunning);
/* CODE NOWHERE NEAR DONE YET! */

C.5 position_routines.c

1* routines to perform tasks involved with position analysis of
spatial mechanisms, using the methods described in ref. [16]
of my thesis - by Don Kelly, Sept 1989 */

149

#include <NuToolsNumericalF.h>
#include "linkage.h"

void setup(var, p, error)
matrix *var;
data **p;
long *error, .

int i, j, k, num_passed;
int n, x, y, z, theta, lead;
float a[5];
data *pn;

if(*enor) return;

num passed = printf("How many transformations, parameters ? ");
if(scanf("%d %d", &ntran, &k) != 2) {

*error = D_BADINPUT;
return;

num_passed = printf("How many variables, dependent variables ? ");
if(scanf("%d %d", &nvar, &ndep) != 2) {

*error = D BADINPUT;
return;

•
num passed = printf("Enter position of independent variable: ");
if(scanf("%d", &pindep) !=1)

*error = D BADINPUT;
return;

AllocateM(var, k, 1, error);
if(! *enor) *p = (data *) malloc((size_t) ntran*sizeof(data)); else return;
if(*p == NULL)

*error = D PNOROOM;
if(*error) return;

for(i = 0, pn = *p ; i < ntran && ! (*error) ; ++i, ++pn)
num passed = printf("Enter the parameters for transformation %d: ", i+1);
if(scanf("%d %d %d %d %d %d", &n, &x, &y, &z, &theta, &lead) == 6) {

pn->n = n;
pn->dx = x;
pn->dy = y;
pn->dz = z;
pn->ang = theta;
pn->lead = lead;

} else *enor = D BADINPUT;

for(i = 0; i < k && ! (*error) ; i += 5) {

150

num passed = printf("Enter five original parameter values:");
if(scanf("%f %f %f %f &a[0], &a[1}, &a[2], &a[3], &a[4]) == 5) {

for(j=0;j<5 &&i+j<k;++j)
var->mat[i+j][0] = a[j];

) else *error = D_BADINPUT;
}

void transforra(s, var, p, error)
matrix *s;
matrix *var;
data *p;
long *error;

{
double ct, st, theta, screw;
matrix t, dum;

if(*error) return;

t = InitM(error);
dum = InitM(error);
MakeldentityM(&t, 4, error);
CopyM(&dum, s, error);

theta = (p->ang < 0 ? 0.0 : var->mat[p->ang][0]);
screw = (p->lead < 0 ? 0.0 : 0.5*var->mat[p->lead][0]*theta/PI);
ct = cos(theta);
st = sin(theta);
trnat[0][3] = (p->dx < 0 ? 0.0 : var->mat[p->dx][0]);
tmat[l][3] = (p->dy < 0 ? 0.0 : var->mat[p->dy][0]);
tmat[2][3] = (p->dz < 0 ? 0.0 : var->mat[p->dz][0]);

switch ((p->n + 2) % 3 + 1) {
case 1 :

t.mat[lJ[1] = ct;
tmat[1][2] = -st;
t.mat[2][1] = st;
t.mat[2][2] = ct;
t.mat[0] [3] += screw;
break;

case 2 :
tmat[0][0] = ct;
t.mat[0] [2] = st;
t.mat[2][0] = -st;
t.mat[2][2] = ct;
tmat[1][3] += screw;
break;

case 3 :
tmat[0][0] = ct;
t.mat[0][1] = -st;
tmat[1][0] = st;

151

t.mat[1][1] = ct;
t.mat[2][3] += screw;
break;

I

MultM(s, &dum, &t, error);

DeallocateM(&t, error);
DeallocateM(&dum, error);

)

void get s(k, s, var, p, error)
matrix *s, *var,
data *p;
int k;
long *error;

{
int i, .I;
data *pn;

if(*error) return;
j = (k > ntran-1 ? ntran-1 : k);
if(var->n != 1) *error = 1;
MakeldentityM(s, 4, error);

I

for(i = 0, pn = p ; i <= j && ! (*error) ; ++i, ++pn)
transform(s, var, pn, error);

void invert_s(s, sinv, error)
matrix *s, *sinv;
long *error;

{
mt i, j;

if(!(*error)) {
if(s->m != 4 H s->n != 4) *error = 1;

I
else MakeldentityM(sinv, 4, error);

if (*error) return;

for(i = 0 ; i < 3 ; ++i) {
sinv->mat[i][i] = s->mat[i][i];
for(j = 0 ; j< 3 ; -H-j) {

sinv->mat[i][3] -= s->mat[i][j]*s->mat[i][3];
if(j > i) {

sinv->mat[i] [j] = s->mat[j] [i];
sinv->mat[j][i] = s->mat[i][j];

I
I

152

}

}

void get_r(r, var, p, error)
long *error;
matrix *r, *var;
data *p;

{
matrix s, si;

if(*error) return;

s = InitM(error);
si = InitM(error);
AllocateM(&s, 4, 4, error);
AllocateM(&si, 4, 4, error);
AllocateM(r, 6, 1, error);

get_s(ntran, &s, var, p, error);
invert_s(&s, &si, error);

if (! (*error)) {
r->mat[0] [0] = si.mat[0][2] + si.mat[0] [0] + si.mat[2] [2] - 2;
r->mat[1][0] = si.mat[1][0] + si.mat[0][0] + si.mat[1][1] - 2;
r->mat[2][0] = si.mat[2][1] + si.mat[1][1] + si.mat[2][2] - 2;
r->mat[3] [0] = si.mat[0] [3];
r->mat[4][0] = si.mat[1][3];
r->mat[5][0] = si.mat[2] [3];

}

DeallocateM(&s, error);
DeallocateM(&si, error);

void getd(s, d, var, p, error)
matrix *s, *d, *var;
data *p;
long *error;

{
int i, j;
double screw;

if(*error) return;
MakeZeroM(d, 6, 1, error);

i=(p->n+2)%3;

if(p->n > 6) {
for(j = 0 ; j < 3 ; ++j)

153

d->mat[j+3][0] = s->mat[j][i];
} else {

d->mat[0][0] = s->mat[1][i];
d->mat[1][0] = s->mat[2][i];
d->mat[2] [0] = s->mat[0] [i];
d->mat[3] [0] = s->mat[1] [3] *s->mat[2] [i] - s->mat[2] [3] *s->mat[1] [i];
d->mat[4] [0] = s->mat[2][3]*s->mat[0][i] - s->mat[0][3]*s->mat[2][i];
d->mat[5] [0] = s->mat[0][3]*s->mat[1][i] - s->mat[1][3]*s->mat[0][i];
if(p->n > 3) {

screw = 0.5 * var->mat[p->lead][0]/PI;
for(j = 0 ; j < 3 ; ++i)

d->mat[j+3][0] += screw*s->mat[j][i];
}

}

double iterate(var, p, error)
matrix *var;
data *p;
long *error;

matrix s, r, delta_var;
data *pn;
double biggest;
int i, j;
long er,

if(*error) return;

s = InitM(error);
r = InitM(error);
delta_var = InitM(error);
AllocateM(&delta_var, ndep, ndep+1, error);

get_r(&r, var, p, error);
for(i = 0 ; i < ndep ; ++i)

delta_var.mat[i] [ndep] = r.mat[i] [0];

for(i = 0 ; i < ndep ; ++i) {
for(j = 0, pn = p ; j < ntran ; ++j, ++pn)

if(pn->dx == i) break;
if(pn->dy == i) break;
if(pn->dz == i) break;
if(pn->ang == i) break;

if(j < ntran) get_s(j, &s, var, p, error); else *error = D BADMODEL;
get_d(&s, &r, var, pn, error);
for(j = 0 ; j < ndep ; ++j)

delta_var.mat[j][i] = r.mat[j][0];

154

GaussElimM(&r, &delta var, le-10, NU_PARTIAL_PIVOT, error);
if(! (*error)) BacksubM(&delta_var, &r, error);

for(i = 0, biggest = 0.0 ; i < ndep && !(*error) ; ++i) {
var->mat[i][0] += delta var.mat[i][0];
if(biggest < fabs(delta_var.mat[i][0])) biggest = fabs(delta_var.mat[i][0]);

I

DeallocateM(&s, &er);
DeallocateM(&r, &er);
DeallocateM(&delta var, &er);
return(biggest);
/* code not done yet- you need error checking */
1* in this and other routines */

I

void f setup(theFile, var, p, error)
FILE *theFile;
matrix *var,
data **p;
long *error,

I
int i, j, k, num passed;
int n, x, y, z, theta, lead;
data *pn;
matrix temp; *
long localFrror,

if(*error) return;
localError = OL;
temp = InitM(error);

if(fscanf(theFile, "%d %d", &ntran, &k) != 2) {
*error = D_BADINPUT;
return;

I;
if(fscanf(theFile, "%d %d", &nvar, &ndep) != 2) {

*error = D_BADINPUT;
return;

};
if(fscanf(theFile, "%d", &pindep) != 1) {

*error = D BADINPUT;
return;

};

AllocateM(var, k, 1, error);
if(! *error) *p = (data *) malloc((size_t) ntran*sizeof(data)); else return;
if(*p == NULL) {

*error = D PNOROOM;
return;

I

155

156

for(i = 0, pn = *p ; i < ntran && !(*error) ; ++i, ++pn) (
if(fscanf(theFile, "%d %d %d %d %d %d"; &n, &x, &y, &z, &theta, &lead)
== 6) {

pn->n = n;
pn->dx = x;
pn->dy = y;
pn->dz = z;
pn->ang = theta;
pn->lead = lead;

} else *error = DBADINPUT;
}

if(*error) return;

AllocateM(&temp, 1, k, error);
if(! (*error))

fReadM(&temp, theFile, error);
if(!(*error))

if(temp.m == var->n && temp.n == var->m)
TransposeM(var, &temp, error);

else *error = D_1VIISMATCH;
}

DeallocateM(&temp, &localError); •

C.6 MechFileControl.c

1* file containing file control subroutines for the main *1
1* linkage program, by Donald Kelly (January 1990) */

#include <NuToolsNumericalF.h>
#include "linkage.h"

void GetNewLinkage(var, p, error)
matrix *var;
data **p;
long *error;

{
int junk;
GrafPtr oldPort;

gTheInFile = OpenInputFile("r", error);

if(!*error) f
f setup(gTheInFile, var, p, error);

if(*error)
ErrorMessage(*error, "That file could not be opened1", 2, stopIcon);
junk = fclose(gTheInFile);
gTheInFile = NULL;
return;

}

/* CODE TO GO HERE FOR ENABLING MENU ITEMS *1
Enableltem(gMyMenus[viewM], 0);
Enableltem(gMyMenus[runM], 0);
EnableItem(gMyMenus[fileM], closeltem);
DisableItem(gMyMenus[fileM], openitem);

}
GetPort(&oldPort);
SetPort(gMyWindow);
InvalRect(&gMyWindow->portRect);
SetPort(oldPort);

}

void CloseLinkage()
{

int junk;

junk = fclose(gThelnFile);
gThelnFile = NULL;
DisableItem(gMyMenus[viewM], 0); •
DisableItem(gMyMenus[runK, 0);
DisableItem(gMyMenus[fileM], closeltem);
EnableItem(gMyMenus[fileM], openitem);

}

Boolean ReadNextTrial(var, outFileName, span, outVar, error)
matrix *var,
char *outFileName;
double *span;
long *outVar, *error;

{
char *theMessage, *otherMessage;
matrix temp;
int numPassed;

error = OL;
temp = InitM(error);
AllocateM(&temp, 5, 1, error);

theMessage = (char*) malloc(100L);
if(!theMessage U IgTheInFile)

*error = 1L;
return(FALSE);

157

MoveToNextLine(gTheInFile);
otherMessage = fgets(theMessage, 100, gTheInFile);
if(feof(gThe1nFile))

*error = EOF;
return(FALSE);

}
if(sscanf(theMessage, "%s %lg %ld", outFileName, span, outVar) != 3) {

*error = 2L;
return(FALSE);

fReadM(&temp, gThelnFile, error);
if(!(*error) && temp.m == var->n && temp.n == var->m) {

TransposeM(var, &temp, error);
DeallocateM(&temp, error);

} else {
if(! (*error)) *error = 3L;

}

if(*error) return(FALSE);

void MoveToNextLine(theFile)
FILE *theFile;

{
Boolean inLoop;
int theChar;

inLoop = TRUE;

while(inLoop && !feof(theFile))
theChar = fgetc(theFile);
if(!isspace(theChar)) {

inLoop = FALSE;
theChar = ungetc(theChar, theFile);

}

void DumpPositionAnalysis(outFile, pos, error)
FILE *outFile;
matrix *pos;
long *error,

{
long row, col;
int numPassed;
char theChar;

numPassed = fprintf(outFile, "%ld\t%ld\n", pos->n, pos->m);

158

for(row = 0 ; row < pos->m ; ++row)
for(col = 0 ; col < pos->n ; ++col) {

if(col == pos->n - 1)
theChar = \n;

else
theChar = Nti;

numPassed = fprintf(outFile, "%ig%c", pos->mat[row] [coil, theChar);

void WriteOutput(theOutFile, firstVar, secondVar, error)
FILE *theOutFile;
double firstVar, secondVar;
long *error;

{
int numPassed;

numPassed = fprintf(theOutFile, "%lg\t%lg\n", firstVar, secondVar);

C.7 MechView.c

/* file to hold view commands and other simple chores */
/* for my Mechanism program, by Don Kelly (January 1990) */

#include <NuToolsNurnericalF.h>
#include "linkage.h"

void ViewCurrentPosition(thePos)
matrix *thePos;

{
WriteM(thePos, 10, 12, "Current Position", &gErrorFlag);

void ViewPositionAnalysis()
{

WriteM(&gPositionAnalysis, 10, 12, "PositionAnalysis", &gErrorFlag);

void ScrollMyWindow()
{

RgnHandle tempRgn;

tempRgn = NewRgn();
ScrollRect(&gMyWindow->portRect, 0, -15, tempRgn);
DisposeRgn(tempRgn);

159

}

void DrawMyMessage(myMessage)

{
char *myMessage;

GrafPtr oldPort;

GetPort(&oldPort);
SetPort(gMyWindow);
if(gCurRow = gMaxRow)

ScrollMyWindow();
else

gCurRow += 15;

MoveTo(5, gCurRow);
DrawString(myMessage);
SetPort(oldPort);

void SayFirstMessage()
{

WriteMessage("This is the start of the Linkage Program, by me, Donald\O");
WriteMessage("Kelly, as part of my requirements for the Degree of Master\O");
WriteMessage("of Science in Mechanical Engineering. This program can\O");
WriteMessage("determine the values of the joint variables in single-loop\O");
WriteMessage("spatial linkages, and uses this to perform other tasks\0");
WriteMessage("needed for my Thesis.- DFK January 199(\0");

}

void SetSolverControl(steps, increment, runLength)
int *steps;
double *increment, *runLength;

{
long error;
int junk;
short sigfigs;
DOUBLE object[3];

error = OL;
sigfigs = 6;

object[0] = (double) *steps;
object[1] = *increment;
object[2] = *runLength;
Geners1Fntry(object, 3, sigfigs, NU_REAL, 0, TRUE, "Solver Control",
&error);

if(!error) {
junk = (hit) floor(object[0]);
if(junk > 0 && junk <=10)

*steps = junk;

160

if(object[1] >= 0.0174 && object[1] <= 0.175)
*increment = object[1];

if(object[2] > 0.0 && object[2] <= 8.0)
*runLength = object[2];

}

void UpdateScreen(updateFlag)
Boolean updateFlag;

{
int i, start, stop, mPosition;
GrafPtr oldPort;

GetPort(&oldPort);
SetPort(gMyWindow);

if(updateFlag)
EraseRect(&gMyWindow->portRect);
if(gStatusFlag & messagesFull) {

for(i = 0 , mPosition = (lastWritten+1) % 15 ; i < 15 ; ++i, mPosition =
(mPosition+1) % 15)

DrawMyMessage(messageList[mPosition]);
nextSent = mPosition;

} else {
for(i = 0 ; i <= lastWritten ; -H-i)

DrawMyMessage(messageList[i]);
nextSent = i % 15;

} else {
while(nextSent != (lastWritten+1) % 15) {

DrawMyMessage(messageList[nextSent]);
nextSent = (nextSent+1) % 15;

}

SetPort(oldPort);
}

void WriteMe s s age (mes s ageS tring)
char *messageString;

{

i-FlastWritten;
if(lastWritten >= 15) {

lastWritten -= 15;
gStatusFlag 1= messagesFull;

messageList[lastWritten] = strcpy(messageList[lastWritten], messageString);
messageList[lastWritten] = CtoPstr(messageList[lastWritten]);

160

UpdateScreen(FALSE);

}

162

	Design of spatial linkages for dwell function generation
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Copyright Page
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Analysis of the Spatial Mechanisms
	Chapter 3: Application to Some Dwell Linkages
	Chapter 4: Discussion of Results
	Chapter 5: Conclusion
	Chapter 6: References
	Appendix A
	Appendix B
	Appendix C

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

