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ABSTRACT 

Title of Thesis: A Transputer Based Distributed Graphics Display 

Ramana V. Kattula, Master of Science, 1990 

Thesis directed by: Dr. John Carpinelli, Assistant Professor 

The design of a transputer based graphics display is discussed. The problems 

associated with the single processor graphics systems are described. A solution based 

on multiple transputers is proposed. The transputer based graphics display described 

is a general purpose graphics system which can achieve any required compute per-

formance and drawing performance without using special hardware. The display 

resolution and color depth can be enhanced as per the user requirements with little 

or no change in hardware. 
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Chapter 1 

-Introduction 

A transputer is a microcomputer with its own local memory and with links 

for connecting one transputer to another. A typical member of the transputer 

family is a single chip containing a processor, memory and communication links 
• 

which provide point to point connections between transputers [5]. In addition, 

each transputer product contains special circuitry and interface adapting it to 

a particular use. 

A transputer can be used in a single processsor system or in networks. 

Transputer networks are high performance concurrent systems and can be 

easily constructed using point-to-point communication. 

1.1 OCCAM 

Transputers can be programmed using almost all high level languages used 

today and are designed so that the compiled programs will be efficient. Where 

it is required to exploit concurrency, but still to use standard languages, occam 

can be used as a harness to link modules written in selected languages. To 
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gain the most benefit from the transputer architecture, the whole system can 

be programmed in occam [5]. 

1.2 System design 

The transputer architecture simplifies system design by using processes as 

building blocks. Figure 1.1 shows the interconnection of four transputers form-

ing a node. 

Figure 1.1: A node of four transputers 
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1.2.1 Programming 

The software building block is the process. A system is designed by intercon-

necting a set of processes. Each process can be considered an independent 

unit by itself. It communicates with other processes through point-to-point 

channels. A process is completely characterized by the messages it sends and 

receives. There is no need for a synchronization mechanism for communication 

between processes since it is synchronized internally. The design of the system 

is heirarchical and at any level of design we are concerned with only a small 

set of processes. 

1.2.2 Hardware 

The individual software building blo'cks are each implemented in hardware. 

The hardware process is a transputer executing an occam program. Each 

hardware process can be easily designed and compiled. Its internal structure 

is hidden and it communicates with other processes through its links. 

1.2.3 Programmable components 

A transputer can be programmed using occam to perform a specific function. 

Once it is programmed it can be considered a black box. For improving the 

performance, some processes can be hard-wired. A system can be designed 

using a combination of software processes, programmed transputers and hard-

ware processes. That system can again be a part of a larger system. 
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1.3 System architecture 

1.3.1 Communication links 

Transputers use point-to-point communication links. All transputers have one 

or more standard links which can be connected to links of other transputers. 

This gives the advantage of making networks of any size and structure possible. 

The advantages of point-to-point communication links over multiprocessor 

buses are: 

• The communication capability is not limited by the number of transput-

ers in the system. 

• There is no capacitive load penalty as transputers are added to a system. 

• The communication bandwidth is not saturated by an increase in system 

size. The greater the number of transputers in the system, the higher is 

the total communication bandwidth, since regardless of the system size 

the connections are short and local. 

1.3.2 Local memory 

Each transputer has its own local memory which is used by the transputer 

for the process it executes. When using a number of conventional processors 

to form a network the total memory bandwidth is limited, but the memory 

bandwidth in a transputer system is proportional to the number of transputers 

in the system. This means that the memory interfaces are not shared and are 
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not linked with the communications interface; this enhances the speed of access 

and provides high bandwidth with a minimum of external components. 

1.4 Communication 

For the communication to be synchronized, each message must be acknowl-

edged. So a link should consist of one unidirectional signal wire for each 

direction of communication. Figure 1.2 shows links communicating between 

processes of two transputers. 

Figure 1.2: Links communicating between processes 

A link between two transputers is implemented by connecting a link inter-

face on one transputer to a link interface on the other by two one-directional 

lines which carry data serially. The two signal wires of the link can be used to 

provide two occam channels, one in each direction. This is accomplished by 

a simple protocol. Each line carries data and also control information. The 

protocol provides the synchronized communication of occam. The use of the 

protocol providing for the transmission of an arbitrary sequence of bytes allows 
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transputers of different wordlengths to be connected. Figure 1.3 below shows 

a link protocol [4]. 

Figure 1.3: Link protocol 
. 

The messages between transputers are transmitted as a sequence of single 
a 

byte communications which requires just a single byte buffer in the receiving 

transputer to ensure that no information is lost. Each message is transferred 

as a start bit followed by a one bit followed by eight data bits and then a stop 

bit. Once the message is transmitted, the sender waits for an acknowledge 

from the receiving transputer. This consists of a start bit followed by a zero 

bit. The acknowledge implies both that a message byte was received and the 

receiving link is ready to receive another byte. The sending link schedules 

the next transmission only after it receives an acknowledge for the previous 

message. 

The data bytes and acknowledges are multiplexed on each signal line. If 

there is room to buffer more than one message, the acknowledge can be trans-

mitted as soon as the data byte reception starts. As a consequence, transmis- 
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sion can be continuous, with no delays between data bytes. 

The links make the design of systems simple. Board layout of two wire 

connections is easy and is area efficient. All transputers support a standard 

communications frequency of 10 Mbits/sec, regardless of their performance. 

Hence it is possible to directly connect processors of different performance. 

Communication between links is not sensitive to clock phase. So systems 

clocked independently can still communicate as long as the frequency of the 

communications is the same. The transputer family includes a number of link 

adapter devices to connect links to non—transputer devices. 
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Chapter 2 

Transputer architecture 

A transputer consists of a processor, memory and communications system 

connected by a 32-bit bus. The bus is also connected to the external memory 

interface, so that additional local memory can be used. The floating point 

transputers also have a on-chip floating point unit. The block diagram of 

figure 2.1. indicates how the major blocks of the transputer are interconnected. 

The CPU in the transputers contains three registers, A, B and C, used for 

integer and address arithmetic; they form a hardware stack. When a value 

is loaded into the stack, B is pushed into C and A into B, before loading the 

new value into A. Retrieving a value from A pops B into A and C into B. The 

Floating Point Unit (FPU), similarly, has three registers to evaluate arithmetic 

operations, called AF, BF and CF. When values are loaded or retrieved, they 

push and pop same way as the A, B and C registers. 

The address of floating point values are formed on the CPU stack, and 

the CPU controls the transfer of the values between address memory locations 

and the FPU stack. The word length of the CPU is independent of that of 
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Figure 2.1: Transputer interconnections 

the FPU, as the CPU stack is used only to hold the addresses of floating point 

values. Hence it is possible to use the same FPU together with a 16-bit CPU. 

2.1 Sequential processing 

The availability of fast on-chip memory makes having large numbers of regis-

ters for the processor unnecessary. The CPU has six 32-bit registers for the 

execution of a sequential process. The fewer registers with a simple instruction 

set enable the processor to have relatively simple data-paths and control logic. 

The six registers are: 

• The workspace pointer which points to an area of storage where local 

variables are kept. 

• The instruction pointer which points to the next instruction to be exe-

cuted. 

9 



Figure 2.2: Registers 

• The operand register which is used in the formation of instruction operands. 

• The A, B and C registers which form an evaluation stack, and are the 

sources and destinations for most arithmetic and logical operations. 

A schematic diagram of the registers is shown in figure 2.2. Expressions are 

evaluated on the evaluation stack, andinstructions refer to the stack implicity. 

As an example, the add instruction adds the two top values in the stack and 

places the result on the top of the stack. The use of a stack removes the need 

for instructions to respecify the location of their operands. The hardware has 

no protection to prevent more than three values being stored in the stack. 

2.2 Instructions 

The instruction set is designed for simple and efficient compilation. It contains 

a small number of instructions, all with the same format. The microcode 

can be used for transputers of different word lengths, as the instruction set is 

independent of the processor word length. Each instruction consists of a single 

byte divided into two 4-bit parts. The four most significant bits of the byte 
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are a function code, and the four least significant bits are a data value. 

2.2.1 Direct functions 

The representation of instructions gives sixteen possible combinations for func-

tions with sixteen data values (0 to 15) for each function. These functions 

include: 

load constant add constant 
load local store local load local pointer 
load non-local store non-local call 

The most common operations in a program are the loading of small literal 

values, and the loading and storing of one of a small number of variables. The 

load constant instruction enables values between 0 and 15 to be loaded with a 
• 

single byte instruction. The load local and store local instructions access loac- 

tions in memory relative to the workspace pointer. The first sixteen locations 

can be accessed using a single byte instruction. 

The load non-local and store non-local instructions behave similarly, except 

that they access locations in memory relative to the A register. Compact 

sequences of these instructions allow efficient access to data structures and 

provide for simple implementations of the static links or displays used in the 

implementation of block structured programming languages such as occam. 

2.2.2 Prefix function 

Two other instructions of the total sixteen function code8 allow the operand 

of any instruction to be extended in length. They are: 
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Figure 2.3: Instruction operand register 

Prefix negative prefix 

To execute any instruction the four data bits are loaded into the four least 

significant bits of the 32-bit operand register. The execution of an instruction 

(other than prefix instruction) ends by clearing the operand register, which 

makes it ready for the next instruction. 

The prefix instruction loads its four data bits into the operand register, and 

then shifts the operand register up fouB places. The negative prefix instruction 

is similar, except that it compliments the operand register before shifting it up. 

Consequently operands can be extended to any length up to the length of the 

operand register by a sequence of prefix instructions. In particular, operands 

in the range -256 to 255 can be represented using one prefix instruction. Figure 

2.3 shows the instruction operand register. 

The use of prefix instructions has certain beneficial consequences. First, 

they are decoded and executed in the same way as every other instruction, 

which simplifies and speeds instruction decoding. Second, they simplify lan-

guage compilation by providing a completely uniform way of allowing any 

instruction to take an operand of any size. Third, they allow operands to be 

represented in a form independent of the processor word length. 
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2.2.3 Indirect functions 

The last function code, operate, causes its operand to be interpreted as an 

operation on the values held in the evaluation stack. This enables the pro-

grammer to encode 16 such operations in a single byte instruction. Just like 

that of any other operand, the operate instruction's operand can be extended 

using the prefix instruction. Hence, there are an infinite number of operations 

possible by the instruction representation. 

The encoding of the indirect functions is chosen so that the most frequently 

occurring operations are represented without the use of a prefix instruction. 

These include arithmetic, logical and comparision operations such as: 

add exclusive or greater than 
a 

Less frequently occuring operations have encodings which require a single 

prefix operation. The 32-bit transputer IMS T800 has additional instructions 

which load into, operate on, and store from the floating point register stack. 

It also contains new instructions which support color graphics, pattern recog-

nition and the implementation of error correcting codes. 

2.3 Support for concurrency 

The processor in the transputer provides efficient support for the occam model 

of concurrency and communication. It has a microcoded scheduler which en-

ables any number of concurrent processes to be executed together, sharing 

the processor time. This removes the need for a software kernel. The proces- 
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Figure 2.4: Linked process list 

sor does not need to support the dynamic allocation of storage as the occam 

compiler is able to perform the allocation of space to concurrent processes. 

At any time, a concurrent process may be 

active - being executed 
- on a list waiting to be executed 

inactive - ready to input 
- ready to output 
- waiting until a specified time 

The scheduler operates in such a way that inactive processes do not con-

sume any processor time. The active processes waiting to be executed are 

held on a list. This is a linked list of process workspaces, implemented using 

two registers, one of which points to the first process on the list, the other to 

the last. In figure 2.4, S is executing, and P, Q and R are active, awaiting 

execution. 

A process is executed until it has to wait for an input or output, or has to 
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wait for the timer. When a process does stop for such a reason, its instruction 

pointer is saved in its workspace and the next process is taken from the list. 

The process switch times are very small, since little state information needs 

to be saved. 

The processor provides a number of special operations to support the pro-

cess model. These include 

start process end process 

When a parallel construct is executed, start process instructions are used to 

create the necessary concurrent processes. A start process instruction creates 

'a new process by adding a new workspace to the end of the scheduling list, 

enabling the new concurrent process to be executed. 

The correct termination of a patallel construct is assured by use of the 

end process instruction. This uses a workspace location as a counter of the 

components of the parallel construct which have yet to terminate. The counter 

is initialized to the number of components before the processes are started. 

Each component ends with an end process instruction which decrements and 

tests the counter. For all but the last component, the counter is non zero and 

the component is descheduled. For the last component, the counter is zero 

and the component continues. 

2.4 Communications 

Processes communicate through channels. As noted earlier, occam communi-

cation is point-to-point, synchronized and unbuffered. So a channel does not 
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need a process queue, message queue or message buffer. If the two communicat-

ing processes are on the same transputer, the communication is implemented 

by a single word in memory. If they are on two different transputers, the com-

munication is implemented by point-to-point links. The processor provides a 

number of operations to support message passing. The most important are: 

input message output message 

These messages determine from the address of the channel whether the 

channel is internal or external. This eliminates the need for two different 

instructions for hard and soft channels and allows a process to be written 

and compiled without the knowledge of where its channels are connected. 

Communication can take place only when both sending and receiving processes 

are ready. So the process which first becomes ready must wait until the other 

is also ready. 

A process performs an input or output by loading the evaluation stack with 

a pointer to a message, the address of a channel, and a count of the number 

of bytes to be transferred, and then executing an input message or an output 

message instruction. 

2.4.1 Internal channel communication 

At any given time, an internal channel either holds the identity of a process, 

or holds the special value empty [5]. The channel is initialized to empty before 

it is used. When a message is passed using the channel,- the identity of the 

first process to become ready is stored in the channel, and the processor starts 
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to execute the next process from the scheduling list. When the second process 

to use the channel becomes ready, the message is copied, the waiting process 

is added to the scheduling list, and the channel is reset to its initial state. It 

does not matter whether the inputting or outputting process becomes ready 

first. 

-  2.4.2 External channel communication 

When a message has to be passed through an external channnel, the job is 

assigned to an autonomous link interface by the processor and the process is 

'descheduled. When the transfer is complete the process is rescheduled by the 

processor. This way the processor can continue with other processes while 

messages are being transferred. • 
A link interface uses three registers: 

• a pointer to a process workspace 

• a pointer to a message 

• a count of bytes in the message 

2.5 Timer 

The clock contained in the transputer has a period of one microsecond. The 

current value of the processor timer can be read by executing a read timer 

instruction. A process can be programmed to execute after a specified time 

has been reached; this is accomplished by the timer input instruction. A time 
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has to be specified for the instruction. If the current time is already past the 

specified time, then the instruction has no effect. If the time is in the future 

then the process is descheduled until the specified time is reached and then 

rescheduled. 

2.6 Alternative 

The occam alternative construct enables a process to wait for input from any 

one of a number of channels, or until a specified time occurs. This requires 

special instructions, as the normal input instruction deschedules a process until 

a specified channel becomes ready, or until a specified time is reached. The 

instructions are: 

enable channel disable channel 
enable timer disable timer 
alternative wait 

The alternative is implemented by 'enabling' the channel input or timer 

input specified in each of its components. The 'alternative wait' is then used 

to deschedule the process if none of the channel or timer inputs are ready. 

The process will be rescheduled when any one of them becomes ready. The 

channel and timer inputs are then 'disabled'. The 'disable' instructions are 

also designed to select the component of the alternative to be executed; the 

first component found to be ready is executed. 

18 



2.7 Floating point instructions 

The core of the floating point instruction set includes simple load, store and 

arithmetic instructions. The transfer of operands between the transputer's 

memory and the floating point evaluation stack is done by means of floating 

.. point load and store instructions. There are two groups of such instructions, 

one each for single length and double length operands. We discuss only the 

double length instructions here, but there exist corresponding single length 

instructions. 

The CPU computes the address of the floating point operand on its stack 

and the operand is loaded onto the FPU's stack from the addressed memory 

location. Operands in the FPU's stack are tagged with their length. This 
• 

tag will be set when the operand is loaded or computed. The tags enable us 

to reduce the number of instructions required. So a floating add will do the 

work of both the floating add single and floating add double instructions. The 

FPU and CPU operate concurrently in a floating point transputer, so the CPU 

can perform an address calculation while the FPU performs a floating point 

calculation. This improves the performance in real time applications which 

access arrays heavily. 

2.8 Floating point unit design 

The floating point unit contains a fast normalizing shifter. Multiplication is 

performed three-bits per cycle, and division is performed two-bits per cycle. 
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Block diagram of floating point unit 

Figure 2.5: Floating point unit block diagram 

Figure 2.5 shows the block diagram of the FPU. 

The data paths contain registers and shift paths. The fraction data path 

is 59 bits wide, and the exponent data path is 13 bits wide. The normalizing 

shifter interfaces to both the fractibn data path and the exponent data path. 

This is because the data to be shifted will come from the fraction data path 

while the magnitude of the shift is associated with the exponent data path. 

2.9 Graphics capability 

The fast block move instructions of the occam make transputers efficient in 

graphics applications using byte-per-pixel color displays. The block move on 

the transputer is designed to saturate the memory bandwidth, moving any 

number of bytes from any byte boundary in memory to any other byte bound-

ary using the smallest possible number of word read and write operations. The 

instructions for the graphics achieve the speed of the simple move instruction, 

enabling a 1 million pixel screen to be drawn many times per second. 
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Chapter 3 

Hardware design considerations 

3.1 Designing with the IMS T800 memory 
interface 

The IMS T800 has a configurable memory interface and allows easy interfac-8 
ing of a variety of memory types with a minimum of extra components. The 

interface directly supports DRAMs, SRAMs, ROMs and memory mapped pe-

ripherals [9]. 

The transputer has a 32-bit multiplexed bus for data and address with a 

linear address space of 4 Gbytes. The interface connections include four byte 

write strobes, a read strobe, a refresh strobe, five configurable strobes, a wait 

input, a memory configuration input, a bus request input and a bus grant 

output. Figure 3.1 shows the inputs and outputs associated with the memory 

interface. With this flexible arrangement, a variety of memory timing controls 

can be obtained with little external hardware. 

All RAM appears to the IMS T800 as 232  bytes mapped as 32 bit words 
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Figure 3.1: Memory interface 

in a linear signed address space. Addresses run from $80000000 through 

$FFFFFFFF to $7FFFFFFF. But the occam map starts at $0 and is or-

ganized as words. The T800 has MemStart at $80000070 and the start of 

external memory at $80001000 [1]. 

As shown in Figure 3.2, the T800 has 4Kbytes of on-chip RAM at addresses 

$80000000 to $80000FFF. Therefore, the memory space from $80000000 to 

$FFFFFFFF can be used for RAM and $00000000 to $7FFFFFFF for ROM 

and I/O. 

3.1.1 Memory interface timing 

The memory interface cycle has six timing states, called Tstates. The Tstates 

have the functions described in table 3.1. The duration of each state can be 
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Figure 3.2: T800 memory map 

Tstate Description 

T1 address setup time before address valid strobe 
T2 address hold time after address valid strobe 
T3 read cycle tristate/write cycle data setup 
T4 extended for wait states 
T5 read or write data 
T6 end tristate/data hold 

Table 3.1: Tstates of memory cycle 
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configured according to the memory devices used and can be from one to four 

Tm periods. One Tm period is half the processor cycle time, i.e., half the 

period of ProcClockOut. T4 can be extended by adding wait states in the 

form of additional Tms. AO and Al are not output with the rest of the address. 

During a write cycle, byte and half-word (16 bit data) addressing are achieved 

by the four write byte strobes (notMemWrB); only the write byte strobes 

corresponding to the bytes to be written are active. During a read cycle, this 

is achieved by internally selecting the bytes to be read. 

Thus the two lowest order address lines are not needed. The two lowest 

order data lines are not multiplexed with address lines but, during the address 

period, are used to give early indication of the type of cycle which will follow: 

MemnotWrDO is low during T1, and T2 of a write cycle. 

MemnotRfD1 is low during T1 and T2 of a refresh cycle. 

The use of the strobes notMemSO to notMemS4 depend upon the memory 

system. The rising edge of notMemS1 and the falling edges of notMemS2 to 

notMemS4 can be configured to occur from 1 to 31 Tm periods after the start 

of T2. This is summarized in figure 3.3. 

It should be noted that the use of wait states can advance the rising edge of 

notMemS1 in relation to that of other strobes; care must be taken if this signal 

is being used for RAS (Row Address Strobe input on the dynamic RAMs) 

driving DRAMs for which RAS must not be removed before CAS (Column 

Address Strobe input on the dynamic RAMs). 
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Figure 3.3: The configurable strobes 

3.1.2 Early and late write. 

The notMemWrB strobes can be configured to fall either at the beginning of 

T3 (early write) or at the beginning of T6. Early write gives a longer set up 

time for the write strobe but data is only valid on the rising edge of the pulse. 

For late write, data is also valid on the falling edge of the strobe but the pulse 

is shorter. 

3.1.3 Refresh 

The T800 has an on-chip refresh controller and 10 bit refresh address counter 

and can, therefore, refresh DRAMs of up to 4Mbit capacity without requiring 

• the counter to be extended externally. 

Refresh can be configured to be either enabled or disabled. If enabled, the 
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refresh interval can be configured to be 18, 36, 54 or 72 ClockIn periods; if a 

refresh cycle is due, the current memory cycle is always completed first. The 

time between refresh cycles is thus almost independent of the transputer speed 

and the length of memory cycles. 

Refresh cycles are flagged by notMemRf going low before Ti and remain-

' ing low until the end of T6. Refresh is also indicated by MemnotRittl going 

low during T1 and T2 with the same timing as address signals. The address 

output during refresh is: 

ADO = MemnotWrDO high 
AD1 = MemnotRfDl low, to indicate refresh 
AD2 - AD11 refresh address 
AD12 - AD30 high 
AD31 low 

During the refresh cycles, the strobes notMemSO - notMemS4 are gen-

erated as normal. 

3.1.4 Wait states and extra cycles 

Memory cycles can be extended by wait states. MemWait is sampled close 

to the failing edge of ProcClok-Out, prior to, but not at, the end of T4. If 

it is high, T4 is extended by additional Tms. Wait states are added for as 

long as MemWait is held high, T5 proceeds when MemWait is low. Note 

that the internal logic of the memory interface ensures that, if wait states are 

inserted, T5 always begins on a rising edge of ProcClockOut: so the number 

of wait states inserted will be either always odd or always even, depending on 
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the memory configuration being used. 

Every memory interface cycle must consist of a number of complete cycles 

of ProClockOut: i.e. it must consist of an even number of Tms. If there are 

an odd number of Tm periods up to and including T6, an extra Tm will be 

inserted after T6. 

3.1.5 Setting the memory interface configuration 

A memory interface configuration is specified by a 36 bit word and is fixed at 

reset time. The T800 has a selection of 13 pre-programmed configurations. If 

'none of these is suitable, a different configuration can be selected by supplying 

the complement of the configuration word to the T800s MemConfig input 

immediately following reset [9]. • 

A pre-programmed configuration is selected by connecting MemConfig to 

MemnotWrDO, MemnotRfD1, MemAD2-MemAD11 or MemAD31. 

Immediately after reset, the T800 takes all of the data lines high and then, be-

ginning with MemnotWrDO, they are taken low in sequence. If MemConfig 

goes low when the T800 pulls a particular data line low, the memory inter-

face configuration associated with the data line is used. If, during the scan, 

MemConfig is held low until MemnotWrDO goes low, or is connected to 

MemAD31, the slowest memory configuration is used. 

After scanning the data lines as described above, the T800 performs 36 

read cycles from locations $7FFFFF6C, S7FFFFF70 — $7FFFFFF8. No data 

is latched off the data bus but, if MemConfig is held low until MemWrDO is 
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taken low, each read cycle latches one bit of the (inverted) configuration word 

on Memconfig. Thus, a memory configuration can be supplied by external 

logic. 

Using a pre-programmed configuration has the advantage of requiring no 

external components: only a connection from MemConfig to the appropri-

'ate data line. However, selecting an external configuration can also be very 

economical in component use. If the transputer is booting from ROM, the 

ROM must occupy the top of the address space. One bit of the memory con-

figuration word can be stored in each of the 36 addresses mentioned above 

and the only additional hardware required is an inverter connecting the ap-

propriate data line (usually MemnotWrDO) to MemConfig. Memconfig 

is thus held low until MemnotWrDO. goes low and is fed with the inverse of 

the configuration word during the 36 read cycles. Alternatively, the inverted 

configuration word can be generated from A2-A7 by one sum term of a PAL 

(Programmable Array Logic). 

3.2 Basic considerations in memory design 

3.2.1 Minimum memory interface cycle time 

The minimum number of processor clock cycles for an external memory access 

is 3, which occurs when all Tstates are 1 Tm. With a 50 nsec cycle time, this 

will be 150 nsec. 

The most important DRAM parameters to be considered at the start of a 

memory design are the access and cycle times and the RAS precharge time. 
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NEC uPD41256 NEC uP41256-12 Hitachi HM51256-10 

Access time 150ns 120ns 100ns 
cycle time 260ns 220ns 180ns 
RAS precharge 100ns 90ns 70ns 

NMB AAA2800-150 AAA2800-80 

Access time 150ns 80ns 
cycle time 246ns 151ns 
RAS precharge 90ns 65ns 

Table 3.2: Parameters for typical Dynamic RAMs 

These will be a guide to the fastest timing possible, which is generally a good 

starting point. Typical values of these times are shown in Table 3.2. 

Higher density devices require longer RAS precharge times but, if the mem-

ory does not require RAS to remain low until the end of the memory cycle, it 

can be taken high before the cycle ends. 

3.3 Debugging memory systems 

3.3.1 Peeking and poking 

Transputers can be booted from ROM (BootFromROM to Vcc) or from link 

(BootFromROM to ground). When booting from a link, a header byte is 

expected; if it is in the range 2-255 it should be followed by that number of 

bytes. These will be placed in memory starting at MemStart ($80000070) 
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and execution will then be transferred to this address. The code executes at 

low priority and its work space is located immediately above itself. Usually, 

this code will be a loader, to load the user's program into this transputer and 

any others, if it is a part of a network. 

If the header byte is 0, a 'poke' operation will take place. The 0 byte should 

be followed by a 4 byte address (AAAA) and 4 bytes of data (DDDD) to be 

placed at that address: 

input: header=0, then A AA A D D D D 

If the header byte is a 1, a `peek' operation will take place. The 1 byte 

hould be followed by a 4 byte address (AAAA). The transputer will then 

output, on the same link, 4 bytes of data (DDDD) read from that address: 

input: header=i, then A A. A A 

output: DDDD 

After both the peek and poke operations, the transputer reverts to await-

ing a new header (which could initiate another peek or poke). So, if we have 

another transputer, it is posssible to test the hardware by poking to the trans-

puter under test to place data in the internal or external memory, and then 

peeking to read the data back and compare it. 

3.4 Connecting INMOS links 

3.4.1 Introduction 

The INMOS link is fundamental to the concept of the transputer and of occam. 

A link is the hardware implementation of an occam channel; each bidirectional 
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link provides a pair of occam channels, one in each direction. A link provides 

serial data communication between two transputer family devices at speeds 

up to 20Mbits/s [4]. 

A link between two transputers is implemented by connecting a link in-

terface on one transputer product to a link interface on the other transputer 

product by two unidirectional signal lines. Each signal line carries data and 

control information. 

Communication through a link involves a simple protocol. This provides 

the synchronized communication of occam. The use of a protocol providing for 

the transmission of an arbitrary sequence of bytes allows transputer products 

of different word length to be connected together. 

Electrically, link signals are TTL compatible and as such are a simple means 

of communication over short distances (< 0.3 meters). Links are designed for 

local communication. However, it is possible to use them over longer distances 

although a little more consideraation is needed to ensure reliable operation. 

3.4.2 Link operation 

An INMOS link between two transputer products consists of two unidirectional 

signal lines connected to the link interface on each transputer family device, 

providing point-to-point serial communication, as shown in figure 3.4. 

Communication across a link involves a simple protocol. Each message is 

transmitted as a sequence of single byte communications, requiring only the 

presence of a single byte buffer in the receiving transputer to ensure that no 
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'information is lost. 

After transmitting a data byte, the sender waits until an acknowledge is 

received. This consists of a start bit folowed by a zero bit. The acknowledge 

signifies both that a process was able to receive the acknowledged byte, and 

that the receiving link can receive another byte. 

Data bytes and acknowledges may be multiplexed down each signal line 

during duplex communication. In once implementation of the link acknowl-

edges are output on receipt of the full eleven bits of the data packet. The link 

implementation of the T800 allows ovelapped acknowledges. In this imple-

mentation, the acknowledge may be sent immediately on receipt of the start 

bit and the 'data is to follow' bit, allowing continuous data transmission with 

no delays between data packets. 

3.4.3 Electrical Considerations 

Links may be connected very simply over short distances. No engineering is re-

quired other than a direct wire connection between LinkOut of one transputer 

and LinkIn of another. The connection may consist of tracks on a printed 

circuit board, or a cable. 
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Over greater distances, certain parameters of the interconnection medium 

must be taken into account: 

• Transmission line effects 

• Noise and crosstalk 

• Line attenuation 

• Pulse dispersion 

• Skew 

• Propagation delay 

A further consideration that applfes to all link connections is protection of 

the link interface from electrostatic discharge. 

INMOS links are designed to transmit serial data between transputer fam-

ily devices at speeds up to 20Mbits/s. The signals are TTL compatible and as 

such are suitable for transmitting data over short distances (up to 30cm) with 

no engineering except a simple wire connection. Though transmrnission line 

effects come into play at longer distances, we shall not be interested in them. 
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Chapter 4 

Distributed graphics display 

4.1 System performance 

In many graphics systems, the system performance is reduced by its design 

aspects. To overcome these performapce problems, many systems use custom 

built hardware, thereby increasing the cost and reducing flexibility. 

The solution to these problems calls for a general purpose graphics system 

with several requirements, as described below: 

• Compute performance: Any required compute performance desired 

by the user for his application. 

s Drawing performance: Any required drawing performance desired by 

the user for a given application. 

• Display access: The display scanning must have separate access to the 

frame store to remove the conflict between the processor and the display 

scanning hardware. 
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• Display resolution and color depth: Any required display resolution 

and color depth. 

• Display drivers: Any required speed of display output. For instance, 

very high speed device technology may be necessary for a very high 

resolution display. 

4.2 Parallel graphics system 

4.2.1 Introduction 

Parallel graphics system addresses the problems discussed in the above sec-

6  tion. To provide any desired performance requires that the processing task 

be divided into smaller subtasks and as many processors that are necessary 

to provide the appropriate performance be used. This allows a system to be 

built to achieve any drawing bandwidth, with any compute performance. So 

the problem now is that of distribution and its implementation. 

The following are a few methods for distributing processing tasks. 

Spatial: The display is broken up into a number of tiles. Each tile is dis-

tributed to a different processor or a group of processors. Figure 4.1 illustrates 

the spatial distribution. 

Chronological: This method distributes the entire display to all proces-

sors in the system, but only one will display all its data at any one time. 

Each frame of the display is produced by a processor or a group of processors. 

Figure 4.2 shows how this distribution is done. 
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Figure 4.3: Objective distribution 
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Figure 4.4: Characteristic distribution 

Objective: This method distributes different objects in a scene to different 

processors. This is illustrated in figure 4.3. 

, Characteristic: This method distributes characteristics of the scene, such 

as color, to different processors. This is illustrated in figure 4.4. 

4.2.2 Transputer modules .(TRAMs) 

Transputer Modules or TRAMs are subassemblies of transputers, a few dis-

crete components, and sometimes some RAM and/or application specific cir-

cuitry. All TRAMs: 

• Have a standard interface using serial links 

• Have a standard pinout 

• Have standard sizes 

• Are designed to a published specification 

These TRAM standards make it very simple for users to build customized 

TRAMs or motherboards with sockets for TRAMs. The TRAM pinout stan- 
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dard is independent of: 

• Transputer type 

• Number of transputers 

• Word length of transputer 

• Speed of transputer 

• Function of the module 

• Memory size 

• Package 

• Implementation (PCB, hybrid, silicon, etc.) 

4.2.3 Graphics TRAMs 

If the graphical display processors are implemented as modular transputer 

compute elements, each with transputer, memory and logic to implement spe-

cial functions, the problem of designing a distributed graphics system becomes 

much simpler. 

To provide the distributed frame store requirements and any display output 

type, two different TRAMs are necessary. 

Serial port TRAM: This contains an IMS T800 and all the logic neces-

sary for a complete frame store. It can be connected to other identical TRAMs 

so that distribution of the frame store becomes a matter of simple replication 
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of this TRAM. This is known as the serial port TRAM because of the serial 

nature of the output data. 

Display backend driver TRAM: This contains all the logic necessary 

to drive a particular display type. This TRAM interfaces directly to, and 

receives its high speed data from, the serial port TRAM. This TRAM will be 

known as the Display Backend TRAM. 

Separation of frame store scanning from the processor address and data 

bus is achieved on the serial port TRAM using video RAMs. Video RAMs 

have a separate serial port for video data. This allows the frame buffer to be 

scanned in a serial fashion without causing significant loss of processor access 

to the RAM, relieving the arbitration problems associated with conventional 

RAMs. 

The serial port TRAM supplies a continuous stream of high speed serial 

data from the frame store. The Display Backend can drive display monitors 

using this stream of data in a variety of display modes. These TRAMs are 

connected together by a 60 way ribbon cable, which contains a control bus 

and a distributed data bus. All serial port TRAMs in the system connect in 

parallel to this cable. This is illustrated in figure 4.5. 

4.3 Serial port TRAM 

4.3.1 Introduction 

The serial port TRAM consists of: 

A transputer: An IMS T800, which maintains the frame store. 
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Figure 4.5: Connecting graphic TRAMS 

Memory: The standard serial port TRAM contains a total of 2.25 Mbytes 

of 4 cycle dynamic RAM. Of this 1Mbyte is standard dynamic RAM and 1.25 

Mbytes is video RAM. 

Video RAM address generator: This controls the VRAM (Video RAM) 

serial port addressing. It is in turn controlled by the distributed control bus. 
8 

Serial bus interface: This is the distributed serial data and control bus 

interface. It connects the distributed control bus to the various timing com-

ponents on the TRAM and the VRAM serial data to the distributed data 

bus. 

Figure 4.6 shows the block diagram of the serial port TRAM, outlining 

some of the blocks described above. 

The serial port TRAM can be considered as a transputer with memory, 

some of which is dual ported video RAM. The VRAM has a serial and a 

random access port to the frame store. These two ports can be considered as 

separate entities. 

• 
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Figure 4.6: Serial port TRAM block diagram 

Memory map 

From figure 4.7 we see that the video RAM is placed as an extension to the 

workspace RAM, so that, should the need arise the video RAM can be used 
• 

as extra workspace RAM. 

The video RAM is mapped twice into the decoded memory map so that the 

special logic modes (marked Logic Mode) used in some video RAMs, which 

need special interfacing cycling, can be used. These special logic modes can 

be set by writing data to the area of store reserved for this purpose (marked 

Logic Set). Registers which control the serial port addressing and frame 

synchronization are mapped into the positive address space (marked System 

Control). 

Frame store addressing and the video RAM 

The serial port TRAMs frame store is designed around the packed pixel archi-

tecture. There are two addressing schemes that can be used with video RAMs 

41 



Figure 4.7: Memory map 

when using packed pixel architecture.. 

Memory relative: Data is placed into the frame store with addressing 

related to the physical addressing of the video RAM. Put simply, the VRAM 

row and column addresses have a direct relationship with the frame stores X 

and Y coordinates, but the display can have a different horizontal dimension 

than the frame store. The maximum width of display is the size of the dual 

port buffer in the VRAM, i.e., 1024 eight bit pixels. 

Display relative: The VRAM row and column addressing have no direct 

relationship to the frame stores X and Y coordinates. Instead the frame store 

addressing and the visible display have the same horizontal dimension. This 

scheme needs the video RAM real time data transfer mechanism, which allows 

the display horizontal dimension to be longer than the VRAM dual port buffer, 

42 



i.e., longer than 1024 eight bit pixels. 

The serial port TRAM normally uses the display relative addressing scheme. 

When interlace is used, which can be set at initialization, it is switched into 

memory relative mode, and the frame store has a fixed horizontal dimension of 

1024 bytes. These methods reduce the logic necessary to construct the address 

generator. 

Pixel mappings 

The video RAM can be used for various pixel types and screen sizes. The usage 

of the frame store entirely depends, upon the user software and the backend 

display TRAM. The following mappings can be the most efficient ones: 

8 bit packed pixels: Pixels mapped as bytes, four pixels per word. This 

allows 256 colors per pixel with a maximum of 1,310,720 pixels. This can be 

used for high resolution CAD, i.e., one serial port module can produce a 1280 

by 1024 by 8 bit display, with an appropriate display backend. 

32 bit packed pixels: Pixels can be mapped as 32 bit words, allowing a 

maximum of 232  colors per pixel. One serial port TRAM can have a total of 

327,680 pixels. Applications include any system that needs real color displays. 

The method of mapping the frame store to the processor can have a pro-

found effect on the performance of the graphical operations a single IMS T800 

can achieve. To achieve most efficient use of the IMS T800 performance, pix-

els should be mapped as either bytes or 32 bit word data types as this takes 

advantage of the IMS T800s internal datapath representation. 
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Double buffered frame store addressing 

It is useful, when maximizing performance in some graphic applications such 

as animation, to have at least two displays mapped onto the frame store. This 

allows one to be displayed while another is being updated. 

To facilitate this, the address of the first pixel at the top left of the display 

can be preset. This address presetting allows the display to be flipped to 

alternate areas of the frame store. Flipping the display during frame flyback 

allows complete frames to be drawn before being displayed. The transputer 

can be informed of the state of the frame flyback condition so as to synchronize 

the frame flip to the frame flyback period. 

Frame store distribution 

The method of frame store distribution can have dramatic effects upon the 

design of the hardware to implement it. For the special port TRAM the 

design rests on the specification of the distributed data bus, which consists of 

a synchronous (clocked) inverted open-collector bus. 

The open-collector arrangement allows any serial port TRAM to output 

data onto the bus at any time without fear of bus contention. This removes 

any need for any bus arbitration logic, and hence allows arbitrary distribution 

of screen space among an arbitrary number of serial port TRAMs. Each serial 

port TRAM has enough memory to be able to address any pixel of the display. 

Since all serial port TRAMs are synchronized, any one of them can alter the 

pixel data entry presently on the distributed data bus. If any serial port TRAM 
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is not responsible for any particular pixel, it simply writes a null (zero) into 

that location in the frame store. 

This distribution technique is simple, and provides the spatial and charac-

teristic distribution methods described earlier. To further enhance the flexibil-

ity of this, an output enable control bit is mapped into the IMS T800 address 

space. Any serial port TRAM output can be switched off completely. This 

provides the chronological distribution method. 

4.3.2 Random access port 

Memory cycles 

The serial port TRAM has eight different types of memory access: 

Internal read/write: This cycleeis the fastest. It is internal to the IMS 

T800 and lasts for a single cycle (50ns on the 20 Mhz transputers). 

External read/write: This cycle is the basic external memory cycle. It 

lasts for four processor cycles (200ns) and consists of a conventional dynamic 

RAM multiplexed addressed cycle. 

Refresh: This is a CAS (Column Address Strobe) before RAS (Row Ad-

dress Strobe) refresh cycle due to an addressing complication of the video 

RAMs. 

Video update: This cycle is controlled by the video update logic. It 

allows the video RAM serial port to be updated. The video logic proceeds 

after gaining control of the data and multiplexed address buses and cycles 

the video RAM with a serial port update cycle. This cycle only happens 
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infrequently, when data in the serial port is about to run out of data. 

Logic operation set: The logic operation unit available in some video 

RAMs is activated using a CAS before RAS write cycle. The logic mode 

remains set until a Reset Logic Mode or another Logic Operation Set Mode is 

issued. 

Logic operation: The Logic Operation cycle is a conventional RAS-CAS 

cycle but is six cycles long. This cycle needs a special extended RAS pulse, 

which is generated from a combination of the interface strobes notMemS1, 

notMemS2 and notMemS4. This cycle is forced to six cycles using the 

notMemS4 strobe fed back into the Wait input of the IMS T800. This is 

done as a function of the addressing, and is controlled by programmable array 

logic. 

Serial port control logic: This cycle allows the transputer to access the 

serial port control logic. All RAMs are disabled in this cycle. 

Configuration: The configuration sequence is a conventional external 

read cycle that is used only after the transputer has just been reset. The 

configuration data is generated from the configuration PAL using the six least 

significant unlatched address bits. The configuration data is then latched into 

a single bit of the decode address latch to hold the data until the end of the 

cycle. 
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Figure 4.8: Multiplex arrangements with dynamic RAMs 

Address latches and multiplexing 

Due to the multiplexed address-data bus of the IMS T800 the addresses are 

only available at the beginning of the external memory cycle. The addresses 

have to be demultiplexed from the data. This is done using the transputer 

strobe notMemSO driving the latch enable inputs of two ten bit transparent 

latches. The latches used are high speed CMOS, as these have low propagation 

delays and have high output drive. Figure 4.8 shows the arrangements. 

Due to the multiplexed address bus used with dynamic RAMs, the now 

demultiplexed transputer addresses have to be multiplexed onto the RAM 

address bus. To achieve this the output enables of the address latches are 

controlled from a high speed PAL. The outputs from two latches are connected 

together.  

This control is a function of the transputer memory interface strobes not- 
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MemS2 and MemGranted. MemGranted is used because the video logic 

needs to drive the multiplexed address bus during a video update and therefore 

the multiplexer outputs have to be turned off completely. 

Decoding 

The top address bits, AD31, AD23-18 and the Configuration data are latched 

into a separate eight bit transparent latch. These address bits are used for 

decoding. 

The RAM is arranged as: 

• A single bank of general workspace RAM arranged as eight 256 Kbit by 

4 RAMs. 

• Five banks of eight 64 Kbit by 4 (256 Kbit) video RAMs. 

The high speed PAL that controls the operation of the address multiplexer 

also generates four RAS strobes, one for the workspace RAM and three for the 

video RAM. Pairs of video RAM banks share RAS strobes. The last VRAM 

bank and the workspace RAM have their own RAS strobe. 

The CAS strobes are supplied from another high speed PAL. This essen-

tially is the RAM decoder, having six separate CAS strobes. The' decoding is 

a function of the latched addresses A20-18, A31 and the Option input. The 

CAS strobes are timed for notMemS3 on an External Read/Write cycle. 
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Figure 4.9: Serial interface block diagram 

4.3.3 Serial access port 

At the heart of the distributed frame store are two clocks which are syn-

chronous. Both clocks are distributed to all serial port TRAMs in the system. 

One is known as the sequencer cloctc and the other is known as the VRAM 

clock. The VRAM clock is stoppable and is controlled by the display TRAM. 

It is switched off just before the start of, and switched on just before the end 

of, the horizontal blanking period. Figure 4.9 shows the block diagram of the 

interface. 

The serial port is built from several distinct groups of logic all synchronized 

to the previously mentioned clocks: 

• The address generator: This generates the new serial address for the 

VRAM during a serial port update. The address generator has tri-state 

bus drivers connected to the multiplexed address bus of the VRAM. 

• Address sequencer: This orchestrates control of the address generator 
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during the update of the serial port. The address sequencer takes over 

from the transputers memory interface and then cycles the VRAM in a 

data transfer cycle. 

• Pixel counter: This starts the sequencer when serial data in the VRAM 

is about to run out. It is simply a counter that counts the data read 

out from the serial port, which resets itself immediately after the update 

occurs. 

s Serial bus interface: This is the interface to the distributed data and 

control bus. This interface is clocked using the sequencer clock. 

Address generator 

The address generator is used when a video update cycle has been initiated. It 

provides 19 address bits, some of which are presented to the VRAM during a 

serial port update cycle and some of which are used as decode selectors. These 

addresses only form the start address for the serial data; subsequent data is 

accessed by clocking the VRAM. The scheme is illustrated in figure 4.10. 

The lower eight bits of the address are fixed but are presettable. This forms 

the column address to the VRAM during the update cycle. This determines 

which data appears at the VRAM serial output after the .VRAM has been 

up dated. 

The next 11 address bits are generated from a preloadable counter that 

increments just after every update cycle. This address points to the first 
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Figure 4.10: Address generation scheme 

' VRAM row to be accessed after each new frame is started. The lower eight 

bits from this form the row addresses in the VRAM during the update cycle. • 
The top three bits of the counter are used to control the serial output enables 

of the five banks of VRAM, as shown in figure 4.10. There is no decoding on 

the update cycle, i.e., all VRAMs are updated at the same time. 

The top five bits in the counter are preloaded from a five bit register which 

the user can preset so that the display can start from various addresses of the 

video RAM. 

Address sequencer 

This logic interfaces the address generator to the VRAM and determines the 

timing of the serial update control strobes. It arbitrates this update cycle 

between the address generator and the IMS T800's memory interface logic. 

The sequencer is designed to update the serial port without interrupting 

51 



the pixel stream. To do this the pixel counter informs the sequencer that the 

serial data is about to run out. The entire sequencer operation lasts for 31 

sequencer clock periods and new data appears at the VRAM serial output 

after 30 sequencer clock periods. 

The sequencer requests the VRAM address bus by asserting MemReq. 

When MemGranted is asserted by the transputer, the sequencer cycles the 

VRAM in a serial port update cycle. This cycle updates the serial port via the 

random port when the VRAM strobe DT/OE is brought high synchronized 

with the VRAM serial clock. 

C 
Pixel counter 

The serial port of the VRAM wraps around after 256 clocks. It therefore needs 

reloading every 256 VRAM clock cycles if data is not to be redisplayed. To 

implement this, the pixel counter signals to the sequencer when the end of 

serial data is about to occur. This end of data signal knows that the update 

will occur 30 clock periods later, so it signals the sequencer early. 

A slight complication of the sequencer operation concerns the line flyback 

period. The sequencer must finish its operation before line flyback occurs, 

otherwise data destined for the start of the next line will be lost. The pixel 

counter will not cause an update to occur if an end of line is due, so that 

the update cannot occur during the line flyback period. The timing of this is 

critical, as the data which finds its way to the display is pipelined twice before 

getting to the display. This means the pipeline must be precharged with data 
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before the display line starts and emptied before the line ends. To this end, 

the VRAM clock is turned on two clock periods before the start of the line 

and switched off two clocks before the end of the line. 

Distributed control 

The serial port TRAM is designed to function as part of a distributed graphics 

system. For this reason the control necessary to drive the distributed data bus 

has to be common to all serial port TRAMs in the system. All clocking and 

control strobes are distributed using parallel terminated transmission lines. 

The transmission lines are driven at the source using high speed CMOS 

logic with high output drive capability. This is terminated with a resistor to 

ground equal to the characteristic ithpedance of the transmission cable. All 

control inputs to the serial port TRAM are short wire stubs which offer little 

disturbance to the transmission line. 

4.4 Display TRAM 

4.4.1 Introduction 

All display TRAMs have a generic architecture. Figure 4.11 shows the block 

diagram of the display backed TRAM architecture. It is neither practical nor 

cost efficient to design a system that is capable of any graphical display output. 

This particaular display TRAM has been designed so that it can be used in a 

variety of applications. 

The Display Backend TRAM consists of: 
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Figure 4.11: Display TRAMS 

A transputer link: Communication to this module via at least one IN- 

MOS link, as a processor may not be necessary as it is used only for control 
8 

and initialization of the backend hardware. 

Video system clock generator: This provides the video system clock. 

The video system is timed from this clock. 

A video timing generator: From this, all synchronization and system 

control is derived. 

Serial control and data bus interface: This drives the distributed 

serial control bus and takes data from the distributed data bus. 

Application specific display hardware: This hardware produces the 

application specific output derived from the 32 bit input data. 

The display TRAM designed for this system has: 
• 

e A transputer: The transputer used is the T212. It is used here as a 
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logic controller to initialize the video timing logic, color look up tables 

and the mode selection. 

• Distributed control bus interface: This consists of a few transmis-

sion line drivers, distributing the control signals to all the serial port 

TRAMs. 

• Video clocks and timing generator: The pixel clocks and video tim-

ing generation used to synchronize all serial port TRAMs are controlled 

by the display TRAM. 

• Three pixel channels: Each display channel converts 32 bits of in-

put data from three distributed data bus inputs into the analog control 
. 

signals to drive standard display monitors. 

Pixel channels 

The display TRAM consists of three independent 8 bit pixel channels, all with 

common clock and video timing generators. These are depicted in figure 4.12. 

Each channel has: 

• Premultiplexer: An eight bit premultiplexer which chooses between 

eight bits of data from channel 0 or channel 1 and eight bits of data 

from channel 0 or channel 2. This then maps 24 input bits of channel 0 

onto the lowest eight bits of channels 0, 1 and 2. 

• Input latch: Distributed data bus 32 bit input latch. 
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Figure 4.12: Pixel channels 

• • Multiplexer: 32 bit input 4 to 1 multiplexer. 

• CLUT: 256 location color lookup table. 

Display modes 

There are three modes that the display TRAM is designed to operate in. They 

are: • 

• 8 bit mode: This mode treats the 32 bit pixel data entering the display 

TRAM as four 8 bit pixel values. This data is multiplexed to the color 

lookup table. All three pixel channels operate seperately sharing only 

the distributed control. This is illustrated in figure 4.13. 

• Low resolution 24 bit mode: This mode treats the 32 bit pixel data 

entering the display TRAM as a single 32 bit word of pixel data. The 

top 8 bits are not used, leaving the lower 24 bits as pixel data. The three 

pixel channels contribute to the display, one channel per primary color 

as shown in Figure 4.14. 
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Figure 4.13: 8 bit mode 

The 24 bit mode has a diffeient clocking arrangement. Since data is 

being displayed at the same clock speed (pixel clock) but four times 
• 

as much data is being used by the display, the input clock speed must 

be increased, i.e., pixel clock runs at the same speed as the pixel bus. 

The mode selection can change the clocking arrangements to suit these 

modes. 

• High resolution 24 bit mode: This mode is similar to the 8 bit mode, 

except all three channels are used to provide each of the primary colors 

as shown in Figure 4.15. 
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Figure 4.15: High resolution 24 bit mode 
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4.5 System configuration 

4.5.1 Driving the frame store 

The serial port TRAM can be used in a varied and non-specific manner, but 

the techniques fall into several distinct classes. 

• Data generator: The serial port TRAM receives high level graphical 

commands from another TRAM and satisfies these commands by gen-

erating the drawing data into the frame store. The serial port TRAM 

becomes a programmable graphical drawing engine. 

• Data sink: No graphical tasks are executed on the serial port TRAM. 

The serial port TRAM acts purely as a data sink, receiving data from the 

serial links and placing this datZ directly into the frame store. The frame 

store data is generated elsewhere on other TRAMs with transputers or 

specific hardware. 

• Data generator and sink: A mixture of both the above methods. 

The performance of the above techniques can be improved by adding more 

Serial Port TRAMs and distributing the drawing tasks appropriately, thus 

improving the effective drawing speed or the total serial link bandwidth into 

the frame store. 

4.5.2 Frame store configurations 

Using a combination of serial port TRAMs and the display TRAMs many 

system configurations can be constructed. 
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Minimal 8-bit display system: The minimal system consists of a single 

serial port TRAM and is connected as shown in figure 4.5. This minimal 

system provides all that is necessary for an 8-bit pixel (256 color) graphic 

display, to a maximum of 1280 by 1024 pixels. 

Distributed 8-bit display system: Figure 4.5 shows a distributed 8-bit 

graphic display system. This distribution provides increased drawing speed 

and transputer link bandwidth into the frame store. 

Minimal low resolution 24 bit display system: The system in figure 

4.5 can also be used as a low resolution (maximum of 327,680 pixels) 32 bit 

pixel system. The display TRAMs.premultiplexer is used in this configuration 

and provides a maximum of 24 bits of output color (8 bits per primary). Each 

pixel channel is used as a single primary color output. 

Distributed low resolution 24 bit display system: The display TRAM 

in figure 4.5 is set into 24 bit mode as above, but this system provides increased 

possible drawing and link bandwidth into the frame store as in the distributed 

8 bit system, but with more colors. 

High resolution 24 bit display system: This system is essentially three 

separate 8 bit systems. The system is depicted in figure 4.16. This method 

separates the red, green and blue components into three 8 bit high resolution 

display channels as in the 8 bit system. It has all the characteristics of the 8 

bit system but each of the three pixel channels on the display TRAM operate 

independently to provide a primary color as in the low resolution 24 bit system. 
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Figure 4.16: High resolution 24 bit display 

High resolution distributed 24 bit dislay system: This system is 

similar to the above described 24 a  bit system except that each 8 bit pixel 

channel is distributed in the same way as the 8 bit system. 
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Chapter 5 

Conclusions 

This thesis focused on the problems of graphic systems and how they can be 

resolved using transputers. The needs of a flexible general purpose graphics 

system with efficient computing performance, drawing performance, etc., were 

addressed by distribution of the task to several transputers. 

It has been shown that the performance of the frame store can be increased 

using video RAMs instead of using special hardware which makes it special 

purpose. The flexibility and efficiency in frame store is obtained by mapping 

the display data directly onto the transputer's address map by the video RAM. 

The problems of single processor bus bottlenecks have also been discussed. 

It is shown how the bottlenecks can be removed by distributing the frame 

store, and how this distribution is efficient with transputers. 

The large amount of processing necessary to perform typical graphical op-

erations cannot be handled efficiently by single processor systems and hence 

they are slowed down. It is necessary to divide and distribute the processing 

task as smaller and more manageable tasks in high performance systems. The 
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control and complexity of such a system is considerably reduced using trans-

puters for processing the distributed tasks, and the distribution of the frame 

store adds to the efficiency by providing a convenient interface to the display. 

Once the distribution has been designed and achieved, the task of increasing 

the system performance is a mere addition of transputers into the system, at 

the display interface or at the processing end and the system can be run with 

any desired performance. 

The system designed can be easily implemented. The implementation of 

the system and analysis of the performance measures can be an interesting 

extension of this thesis. The system performance can be evaluated with respect 

to the conventional single processing systems. There will be an opportunity 

to explore the software side for perfgrmance of the system, since in parallel 

systems programming the hardware plays as important a role as designing the 

hardware itself. 
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