
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

9-30-1990

A transputer based distributed graphics display A transputer based distributed graphics display

Ramana V. Kattula
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Kattula, Ramana V., "A transputer based distributed graphics display" (1990). Theses. 2781.
https://digitalcommons.njit.edu/theses/2781

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2781?utm_source=digitalcommons.njit.edu%2Ftheses%2F2781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: A Transputer Based Distributed Graphics Display

Ramana V. Kattula, Master of Science, 1990

Thesis directed by: Dr. John Carpinelli, Assistant Professor

The design of a transputer based graphics display is discussed. The problems

associated with the single processor graphics systems are described. A solution based

on multiple transputers is proposed. The transputer based graphics display described

is a general purpose graphics system which can achieve any required compute per-

formance and drawing performance without using special hardware. The display

resolution and color depth can be enhanced as per the user requirements with little

or no change in hardware.

A Transputer Based Distributed
Graphics Display

by

Ramana V. Kattula

Thesis submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of

Master of Science in Electrical Engineering

1990

APPROVAL SHEET

Title of Thesis: A Transputer Based Distributed Graphics Display

Name of Candidate: Ramana V. Kattula
Master of Science in Electrical Engineering, 1990

Thesis and Abstract Approved: "7. 7761

Dr. John CarpineTli Date
Assistant Professor

Department of Electrical and Computer Engineering

Dr. Anthony RoblE, Date
Associate Professor

Department of Electrical and Computer Engineering

Dr. Edwin Hou Date
Assistant Professor

Department of Electrical and Computer Engineering

VITA

Name: Ramana V. Kattula

Peinianent address:

Degree and date to be conferred: Master of Science in Electrical Engineering, 1990.

Date of birth,

Place of birth:

Secondary education: Hyderabad Public School. Hyderabad. INDIA.

Collegiate institutions attended Dates Degree Date of Degree

N. J. Institute of Technology 9/88-8/90 M.S.E.E. October 1990

Osmania University 08/84-5/88 B.E.(E.C.E.) May 1988

Major: Electrical Engineering.

Contents

List of Figures iv

List of Tables vi

1' Introduction 1
1.1 OCCAM 1
1.2 System design 2

1.2.1 Programming 3
1.2.2 Hardware • 3
1.2.3 Programmable components 3

1.3 System architecture 4
1.3.1 Communication links 4
1.3.2 Local memory 4

1.4 Communication 5

2 Transputer architecture 8
2.1 Sequential processing 9
2.2 Instructions 10

2.2.1 Direct functions 11
2.2.2 Prefix function 11
2.2.3 Indirect functions 13

2.3 Support for concurrency 13
2.4 Communications 15

2.4.1 Internal channel communication 16
2.4.2 External channel communication 17

2.5 Timer 17
2.6 Alternative 18

2.7 Floating point instructions 19
2.8 Floating point unit design 19
2.9 Graphics capability 20

3 Hardware design considerations 21
3.1 Designing with the IMS T800 memory interface 21

3.1.1 Memory interface timing 22
3.1.2 Early and late write 25
3.1.3 Refresh 25
3.1.4 Wait states and extra cycles 26
3.1.5 Setting the memory interface configuration 27

3.2 Basic considerations in memory design 28
3.2.1 Minimum memory. interface cycle time 28

3.3 Debugging memory systems 29
3.3.1 Peeking and poking 29

3.4 Connecting INMOS links n 30
3.4.1 Introduction 30
3.4.2 Link operation 31
3.4.3 Electrical Considerati6ns 32

4 Distributed graphics display 34
4.1 System performance 34
4.2 Parallel graphics system 35

4.2.1 Introduction 35
4.2.2 Transputer modules (TRAMs) 37
4.2.3 Graphics TRAMs 38

4.3 Serial port TRAM 39
4.3.1 Introduction 39
4.3.2 Random access port 45
4.3.3 Serial access port 49

4.4 Display TRAM 53
4.4.1 Introduction 53

4.5 System configuration 59
4.5.1 Driving the frame store 59

• 4.5.2 Frame store configurations 59

5 Conclusions 62

Bibliography 64

iii

List of Figures

1.1 A node of four transputers 2
1.2 Links communicating between processes 5
1.3 Link protocol 6

2.1 Transputer interconnections 9
° 2.2 Registers 10

2.3 Instruction operand register 12
2.4 Linked process list 14
2.5 Floating point unit block diagram 20

3.1 Memory interface 22
3.2 T800 memory map 23
3.3 The configurable strobes 25
3.4 Link connection 32

4.1 Spatial distribution 36
4.2 Chronological distribution 36
4.3 Objective distribution 36
4.4 Characteristic distribution 37
4.5 Connecting graphic TRAMs 40
4.6 Serial port TRAM block diagram 41
4.7 Memory map 42
4.8 Multiplex arrangements with dynamic RAMs 47
4.9 Serial interface block diagram 49
4.10 Address generation scheme 51
4.11 Display TRAMs 54
4.12 Pixel channels 56
4.13 8 bit mode 57

iv

4.14 24 bit mode 58
4.15 High resolution 24 bit mode 58
4.16 High resolution 24 bit display 61

List of Tables

3.1 Tstates of memory cycle 23
3.2 Parameters for typical Dynamic RAMs 29

vi

Chapter 1

-Introduction

A transputer is a microcomputer with its own local memory and with links

for connecting one transputer to another. A typical member of the transputer

family is a single chip containing a processor, memory and communication links
•

which provide point to point connections between transputers [5]. In addition,

each transputer product contains special circuitry and interface adapting it to

a particular use.

A transputer can be used in a single processsor system or in networks.

Transputer networks are high performance concurrent systems and can be

easily constructed using point-to-point communication.

1.1 OCCAM

Transputers can be programmed using almost all high level languages used

today and are designed so that the compiled programs will be efficient. Where

it is required to exploit concurrency, but still to use standard languages, occam

can be used as a harness to link modules written in selected languages. To

1

gain the most benefit from the transputer architecture, the whole system can

be programmed in occam [5].

1.2 System design

The transputer architecture simplifies system design by using processes as

building blocks. Figure 1.1 shows the interconnection of four transputers form-

ing a node.

Figure 1.1: A node of four transputers

2

1.2.1 Programming

The software building block is the process. A system is designed by intercon-

necting a set of processes. Each process can be considered an independent

unit by itself. It communicates with other processes through point-to-point

channels. A process is completely characterized by the messages it sends and

receives. There is no need for a synchronization mechanism for communication

between processes since it is synchronized internally. The design of the system

is heirarchical and at any level of design we are concerned with only a small

set of processes.

1.2.2 Hardware

The individual software building blo'cks are each implemented in hardware.

The hardware process is a transputer executing an occam program. Each

hardware process can be easily designed and compiled. Its internal structure

is hidden and it communicates with other processes through its links.

1.2.3 Programmable components

A transputer can be programmed using occam to perform a specific function.

Once it is programmed it can be considered a black box. For improving the

performance, some processes can be hard-wired. A system can be designed

using a combination of software processes, programmed transputers and hard-

ware processes. That system can again be a part of a larger system.

3

1.3 System architecture

1.3.1 Communication links

Transputers use point-to-point communication links. All transputers have one

or more standard links which can be connected to links of other transputers.

This gives the advantage of making networks of any size and structure possible.

The advantages of point-to-point communication links over multiprocessor

buses are:

• The communication capability is not limited by the number of transput-

ers in the system.

• There is no capacitive load penalty as transputers are added to a system.

• The communication bandwidth is not saturated by an increase in system

size. The greater the number of transputers in the system, the higher is

the total communication bandwidth, since regardless of the system size

the connections are short and local.

1.3.2 Local memory

Each transputer has its own local memory which is used by the transputer

for the process it executes. When using a number of conventional processors

to form a network the total memory bandwidth is limited, but the memory

bandwidth in a transputer system is proportional to the number of transputers

in the system. This means that the memory interfaces are not shared and are

4

not linked with the communications interface; this enhances the speed of access

and provides high bandwidth with a minimum of external components.

1.4 Communication

For the communication to be synchronized, each message must be acknowl-

edged. So a link should consist of one unidirectional signal wire for each

direction of communication. Figure 1.2 shows links communicating between

processes of two transputers.

Figure 1.2: Links communicating between processes

A link between two transputers is implemented by connecting a link inter-

face on one transputer to a link interface on the other by two one-directional

lines which carry data serially. The two signal wires of the link can be used to

provide two occam channels, one in each direction. This is accomplished by

a simple protocol. Each line carries data and also control information. The

protocol provides the synchronized communication of occam. The use of the

protocol providing for the transmission of an arbitrary sequence of bytes allows

5

transputers of different wordlengths to be connected. Figure 1.3 below shows

a link protocol [4].

Figure 1.3: Link protocol
.

The messages between transputers are transmitted as a sequence of single
a

byte communications which requires just a single byte buffer in the receiving

transputer to ensure that no information is lost. Each message is transferred

as a start bit followed by a one bit followed by eight data bits and then a stop

bit. Once the message is transmitted, the sender waits for an acknowledge

from the receiving transputer. This consists of a start bit followed by a zero

bit. The acknowledge implies both that a message byte was received and the

receiving link is ready to receive another byte. The sending link schedules

the next transmission only after it receives an acknowledge for the previous

message.

The data bytes and acknowledges are multiplexed on each signal line. If

there is room to buffer more than one message, the acknowledge can be trans-

mitted as soon as the data byte reception starts. As a consequence, transmis-

6

sion can be continuous, with no delays between data bytes.

The links make the design of systems simple. Board layout of two wire

connections is easy and is area efficient. All transputers support a standard

communications frequency of 10 Mbits/sec, regardless of their performance.

Hence it is possible to directly connect processors of different performance.

Communication between links is not sensitive to clock phase. So systems

clocked independently can still communicate as long as the frequency of the

communications is the same. The transputer family includes a number of link

adapter devices to connect links to non—transputer devices.

7

Chapter 2

Transputer architecture

A transputer consists of a processor, memory and communications system

connected by a 32-bit bus. The bus is also connected to the external memory

interface, so that additional local memory can be used. The floating point

transputers also have a on-chip floating point unit. The block diagram of

figure 2.1. indicates how the major blocks of the transputer are interconnected.

The CPU in the transputers contains three registers, A, B and C, used for

integer and address arithmetic; they form a hardware stack. When a value

is loaded into the stack, B is pushed into C and A into B, before loading the

new value into A. Retrieving a value from A pops B into A and C into B. The

Floating Point Unit (FPU), similarly, has three registers to evaluate arithmetic

operations, called AF, BF and CF. When values are loaded or retrieved, they

push and pop same way as the A, B and C registers.

The address of floating point values are formed on the CPU stack, and

the CPU controls the transfer of the values between address memory locations

and the FPU stack. The word length of the CPU is independent of that of

8

Figure 2.1: Transputer interconnections

the FPU, as the CPU stack is used only to hold the addresses of floating point

values. Hence it is possible to use the same FPU together with a 16-bit CPU.

2.1 Sequential processing

The availability of fast on-chip memory makes having large numbers of regis-

ters for the processor unnecessary. The CPU has six 32-bit registers for the

execution of a sequential process. The fewer registers with a simple instruction

set enable the processor to have relatively simple data-paths and control logic.

The six registers are:

• The workspace pointer which points to an area of storage where local

variables are kept.

• The instruction pointer which points to the next instruction to be exe-

cuted.

9

Figure 2.2: Registers

• The operand register which is used in the formation of instruction operands.

• The A, B and C registers which form an evaluation stack, and are the

sources and destinations for most arithmetic and logical operations.

A schematic diagram of the registers is shown in figure 2.2. Expressions are

evaluated on the evaluation stack, andinstructions refer to the stack implicity.

As an example, the add instruction adds the two top values in the stack and

places the result on the top of the stack. The use of a stack removes the need

for instructions to respecify the location of their operands. The hardware has

no protection to prevent more than three values being stored in the stack.

2.2 Instructions

The instruction set is designed for simple and efficient compilation. It contains

a small number of instructions, all with the same format. The microcode

can be used for transputers of different word lengths, as the instruction set is

independent of the processor word length. Each instruction consists of a single

byte divided into two 4-bit parts. The four most significant bits of the byte

10

are a function code, and the four least significant bits are a data value.

2.2.1 Direct functions

The representation of instructions gives sixteen possible combinations for func-

tions with sixteen data values (0 to 15) for each function. These functions

include:

load constant add constant
load local store local load local pointer
load non-local store non-local call

The most common operations in a program are the loading of small literal

values, and the loading and storing of one of a small number of variables. The

load constant instruction enables values between 0 and 15 to be loaded with a
•

single byte instruction. The load local and store local instructions access loac-

tions in memory relative to the workspace pointer. The first sixteen locations

can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except

that they access locations in memory relative to the A register. Compact

sequences of these instructions allow efficient access to data structures and

provide for simple implementations of the static links or displays used in the

implementation of block structured programming languages such as occam.

2.2.2 Prefix function

Two other instructions of the total sixteen function code8 allow the operand

of any instruction to be extended in length. They are:

11

Figure 2.3: Instruction operand register

Prefix negative prefix

To execute any instruction the four data bits are loaded into the four least

significant bits of the 32-bit operand register. The execution of an instruction

(other than prefix instruction) ends by clearing the operand register, which

makes it ready for the next instruction.

The prefix instruction loads its four data bits into the operand register, and

then shifts the operand register up fouB places. The negative prefix instruction

is similar, except that it compliments the operand register before shifting it up.

Consequently operands can be extended to any length up to the length of the

operand register by a sequence of prefix instructions. In particular, operands

in the range -256 to 255 can be represented using one prefix instruction. Figure

2.3 shows the instruction operand register.

The use of prefix instructions has certain beneficial consequences. First,

they are decoded and executed in the same way as every other instruction,

which simplifies and speeds instruction decoding. Second, they simplify lan-

guage compilation by providing a completely uniform way of allowing any

instruction to take an operand of any size. Third, they allow operands to be

represented in a form independent of the processor word length.

12

2.2.3 Indirect functions

The last function code, operate, causes its operand to be interpreted as an

operation on the values held in the evaluation stack. This enables the pro-

grammer to encode 16 such operations in a single byte instruction. Just like

that of any other operand, the operate instruction's operand can be extended

using the prefix instruction. Hence, there are an infinite number of operations

possible by the instruction representation.

The encoding of the indirect functions is chosen so that the most frequently

occurring operations are represented without the use of a prefix instruction.

These include arithmetic, logical and comparision operations such as:

add exclusive or greater than
a

Less frequently occuring operations have encodings which require a single

prefix operation. The 32-bit transputer IMS T800 has additional instructions

which load into, operate on, and store from the floating point register stack.

It also contains new instructions which support color graphics, pattern recog-

nition and the implementation of error correcting codes.

2.3 Support for concurrency

The processor in the transputer provides efficient support for the occam model

of concurrency and communication. It has a microcoded scheduler which en-

ables any number of concurrent processes to be executed together, sharing

the processor time. This removes the need for a software kernel. The proces-

13

Figure 2.4: Linked process list

sor does not need to support the dynamic allocation of storage as the occam

compiler is able to perform the allocation of space to concurrent processes.

At any time, a concurrent process may be

active - being executed
- on a list waiting to be executed

inactive - ready to input
- ready to output
- waiting until a specified time

The scheduler operates in such a way that inactive processes do not con-

sume any processor time. The active processes waiting to be executed are

held on a list. This is a linked list of process workspaces, implemented using

two registers, one of which points to the first process on the list, the other to

the last. In figure 2.4, S is executing, and P, Q and R are active, awaiting

execution.

A process is executed until it has to wait for an input or output, or has to

14

wait for the timer. When a process does stop for such a reason, its instruction

pointer is saved in its workspace and the next process is taken from the list.

The process switch times are very small, since little state information needs

to be saved.

The processor provides a number of special operations to support the pro-

cess model. These include

start process end process

When a parallel construct is executed, start process instructions are used to

create the necessary concurrent processes. A start process instruction creates

'a new process by adding a new workspace to the end of the scheduling list,

enabling the new concurrent process to be executed.

The correct termination of a patallel construct is assured by use of the

end process instruction. This uses a workspace location as a counter of the

components of the parallel construct which have yet to terminate. The counter

is initialized to the number of components before the processes are started.

Each component ends with an end process instruction which decrements and

tests the counter. For all but the last component, the counter is non zero and

the component is descheduled. For the last component, the counter is zero

and the component continues.

2.4 Communications

Processes communicate through channels. As noted earlier, occam communi-

cation is point-to-point, synchronized and unbuffered. So a channel does not

15

need a process queue, message queue or message buffer. If the two communicat-

ing processes are on the same transputer, the communication is implemented

by a single word in memory. If they are on two different transputers, the com-

munication is implemented by point-to-point links. The processor provides a

number of operations to support message passing. The most important are:

input message output message

These messages determine from the address of the channel whether the

channel is internal or external. This eliminates the need for two different

instructions for hard and soft channels and allows a process to be written

and compiled without the knowledge of where its channels are connected.

Communication can take place only when both sending and receiving processes

are ready. So the process which first becomes ready must wait until the other

is also ready.

A process performs an input or output by loading the evaluation stack with

a pointer to a message, the address of a channel, and a count of the number

of bytes to be transferred, and then executing an input message or an output

message instruction.

2.4.1 Internal channel communication

At any given time, an internal channel either holds the identity of a process,

or holds the special value empty [5]. The channel is initialized to empty before

it is used. When a message is passed using the channel,- the identity of the

first process to become ready is stored in the channel, and the processor starts

16

to execute the next process from the scheduling list. When the second process

to use the channel becomes ready, the message is copied, the waiting process

is added to the scheduling list, and the channel is reset to its initial state. It

does not matter whether the inputting or outputting process becomes ready

first.

- 2.4.2 External channel communication

When a message has to be passed through an external channnel, the job is

assigned to an autonomous link interface by the processor and the process is

'descheduled. When the transfer is complete the process is rescheduled by the

processor. This way the processor can continue with other processes while

messages are being transferred. •
A link interface uses three registers:

• a pointer to a process workspace

• a pointer to a message

• a count of bytes in the message

2.5 Timer

The clock contained in the transputer has a period of one microsecond. The

current value of the processor timer can be read by executing a read timer

instruction. A process can be programmed to execute after a specified time

has been reached; this is accomplished by the timer input instruction. A time

17

has to be specified for the instruction. If the current time is already past the

specified time, then the instruction has no effect. If the time is in the future

then the process is descheduled until the specified time is reached and then

rescheduled.

2.6 Alternative

The occam alternative construct enables a process to wait for input from any

one of a number of channels, or until a specified time occurs. This requires

special instructions, as the normal input instruction deschedules a process until

a specified channel becomes ready, or until a specified time is reached. The

instructions are:

enable channel disable channel
enable timer disable timer
alternative wait

The alternative is implemented by 'enabling' the channel input or timer

input specified in each of its components. The 'alternative wait' is then used

to deschedule the process if none of the channel or timer inputs are ready.

The process will be rescheduled when any one of them becomes ready. The

channel and timer inputs are then 'disabled'. The 'disable' instructions are

also designed to select the component of the alternative to be executed; the

first component found to be ready is executed.

18

2.7 Floating point instructions

The core of the floating point instruction set includes simple load, store and

arithmetic instructions. The transfer of operands between the transputer's

memory and the floating point evaluation stack is done by means of floating

.. point load and store instructions. There are two groups of such instructions,

one each for single length and double length operands. We discuss only the

double length instructions here, but there exist corresponding single length

instructions.

The CPU computes the address of the floating point operand on its stack

and the operand is loaded onto the FPU's stack from the addressed memory

location. Operands in the FPU's stack are tagged with their length. This
•

tag will be set when the operand is loaded or computed. The tags enable us

to reduce the number of instructions required. So a floating add will do the

work of both the floating add single and floating add double instructions. The

FPU and CPU operate concurrently in a floating point transputer, so the CPU

can perform an address calculation while the FPU performs a floating point

calculation. This improves the performance in real time applications which

access arrays heavily.

2.8 Floating point unit design

The floating point unit contains a fast normalizing shifter. Multiplication is

performed three-bits per cycle, and division is performed two-bits per cycle.

19

Block diagram of floating point unit

Figure 2.5: Floating point unit block diagram

Figure 2.5 shows the block diagram of the FPU.

The data paths contain registers and shift paths. The fraction data path

is 59 bits wide, and the exponent data path is 13 bits wide. The normalizing

shifter interfaces to both the fractibn data path and the exponent data path.

This is because the data to be shifted will come from the fraction data path

while the magnitude of the shift is associated with the exponent data path.

2.9 Graphics capability

The fast block move instructions of the occam make transputers efficient in

graphics applications using byte-per-pixel color displays. The block move on

the transputer is designed to saturate the memory bandwidth, moving any

number of bytes from any byte boundary in memory to any other byte bound-

ary using the smallest possible number of word read and write operations. The

instructions for the graphics achieve the speed of the simple move instruction,

enabling a 1 million pixel screen to be drawn many times per second.

20

Chapter 3

Hardware design considerations

3.1 Designing with the IMS T800 memory
interface

The IMS T800 has a configurable memory interface and allows easy interfac-8
ing of a variety of memory types with a minimum of extra components. The

interface directly supports DRAMs, SRAMs, ROMs and memory mapped pe-

ripherals [9].

The transputer has a 32-bit multiplexed bus for data and address with a

linear address space of 4 Gbytes. The interface connections include four byte

write strobes, a read strobe, a refresh strobe, five configurable strobes, a wait

input, a memory configuration input, a bus request input and a bus grant

output. Figure 3.1 shows the inputs and outputs associated with the memory

interface. With this flexible arrangement, a variety of memory timing controls

can be obtained with little external hardware.

All RAM appears to the IMS T800 as 232 bytes mapped as 32 bit words

21

Figure 3.1: Memory interface

in a linear signed address space. Addresses run from $80000000 through

$FFFFFFFF to $7FFFFFFF. But the occam map starts at $0 and is or-

ganized as words. The T800 has MemStart at $80000070 and the start of

external memory at $80001000 [1].

As shown in Figure 3.2, the T800 has 4Kbytes of on-chip RAM at addresses

$80000000 to $80000FFF. Therefore, the memory space from $80000000 to

$FFFFFFFF can be used for RAM and $00000000 to $7FFFFFFF for ROM

and I/O.

3.1.1 Memory interface timing

The memory interface cycle has six timing states, called Tstates. The Tstates

have the functions described in table 3.1. The duration of each state can be

22

Figure 3.2: T800 memory map

Tstate Description

T1 address setup time before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristate/write cycle data setup
T4 extended for wait states
T5 read or write data
T6 end tristate/data hold

Table 3.1: Tstates of memory cycle

23

configured according to the memory devices used and can be from one to four

Tm periods. One Tm period is half the processor cycle time, i.e., half the

period of ProcClockOut. T4 can be extended by adding wait states in the

form of additional Tms. AO and Al are not output with the rest of the address.

During a write cycle, byte and half-word (16 bit data) addressing are achieved

by the four write byte strobes (notMemWrB); only the write byte strobes

corresponding to the bytes to be written are active. During a read cycle, this

is achieved by internally selecting the bytes to be read.

Thus the two lowest order address lines are not needed. The two lowest

order data lines are not multiplexed with address lines but, during the address

period, are used to give early indication of the type of cycle which will follow:

MemnotWrDO is low during T1, and T2 of a write cycle.

MemnotRfD1 is low during T1 and T2 of a refresh cycle.

The use of the strobes notMemSO to notMemS4 depend upon the memory

system. The rising edge of notMemS1 and the falling edges of notMemS2 to

notMemS4 can be configured to occur from 1 to 31 Tm periods after the start

of T2. This is summarized in figure 3.3.

It should be noted that the use of wait states can advance the rising edge of

notMemS1 in relation to that of other strobes; care must be taken if this signal

is being used for RAS (Row Address Strobe input on the dynamic RAMs)

driving DRAMs for which RAS must not be removed before CAS (Column

Address Strobe input on the dynamic RAMs).

24

Figure 3.3: The configurable strobes

3.1.2 Early and late write.

The notMemWrB strobes can be configured to fall either at the beginning of

T3 (early write) or at the beginning of T6. Early write gives a longer set up

time for the write strobe but data is only valid on the rising edge of the pulse.

For late write, data is also valid on the falling edge of the strobe but the pulse

is shorter.

3.1.3 Refresh

The T800 has an on-chip refresh controller and 10 bit refresh address counter

and can, therefore, refresh DRAMs of up to 4Mbit capacity without requiring

• the counter to be extended externally.

Refresh can be configured to be either enabled or disabled. If enabled, the

25

refresh interval can be configured to be 18, 36, 54 or 72 ClockIn periods; if a

refresh cycle is due, the current memory cycle is always completed first. The

time between refresh cycles is thus almost independent of the transputer speed

and the length of memory cycles.

Refresh cycles are flagged by notMemRf going low before Ti and remain-

' ing low until the end of T6. Refresh is also indicated by MemnotRittl going

low during T1 and T2 with the same timing as address signals. The address

output during refresh is:

ADO = MemnotWrDO high
AD1 = MemnotRfDl low, to indicate refresh
AD2 - AD11 refresh address
AD12 - AD30 high
AD31 low

During the refresh cycles, the strobes notMemSO - notMemS4 are gen-

erated as normal.

3.1.4 Wait states and extra cycles

Memory cycles can be extended by wait states. MemWait is sampled close

to the failing edge of ProcClok-Out, prior to, but not at, the end of T4. If

it is high, T4 is extended by additional Tms. Wait states are added for as

long as MemWait is held high, T5 proceeds when MemWait is low. Note

that the internal logic of the memory interface ensures that, if wait states are

inserted, T5 always begins on a rising edge of ProcClockOut: so the number

of wait states inserted will be either always odd or always even, depending on

26

the memory configuration being used.

Every memory interface cycle must consist of a number of complete cycles

of ProClockOut: i.e. it must consist of an even number of Tms. If there are

an odd number of Tm periods up to and including T6, an extra Tm will be

inserted after T6.

3.1.5 Setting the memory interface configuration

A memory interface configuration is specified by a 36 bit word and is fixed at

reset time. The T800 has a selection of 13 pre-programmed configurations. If

'none of these is suitable, a different configuration can be selected by supplying

the complement of the configuration word to the T800s MemConfig input

immediately following reset [9]. •

A pre-programmed configuration is selected by connecting MemConfig to

MemnotWrDO, MemnotRfD1, MemAD2-MemAD11 or MemAD31.

Immediately after reset, the T800 takes all of the data lines high and then, be-

ginning with MemnotWrDO, they are taken low in sequence. If MemConfig

goes low when the T800 pulls a particular data line low, the memory inter-

face configuration associated with the data line is used. If, during the scan,

MemConfig is held low until MemnotWrDO goes low, or is connected to

MemAD31, the slowest memory configuration is used.

After scanning the data lines as described above, the T800 performs 36

read cycles from locations $7FFFFF6C, S7FFFFF70 — $7FFFFFF8. No data

is latched off the data bus but, if MemConfig is held low until MemWrDO is

27

taken low, each read cycle latches one bit of the (inverted) configuration word

on Memconfig. Thus, a memory configuration can be supplied by external

logic.

Using a pre-programmed configuration has the advantage of requiring no

external components: only a connection from MemConfig to the appropri-

'ate data line. However, selecting an external configuration can also be very

economical in component use. If the transputer is booting from ROM, the

ROM must occupy the top of the address space. One bit of the memory con-

figuration word can be stored in each of the 36 addresses mentioned above

and the only additional hardware required is an inverter connecting the ap-

propriate data line (usually MemnotWrDO) to MemConfig. Memconfig

is thus held low until MemnotWrDO. goes low and is fed with the inverse of

the configuration word during the 36 read cycles. Alternatively, the inverted

configuration word can be generated from A2-A7 by one sum term of a PAL

(Programmable Array Logic).

3.2 Basic considerations in memory design

3.2.1 Minimum memory interface cycle time

The minimum number of processor clock cycles for an external memory access

is 3, which occurs when all Tstates are 1 Tm. With a 50 nsec cycle time, this

will be 150 nsec.

The most important DRAM parameters to be considered at the start of a

memory design are the access and cycle times and the RAS precharge time.

28

NEC uPD41256 NEC uP41256-12 Hitachi HM51256-10

Access time 150ns 120ns 100ns
cycle time 260ns 220ns 180ns
RAS precharge 100ns 90ns 70ns

NMB AAA2800-150 AAA2800-80

Access time 150ns 80ns
cycle time 246ns 151ns
RAS precharge 90ns 65ns

Table 3.2: Parameters for typical Dynamic RAMs

These will be a guide to the fastest timing possible, which is generally a good

starting point. Typical values of these times are shown in Table 3.2.

Higher density devices require longer RAS precharge times but, if the mem-

ory does not require RAS to remain low until the end of the memory cycle, it

can be taken high before the cycle ends.

3.3 Debugging memory systems

3.3.1 Peeking and poking

Transputers can be booted from ROM (BootFromROM to Vcc) or from link

(BootFromROM to ground). When booting from a link, a header byte is

expected; if it is in the range 2-255 it should be followed by that number of

bytes. These will be placed in memory starting at MemStart ($80000070)

29

and execution will then be transferred to this address. The code executes at

low priority and its work space is located immediately above itself. Usually,

this code will be a loader, to load the user's program into this transputer and

any others, if it is a part of a network.

If the header byte is 0, a 'poke' operation will take place. The 0 byte should

be followed by a 4 byte address (AAAA) and 4 bytes of data (DDDD) to be

placed at that address:

input: header=0, then A AA A D D D D

If the header byte is a 1, a `peek' operation will take place. The 1 byte

hould be followed by a 4 byte address (AAAA). The transputer will then

output, on the same link, 4 bytes of data (DDDD) read from that address:

input: header=i, then A A. A A

output: DDDD

After both the peek and poke operations, the transputer reverts to await-

ing a new header (which could initiate another peek or poke). So, if we have

another transputer, it is posssible to test the hardware by poking to the trans-

puter under test to place data in the internal or external memory, and then

peeking to read the data back and compare it.

3.4 Connecting INMOS links

3.4.1 Introduction

The INMOS link is fundamental to the concept of the transputer and of occam.

A link is the hardware implementation of an occam channel; each bidirectional

30

link provides a pair of occam channels, one in each direction. A link provides

serial data communication between two transputer family devices at speeds

up to 20Mbits/s [4].

A link between two transputers is implemented by connecting a link in-

terface on one transputer product to a link interface on the other transputer

product by two unidirectional signal lines. Each signal line carries data and

control information.

Communication through a link involves a simple protocol. This provides

the synchronized communication of occam. The use of a protocol providing for

the transmission of an arbitrary sequence of bytes allows transputer products

of different word length to be connected together.

Electrically, link signals are TTL compatible and as such are a simple means

of communication over short distances (< 0.3 meters). Links are designed for

local communication. However, it is possible to use them over longer distances

although a little more consideraation is needed to ensure reliable operation.

3.4.2 Link operation

An INMOS link between two transputer products consists of two unidirectional

signal lines connected to the link interface on each transputer family device,

providing point-to-point serial communication, as shown in figure 3.4.

Communication across a link involves a simple protocol. Each message is

transmitted as a sequence of single byte communications, requiring only the

presence of a single byte buffer in the receiving transputer to ensure that no

31

'information is lost.

After transmitting a data byte, the sender waits until an acknowledge is

received. This consists of a start bit folowed by a zero bit. The acknowledge

signifies both that a process was able to receive the acknowledged byte, and

that the receiving link can receive another byte.

Data bytes and acknowledges may be multiplexed down each signal line

during duplex communication. In once implementation of the link acknowl-

edges are output on receipt of the full eleven bits of the data packet. The link

implementation of the T800 allows ovelapped acknowledges. In this imple-

mentation, the acknowledge may be sent immediately on receipt of the start

bit and the 'data is to follow' bit, allowing continuous data transmission with

no delays between data packets.

3.4.3 Electrical Considerations

Links may be connected very simply over short distances. No engineering is re-

quired other than a direct wire connection between LinkOut of one transputer

and LinkIn of another. The connection may consist of tracks on a printed

circuit board, or a cable.

32

Over greater distances, certain parameters of the interconnection medium

must be taken into account:

• Transmission line effects

• Noise and crosstalk

• Line attenuation

• Pulse dispersion

• Skew

• Propagation delay

A further consideration that applfes to all link connections is protection of

the link interface from electrostatic discharge.

INMOS links are designed to transmit serial data between transputer fam-

ily devices at speeds up to 20Mbits/s. The signals are TTL compatible and as

such are suitable for transmitting data over short distances (up to 30cm) with

no engineering except a simple wire connection. Though transmrnission line

effects come into play at longer distances, we shall not be interested in them.

33

Chapter 4

Distributed graphics display

4.1 System performance

In many graphics systems, the system performance is reduced by its design

aspects. To overcome these performapce problems, many systems use custom

built hardware, thereby increasing the cost and reducing flexibility.

The solution to these problems calls for a general purpose graphics system

with several requirements, as described below:

• Compute performance: Any required compute performance desired

by the user for his application.

s Drawing performance: Any required drawing performance desired by

the user for a given application.

• Display access: The display scanning must have separate access to the

frame store to remove the conflict between the processor and the display

scanning hardware.

34

• Display resolution and color depth: Any required display resolution

and color depth.

• Display drivers: Any required speed of display output. For instance,

very high speed device technology may be necessary for a very high

resolution display.

4.2 Parallel graphics system

4.2.1 Introduction

Parallel graphics system addresses the problems discussed in the above sec-

6 tion. To provide any desired performance requires that the processing task

be divided into smaller subtasks and as many processors that are necessary

to provide the appropriate performance be used. This allows a system to be

built to achieve any drawing bandwidth, with any compute performance. So

the problem now is that of distribution and its implementation.

The following are a few methods for distributing processing tasks.

Spatial: The display is broken up into a number of tiles. Each tile is dis-

tributed to a different processor or a group of processors. Figure 4.1 illustrates

the spatial distribution.

Chronological: This method distributes the entire display to all proces-

sors in the system, but only one will display all its data at any one time.

Each frame of the display is produced by a processor or a group of processors.

Figure 4.2 shows how this distribution is done.

35

Figure 4.3: Objective distribution

36

Figure 4.4: Characteristic distribution

Objective: This method distributes different objects in a scene to different

processors. This is illustrated in figure 4.3.

, Characteristic: This method distributes characteristics of the scene, such

as color, to different processors. This is illustrated in figure 4.4.

4.2.2 Transputer modules .(TRAMs)

Transputer Modules or TRAMs are subassemblies of transputers, a few dis-

crete components, and sometimes some RAM and/or application specific cir-

cuitry. All TRAMs:

• Have a standard interface using serial links

• Have a standard pinout

• Have standard sizes

• Are designed to a published specification

These TRAM standards make it very simple for users to build customized

TRAMs or motherboards with sockets for TRAMs. The TRAM pinout stan-

37

dard is independent of:

• Transputer type

• Number of transputers

• Word length of transputer

• Speed of transputer

• Function of the module

• Memory size

• Package

• Implementation (PCB, hybrid, silicon, etc.)

4.2.3 Graphics TRAMs

If the graphical display processors are implemented as modular transputer

compute elements, each with transputer, memory and logic to implement spe-

cial functions, the problem of designing a distributed graphics system becomes

much simpler.

To provide the distributed frame store requirements and any display output

type, two different TRAMs are necessary.

Serial port TRAM: This contains an IMS T800 and all the logic neces-

sary for a complete frame store. It can be connected to other identical TRAMs

so that distribution of the frame store becomes a matter of simple replication

38

of this TRAM. This is known as the serial port TRAM because of the serial

nature of the output data.

Display backend driver TRAM: This contains all the logic necessary

to drive a particular display type. This TRAM interfaces directly to, and

receives its high speed data from, the serial port TRAM. This TRAM will be

known as the Display Backend TRAM.

Separation of frame store scanning from the processor address and data

bus is achieved on the serial port TRAM using video RAMs. Video RAMs

have a separate serial port for video data. This allows the frame buffer to be

scanned in a serial fashion without causing significant loss of processor access

to the RAM, relieving the arbitration problems associated with conventional

RAMs.

The serial port TRAM supplies a continuous stream of high speed serial

data from the frame store. The Display Backend can drive display monitors

using this stream of data in a variety of display modes. These TRAMs are

connected together by a 60 way ribbon cable, which contains a control bus

and a distributed data bus. All serial port TRAMs in the system connect in

parallel to this cable. This is illustrated in figure 4.5.

4.3 Serial port TRAM

4.3.1 Introduction

The serial port TRAM consists of:

A transputer: An IMS T800, which maintains the frame store.

39

Figure 4.5: Connecting graphic TRAMS

Memory: The standard serial port TRAM contains a total of 2.25 Mbytes

of 4 cycle dynamic RAM. Of this 1Mbyte is standard dynamic RAM and 1.25

Mbytes is video RAM.

Video RAM address generator: This controls the VRAM (Video RAM)

serial port addressing. It is in turn controlled by the distributed control bus.
8

Serial bus interface: This is the distributed serial data and control bus

interface. It connects the distributed control bus to the various timing com-

ponents on the TRAM and the VRAM serial data to the distributed data

bus.

Figure 4.6 shows the block diagram of the serial port TRAM, outlining

some of the blocks described above.

The serial port TRAM can be considered as a transputer with memory,

some of which is dual ported video RAM. The VRAM has a serial and a

random access port to the frame store. These two ports can be considered as

separate entities.

•

40

Figure 4.6: Serial port TRAM block diagram

Memory map

From figure 4.7 we see that the video RAM is placed as an extension to the

workspace RAM, so that, should the need arise the video RAM can be used
•

as extra workspace RAM.

The video RAM is mapped twice into the decoded memory map so that the

special logic modes (marked Logic Mode) used in some video RAMs, which

need special interfacing cycling, can be used. These special logic modes can

be set by writing data to the area of store reserved for this purpose (marked

Logic Set). Registers which control the serial port addressing and frame

synchronization are mapped into the positive address space (marked System

Control).

Frame store addressing and the video RAM

The serial port TRAMs frame store is designed around the packed pixel archi-

tecture. There are two addressing schemes that can be used with video RAMs

41

Figure 4.7: Memory map

when using packed pixel architecture..

Memory relative: Data is placed into the frame store with addressing

related to the physical addressing of the video RAM. Put simply, the VRAM

row and column addresses have a direct relationship with the frame stores X

and Y coordinates, but the display can have a different horizontal dimension

than the frame store. The maximum width of display is the size of the dual

port buffer in the VRAM, i.e., 1024 eight bit pixels.

Display relative: The VRAM row and column addressing have no direct

relationship to the frame stores X and Y coordinates. Instead the frame store

addressing and the visible display have the same horizontal dimension. This

scheme needs the video RAM real time data transfer mechanism, which allows

the display horizontal dimension to be longer than the VRAM dual port buffer,

42

i.e., longer than 1024 eight bit pixels.

The serial port TRAM normally uses the display relative addressing scheme.

When interlace is used, which can be set at initialization, it is switched into

memory relative mode, and the frame store has a fixed horizontal dimension of

1024 bytes. These methods reduce the logic necessary to construct the address

generator.

Pixel mappings

The video RAM can be used for various pixel types and screen sizes. The usage

of the frame store entirely depends, upon the user software and the backend

display TRAM. The following mappings can be the most efficient ones:

8 bit packed pixels: Pixels mapped as bytes, four pixels per word. This

allows 256 colors per pixel with a maximum of 1,310,720 pixels. This can be

used for high resolution CAD, i.e., one serial port module can produce a 1280

by 1024 by 8 bit display, with an appropriate display backend.

32 bit packed pixels: Pixels can be mapped as 32 bit words, allowing a

maximum of 232 colors per pixel. One serial port TRAM can have a total of

327,680 pixels. Applications include any system that needs real color displays.

The method of mapping the frame store to the processor can have a pro-

found effect on the performance of the graphical operations a single IMS T800

can achieve. To achieve most efficient use of the IMS T800 performance, pix-

els should be mapped as either bytes or 32 bit word data types as this takes

advantage of the IMS T800s internal datapath representation.

43

Double buffered frame store addressing

It is useful, when maximizing performance in some graphic applications such

as animation, to have at least two displays mapped onto the frame store. This

allows one to be displayed while another is being updated.

To facilitate this, the address of the first pixel at the top left of the display

can be preset. This address presetting allows the display to be flipped to

alternate areas of the frame store. Flipping the display during frame flyback

allows complete frames to be drawn before being displayed. The transputer

can be informed of the state of the frame flyback condition so as to synchronize

the frame flip to the frame flyback period.

Frame store distribution

The method of frame store distribution can have dramatic effects upon the

design of the hardware to implement it. For the special port TRAM the

design rests on the specification of the distributed data bus, which consists of

a synchronous (clocked) inverted open-collector bus.

The open-collector arrangement allows any serial port TRAM to output

data onto the bus at any time without fear of bus contention. This removes

any need for any bus arbitration logic, and hence allows arbitrary distribution

of screen space among an arbitrary number of serial port TRAMs. Each serial

port TRAM has enough memory to be able to address any pixel of the display.

Since all serial port TRAMs are synchronized, any one of them can alter the

pixel data entry presently on the distributed data bus. If any serial port TRAM

44

is not responsible for any particular pixel, it simply writes a null (zero) into

that location in the frame store.

This distribution technique is simple, and provides the spatial and charac-

teristic distribution methods described earlier. To further enhance the flexibil-

ity of this, an output enable control bit is mapped into the IMS T800 address

space. Any serial port TRAM output can be switched off completely. This

provides the chronological distribution method.

4.3.2 Random access port

Memory cycles

The serial port TRAM has eight different types of memory access:

Internal read/write: This cycleeis the fastest. It is internal to the IMS

T800 and lasts for a single cycle (50ns on the 20 Mhz transputers).

External read/write: This cycle is the basic external memory cycle. It

lasts for four processor cycles (200ns) and consists of a conventional dynamic

RAM multiplexed addressed cycle.

Refresh: This is a CAS (Column Address Strobe) before RAS (Row Ad-

dress Strobe) refresh cycle due to an addressing complication of the video

RAMs.

Video update: This cycle is controlled by the video update logic. It

allows the video RAM serial port to be updated. The video logic proceeds

after gaining control of the data and multiplexed address buses and cycles

the video RAM with a serial port update cycle. This cycle only happens

45

infrequently, when data in the serial port is about to run out of data.

Logic operation set: The logic operation unit available in some video

RAMs is activated using a CAS before RAS write cycle. The logic mode

remains set until a Reset Logic Mode or another Logic Operation Set Mode is

issued.

Logic operation: The Logic Operation cycle is a conventional RAS-CAS

cycle but is six cycles long. This cycle needs a special extended RAS pulse,

which is generated from a combination of the interface strobes notMemS1,

notMemS2 and notMemS4. This cycle is forced to six cycles using the

notMemS4 strobe fed back into the Wait input of the IMS T800. This is

done as a function of the addressing, and is controlled by programmable array

logic.

Serial port control logic: This cycle allows the transputer to access the

serial port control logic. All RAMs are disabled in this cycle.

Configuration: The configuration sequence is a conventional external

read cycle that is used only after the transputer has just been reset. The

configuration data is generated from the configuration PAL using the six least

significant unlatched address bits. The configuration data is then latched into

a single bit of the decode address latch to hold the data until the end of the

cycle.

46

Figure 4.8: Multiplex arrangements with dynamic RAMs

Address latches and multiplexing

Due to the multiplexed address-data bus of the IMS T800 the addresses are

only available at the beginning of the external memory cycle. The addresses

have to be demultiplexed from the data. This is done using the transputer

strobe notMemSO driving the latch enable inputs of two ten bit transparent

latches. The latches used are high speed CMOS, as these have low propagation

delays and have high output drive. Figure 4.8 shows the arrangements.

Due to the multiplexed address bus used with dynamic RAMs, the now

demultiplexed transputer addresses have to be multiplexed onto the RAM

address bus. To achieve this the output enables of the address latches are

controlled from a high speed PAL. The outputs from two latches are connected

together.

This control is a function of the transputer memory interface strobes not-

47

MemS2 and MemGranted. MemGranted is used because the video logic

needs to drive the multiplexed address bus during a video update and therefore

the multiplexer outputs have to be turned off completely.

Decoding

The top address bits, AD31, AD23-18 and the Configuration data are latched

into a separate eight bit transparent latch. These address bits are used for

decoding.

The RAM is arranged as:

• A single bank of general workspace RAM arranged as eight 256 Kbit by

4 RAMs.

• Five banks of eight 64 Kbit by 4 (256 Kbit) video RAMs.

The high speed PAL that controls the operation of the address multiplexer

also generates four RAS strobes, one for the workspace RAM and three for the

video RAM. Pairs of video RAM banks share RAS strobes. The last VRAM

bank and the workspace RAM have their own RAS strobe.

The CAS strobes are supplied from another high speed PAL. This essen-

tially is the RAM decoder, having six separate CAS strobes. The' decoding is

a function of the latched addresses A20-18, A31 and the Option input. The

CAS strobes are timed for notMemS3 on an External Read/Write cycle.

48

Figure 4.9: Serial interface block diagram

4.3.3 Serial access port

At the heart of the distributed frame store are two clocks which are syn-

chronous. Both clocks are distributed to all serial port TRAMs in the system.

One is known as the sequencer cloctc and the other is known as the VRAM

clock. The VRAM clock is stoppable and is controlled by the display TRAM.

It is switched off just before the start of, and switched on just before the end

of, the horizontal blanking period. Figure 4.9 shows the block diagram of the

interface.

The serial port is built from several distinct groups of logic all synchronized

to the previously mentioned clocks:

• The address generator: This generates the new serial address for the

VRAM during a serial port update. The address generator has tri-state

bus drivers connected to the multiplexed address bus of the VRAM.

• Address sequencer: This orchestrates control of the address generator

49

during the update of the serial port. The address sequencer takes over

from the transputers memory interface and then cycles the VRAM in a

data transfer cycle.

• Pixel counter: This starts the sequencer when serial data in the VRAM

is about to run out. It is simply a counter that counts the data read

out from the serial port, which resets itself immediately after the update

occurs.

s Serial bus interface: This is the interface to the distributed data and

control bus. This interface is clocked using the sequencer clock.

Address generator

The address generator is used when a video update cycle has been initiated. It

provides 19 address bits, some of which are presented to the VRAM during a

serial port update cycle and some of which are used as decode selectors. These

addresses only form the start address for the serial data; subsequent data is

accessed by clocking the VRAM. The scheme is illustrated in figure 4.10.

The lower eight bits of the address are fixed but are presettable. This forms

the column address to the VRAM during the update cycle. This determines

which data appears at the VRAM serial output after the .VRAM has been

up dated.

The next 11 address bits are generated from a preloadable counter that

increments just after every update cycle. This address points to the first

50

Figure 4.10: Address generation scheme

' VRAM row to be accessed after each new frame is started. The lower eight

bits from this form the row addresses in the VRAM during the update cycle. •
The top three bits of the counter are used to control the serial output enables

of the five banks of VRAM, as shown in figure 4.10. There is no decoding on

the update cycle, i.e., all VRAMs are updated at the same time.

The top five bits in the counter are preloaded from a five bit register which

the user can preset so that the display can start from various addresses of the

video RAM.

Address sequencer

This logic interfaces the address generator to the VRAM and determines the

timing of the serial update control strobes. It arbitrates this update cycle

between the address generator and the IMS T800's memory interface logic.

The sequencer is designed to update the serial port without interrupting

51

the pixel stream. To do this the pixel counter informs the sequencer that the

serial data is about to run out. The entire sequencer operation lasts for 31

sequencer clock periods and new data appears at the VRAM serial output

after 30 sequencer clock periods.

The sequencer requests the VRAM address bus by asserting MemReq.

When MemGranted is asserted by the transputer, the sequencer cycles the

VRAM in a serial port update cycle. This cycle updates the serial port via the

random port when the VRAM strobe DT/OE is brought high synchronized

with the VRAM serial clock.

C
Pixel counter

The serial port of the VRAM wraps around after 256 clocks. It therefore needs

reloading every 256 VRAM clock cycles if data is not to be redisplayed. To

implement this, the pixel counter signals to the sequencer when the end of

serial data is about to occur. This end of data signal knows that the update

will occur 30 clock periods later, so it signals the sequencer early.

A slight complication of the sequencer operation concerns the line flyback

period. The sequencer must finish its operation before line flyback occurs,

otherwise data destined for the start of the next line will be lost. The pixel

counter will not cause an update to occur if an end of line is due, so that

the update cannot occur during the line flyback period. The timing of this is

critical, as the data which finds its way to the display is pipelined twice before

getting to the display. This means the pipeline must be precharged with data

52

before the display line starts and emptied before the line ends. To this end,

the VRAM clock is turned on two clock periods before the start of the line

and switched off two clocks before the end of the line.

Distributed control

The serial port TRAM is designed to function as part of a distributed graphics

system. For this reason the control necessary to drive the distributed data bus

has to be common to all serial port TRAMs in the system. All clocking and

control strobes are distributed using parallel terminated transmission lines.

The transmission lines are driven at the source using high speed CMOS

logic with high output drive capability. This is terminated with a resistor to

ground equal to the characteristic ithpedance of the transmission cable. All

control inputs to the serial port TRAM are short wire stubs which offer little

disturbance to the transmission line.

4.4 Display TRAM

4.4.1 Introduction

All display TRAMs have a generic architecture. Figure 4.11 shows the block

diagram of the display backed TRAM architecture. It is neither practical nor

cost efficient to design a system that is capable of any graphical display output.

This particaular display TRAM has been designed so that it can be used in a

variety of applications.

The Display Backend TRAM consists of:

53

Figure 4.11: Display TRAMS

A transputer link: Communication to this module via at least one IN-

MOS link, as a processor may not be necessary as it is used only for control
8

and initialization of the backend hardware.

Video system clock generator: This provides the video system clock.

The video system is timed from this clock.

A video timing generator: From this, all synchronization and system

control is derived.

Serial control and data bus interface: This drives the distributed

serial control bus and takes data from the distributed data bus.

Application specific display hardware: This hardware produces the

application specific output derived from the 32 bit input data.

The display TRAM designed for this system has:
•

e A transputer: The transputer used is the T212. It is used here as a

54

logic controller to initialize the video timing logic, color look up tables

and the mode selection.

• Distributed control bus interface: This consists of a few transmis-

sion line drivers, distributing the control signals to all the serial port

TRAMs.

• Video clocks and timing generator: The pixel clocks and video tim-

ing generation used to synchronize all serial port TRAMs are controlled

by the display TRAM.

• Three pixel channels: Each display channel converts 32 bits of in-

put data from three distributed data bus inputs into the analog control
.

signals to drive standard display monitors.

Pixel channels

The display TRAM consists of three independent 8 bit pixel channels, all with

common clock and video timing generators. These are depicted in figure 4.12.

Each channel has:

• Premultiplexer: An eight bit premultiplexer which chooses between

eight bits of data from channel 0 or channel 1 and eight bits of data

from channel 0 or channel 2. This then maps 24 input bits of channel 0

onto the lowest eight bits of channels 0, 1 and 2.

• Input latch: Distributed data bus 32 bit input latch.

55

Figure 4.12: Pixel channels

• • Multiplexer: 32 bit input 4 to 1 multiplexer.

• CLUT: 256 location color lookup table.

Display modes

There are three modes that the display TRAM is designed to operate in. They

are: •

• 8 bit mode: This mode treats the 32 bit pixel data entering the display

TRAM as four 8 bit pixel values. This data is multiplexed to the color

lookup table. All three pixel channels operate seperately sharing only

the distributed control. This is illustrated in figure 4.13.

• Low resolution 24 bit mode: This mode treats the 32 bit pixel data

entering the display TRAM as a single 32 bit word of pixel data. The

top 8 bits are not used, leaving the lower 24 bits as pixel data. The three

pixel channels contribute to the display, one channel per primary color

as shown in Figure 4.14.

56

Figure 4.13: 8 bit mode

The 24 bit mode has a diffeient clocking arrangement. Since data is

being displayed at the same clock speed (pixel clock) but four times
•

as much data is being used by the display, the input clock speed must

be increased, i.e., pixel clock runs at the same speed as the pixel bus.

The mode selection can change the clocking arrangements to suit these

modes.

• High resolution 24 bit mode: This mode is similar to the 8 bit mode,

except all three channels are used to provide each of the primary colors

as shown in Figure 4.15.

57

Figure 4.15: High resolution 24 bit mode

58

4.5 System configuration

4.5.1 Driving the frame store

The serial port TRAM can be used in a varied and non-specific manner, but

the techniques fall into several distinct classes.

• Data generator: The serial port TRAM receives high level graphical

commands from another TRAM and satisfies these commands by gen-

erating the drawing data into the frame store. The serial port TRAM

becomes a programmable graphical drawing engine.

• Data sink: No graphical tasks are executed on the serial port TRAM.

The serial port TRAM acts purely as a data sink, receiving data from the

serial links and placing this datZ directly into the frame store. The frame

store data is generated elsewhere on other TRAMs with transputers or

specific hardware.

• Data generator and sink: A mixture of both the above methods.

The performance of the above techniques can be improved by adding more

Serial Port TRAMs and distributing the drawing tasks appropriately, thus

improving the effective drawing speed or the total serial link bandwidth into

the frame store.

4.5.2 Frame store configurations

Using a combination of serial port TRAMs and the display TRAMs many

system configurations can be constructed.

59

Minimal 8-bit display system: The minimal system consists of a single

serial port TRAM and is connected as shown in figure 4.5. This minimal

system provides all that is necessary for an 8-bit pixel (256 color) graphic

display, to a maximum of 1280 by 1024 pixels.

Distributed 8-bit display system: Figure 4.5 shows a distributed 8-bit

graphic display system. This distribution provides increased drawing speed

and transputer link bandwidth into the frame store.

Minimal low resolution 24 bit display system: The system in figure

4.5 can also be used as a low resolution (maximum of 327,680 pixels) 32 bit

pixel system. The display TRAMs.premultiplexer is used in this configuration

and provides a maximum of 24 bits of output color (8 bits per primary). Each

pixel channel is used as a single primary color output.

Distributed low resolution 24 bit display system: The display TRAM

in figure 4.5 is set into 24 bit mode as above, but this system provides increased

possible drawing and link bandwidth into the frame store as in the distributed

8 bit system, but with more colors.

High resolution 24 bit display system: This system is essentially three

separate 8 bit systems. The system is depicted in figure 4.16. This method

separates the red, green and blue components into three 8 bit high resolution

display channels as in the 8 bit system. It has all the characteristics of the 8

bit system but each of the three pixel channels on the display TRAM operate

independently to provide a primary color as in the low resolution 24 bit system.

60

Figure 4.16: High resolution 24 bit display

High resolution distributed 24 bit dislay system: This system is

similar to the above described 24 a bit system except that each 8 bit pixel

channel is distributed in the same way as the 8 bit system.

61

Chapter 5

Conclusions

This thesis focused on the problems of graphic systems and how they can be

resolved using transputers. The needs of a flexible general purpose graphics

system with efficient computing performance, drawing performance, etc., were

addressed by distribution of the task to several transputers.

It has been shown that the performance of the frame store can be increased

using video RAMs instead of using special hardware which makes it special

purpose. The flexibility and efficiency in frame store is obtained by mapping

the display data directly onto the transputer's address map by the video RAM.

The problems of single processor bus bottlenecks have also been discussed.

It is shown how the bottlenecks can be removed by distributing the frame

store, and how this distribution is efficient with transputers.

The large amount of processing necessary to perform typical graphical op-

erations cannot be handled efficiently by single processor systems and hence

they are slowed down. It is necessary to divide and distribute the processing

task as smaller and more manageable tasks in high performance systems. The

62

control and complexity of such a system is considerably reduced using trans-

puters for processing the distributed tasks, and the distribution of the frame

store adds to the efficiency by providing a convenient interface to the display.

Once the distribution has been designed and achieved, the task of increasing

the system performance is a mere addition of transputers into the system, at

the display interface or at the processing end and the system can be run with

any desired performance.

The system designed can be easily implemented. The implementation of

the system and analysis of the performance measures can be an interesting

extension of this thesis. The system performance can be evaluated with respect

to the conventional single processing systems. There will be an opportunity

to explore the software side for perfgrmance of the system, since in parallel

systems programming the hardware plays as important a role as designing the

hardware itself.

63

Bibliography

[1] Mark Homewood, David May, David Shepherd and Roger Shepherd. "The
IMS T800 Transputer", IEEE Micro, vol. 7, no. 5, Oct. 1987, pp. 10-26.

[2] Alan Knowles and Todor Kantchev. "Message passing in a transputer
system" Microprocessors and. Microsystems, vol. 13, no. 2, March 1989,
pp. 113-123.

[3] Jean-Daniel Nicoud and Andrew Martin Tyrell. " The Transputer T414
Instruction Set", IEEE Micro, vol. 9, no. 3, June 1989, pp. 60-75.

[4] Richard Taylor. "Transputer communication link" Microprocessors and
Microsystems, vol. 10, no. 4, May 1986, pp. 211-215.

[5] The Transputer Databook, INMOS Limited, 1988.

[6] J. D. Nicoud and P. Schweizer. "Multitransputer graphics system" Mi-
croprocessors and Microsystems, vol. 13, no. 2, March 1989, pp. 88-96.

[7] J. C. Admiraal and C. Pronk. "Distributed store allocation and file man-
agement for transputer networks", Microprocessors and Microsystems,
vol. 14, no. 1, Jan/Feb 1990, pp. 10-15.

[8] Jon Vaughan. "MS-DOS memory resident transputer graphics server",
Microprocessors and Microsystems, vol. 14, no. 2, March 1990, pp. 83-88.

[9] The Transputer Applications Notebook: Systems and Performance, IN-
MOS Limited, 1989.

[10] Peter Croll and George Wilson. "Peripheral handling techniques for the
transputer" Microprocessors and Microsystems, vol. 13, no. 2, March
1989, pp. 124-128. •

[11] Chris Jesshope. "Parallel processing, the transputer and the future" Mi-
croprocessors and Microsystems, vol. 13, no. 1, Jan/Feb 1989, pp. 33-37.

64

[12] John Wenler and Dominic Prior. "Solving problems with transputers:
background and experience" Microprocessors and Microsystems, vol. 13,
no. 2, March 1989, pp. 67-78.

[13] C. H. R. Grimsdale. "Distributed operating system for transputers" Mi-
croprocessors and Microsystems, vol. 13, no. 2, March 1989, pp. 79-87.

[14] Ian Thomas. "Support system for OCCAM objects on transputers" Mi-
croprocessors and Microsystems, vol. 13, no. 2, March 1989, pp. 129-137.

65

	A transputer based distributed graphics display
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Contents (1 of 3)
	Contents (2 of 3)
	Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Transputer Architecture
	Chapter 3: Hardware Design Considerations
	Chapter 4: Distributed Graphics Display
	Chapter 5: Conclusions
	Bibliography

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables

