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Abstract 

Name: Raafat E. Kamel 

Advisor: Dr. Chung H. Lu 

Thesis Title: Max/Min: A Novel Rank Order Based Filter Family 

In the early development of signal and image processing, linear filters were 

the primary tools. Their mathematical simplicity made them easy to design and 

implement. They also offered satisfactory performance in many applications. How-

ever, they show poor performance in other cases, such as image processing. 

Nonlinear filtering offered a solution to these problems. Nonlinear filtering 
m 

has undergone a lot development for a long time. Among the first known nonlinear 

filters was the median filter, which was proposed by Tukey. Median filter preserves 

signal or image details better compared to a linear filter. Later other nonlinear 

filters were developed, including median based filters, rank-order based filter family 

etc. 

A new filter family the Max/Min filter is proposed here. This was studied in 

this thesis and was found to offer better filtering compared to the classical median 

filter together with a reduction in processing time. The filter family has interesting 

operational properties, these were also investigated. Some of these properties are 

unique to the family while others are typical for rank order based filters. The 

statistical and the spectral properties for the filter output were studied with white 

noise input. A number of modifications on the basic filter are also suggested. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

Whenever a signal, such as speech, image or other data, is transmitted over 

a communication medium it undergoes some changes. Some of these are uninten-

tional, like white noise added from the receiver's or the transmitter's electronics. 

Other types of changes may be due to the scheme used in the pre-transmission 

stages e.g. modulation, compression etc. 

Whatever the cause or the source of these alterations might be, the ultimate 

goal of the reception is to recover the original signal. It is these kinds of problems 

that gave rise to what is now known, in the area of signal processing, as signal 

recovery. 

Among the first tools used for signal recovery was the linear filter. Linear 

filters were known for a long time and have a rich literature. Linear systems are 

characterized by the superposition property, which facilitated the study of their 

performance. With the help of the superposition principle the filter's response to a 

signal corrupted with additive noise can be determined by considering the filter's 

response to the signal and noise, each applied separately. The concept of system 

transfer function was also developed for linear filters. The system transfer function 



determines the system's response to different types of excitations. Application of 

system transfer function greatly simplifies sysytem analysis. 

Nevertheless, linear filters were found to be optimal for some but not all ap-

plications. When applied to spiky noise removal in images, which contain complex 

signal structures such as edges, lines etc, linear filters blurred the edges, removed 

the lines and reduced the image sharpness and clarity. 

In the early seventies Tukey [1] suggested median processing as a scheme 

for smoothing out noise while preserving important signal details like edges. The 

nonlinear behavior of the median filter attracted many scholars and has been under 

a lot of research since its early days [2-4]. The research on the median filter led to 

the development of new types of nonlinear filters, typical examples being the rank-

order based filters. These filters proyed to be useful in the task of noise suppression 

and signal recovery. 

A new type of rank-order based titer family is introduced in chapter 2. This 

shares some of the properties with other rank order •based filter. These properties 

together with others, which are unique to the new filter family, are given in chapter 

3. Chapter 4 gives the statistical properties of the new filter family. A model of 

the new filter family is given in chapter 5 together with some modifications on the 

filter family. The conclusions are given in chapter 6. 

Section 1.2 discusses the classical median filter as proposed by Tukey and 

some of its properties and applications. Section 1.3 outlines some of the median-

based filters and section 1.4 discusses the more general rank-order based filter family 

of which the classical median filter is a member. 

1.2 The Median Filter 

The median filter, by definition, outputs the statistical median of a se- 
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quence of input samples inside a window or mask. The length of this sequence 

is known as the window size of the filter. If the input sequence is denoted by 

{ • • • xi_i , xi, xi+i, • • •} and the output sequence by { • • • yi-1, yi, yi+i, • • -}, then for a 

window size 2N + 1 median filter the output sample yi  is given by 

yi  = median (xi-N, • • • , xi, • • • , xi+N) 

The median filter, as defined above has been studied extensively [2-4] and most of 

the filter's properties have been investigated. 

To define the properies of the median filter Thomas A. Nodes et al [4] defined 

the following signal structures: 

• A constant neighborhood is a region of at least N + 1 consecutive points, all 

of which are identically valued,. 

• An edge is a monotonically rising.  or falling set of points surrounded on both 

sides by constant neighborhoods. 

• An impulse is a set of N or less points surrounding regions and whose sur-

rounding regions are identically valued constant neighborhoods. 

• A root is a signal which is not modified by filtering. 

When used for filtering, the median filter was found to suppress impulse 

noise while preserving the signal's edges. Fig. 1.1 shows a noisy signal, the output 

of a size 15 moving average filter and the output of a size 15 median filter. It is 

clear from the figures that the noise suppression of the moving average is more than 

that of the median filter. However, the moving average filter also smeared the edge 

of the signal while the median filter preserved it. 

Repetitive application of the median filter smooths the noise further till 

an invariant signal, the root signal, is produced. Depending on the input signal, 

3 



Figure 1.1: (a) A noisy signal, (b) the output of a size 15 moving average filter and 
(c) the output of a size 15 median filter [9] 

different root signals are produced by the given median filter. As a matter of fact, 

the operation of the median filter can be looked at as the process that maps the 

input signal into the respective root signal. The structure of these signals and the 

rate at which the filter output signal converge to them are given in [5,6]. 

Among the tools which were developed for the analysis and study of median 

filtering is the threshold decomposition. This is used to decompose an m-ary signal 

into a set of binary sequences. Filtering these sequences and then reversing the 

decomposition is equivalent to filtering the original signal [7]. The usefulness of 
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Figure 1.2: Threshold Decomposition [9]. 

the threshold decomposition lies in that the computation of the median for these 

binary sequence reduces to counting the number of l's and comparing that to the 

window size. Fig. 1.2 displays this technique. Threshold decomposition was also 

used to study the spectral properties of the output of the median filter [8]. Further 

discussion of the threshold decomposition is given in appendix B. 

The statistical properties of the median filter are given in [3,9]. It was found that 

in constant neighborhood regions, median filters have low pass characteristics. 

The classical median filter, whose properties were briefly outlined above, 

found a number of useful applications. Rabiner et al used it for smoothing noise 

out of speech [11]. Median filtering was also used in image processing [12] and data 

editing [13]. 

Vigorous research led to the development many of new nonlinear filter struc-

tures. Stating the names and definitions of these is not feasible in this short intro-

duction. Section 1.3 will give some typical examples. 
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1.3 Median Based Filters 

A typical example of a median based filter is the recursive median filter, in 

which the output of previous samples are fedback into the current window. Using 

the above notation, the output yi of the recursive median filter is given by, 

yi =median ( ‘Yi-N7Yi-N-1)' • • , yi-1, xi, xi-}-1, • • • 7 Xi+N) 

The recursive median filter achieves a greater degree of noise smoothing compared 

to the classical one. It also generates its root signal after a single pass [4]. 

Median-based filtering was also applied to multi-dimensional applications 

such as image processing. An example of this is the separable median filter [14]. 

This is a two dimensional filter which uses one dimensional median filter along 

the rows of the image and then along its columns. The separable median filter 

is not identical to the two dimensional non-separable median filter [12], but gives 
• 

comparable results in the smoothing of spiky image noise and edge preserving. On 

the other hand the separable median filter is simpler from the point of view of 

computation and implemention. 

A third example of median-based filter is the selective median filter which 

was proposed by S.J. Ko et al [15]. This filter uses two internal windows beside 

the traditional one. One of these windows is oriented to the left of the output 

sample and the other to the right of it. The selective median filter computes the 

medians of the samples in each of the two windows and compares these with the 

mid sample. It then outputs the median with the smaller absolute difference from 

the mid sample. Using the above notation, the output sample yi is given by 

where, M1  (N) = median (xi_N, • • • , xi-1) and, M2(N) = median (xj+1, • • • , Xi+N) 

with N being an odd integer. 
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The selective median filter was found to be computational economical com-

pared to the classical median filter. In addition it is more effective in enhancing 

edges and suppressing noise. The selective median filter generates its root signal 

after a number of passes which is more than that required by the median filter. 

Other examples of nonlinear filters that use the median operator include 

FIR-median hybrid filter, multistage median filters [16] and max/median filters 

[17]. Median filters and median-based filters are typical examples of rank-order 

based filters. These use rank order operators. Section 1.4 introduces other types of 

rank-order based filters. 

1.4 Rank-Order Based Filters 

There are different types of nonlinear filters incorporating rank-order oper-

ations. Only a few of these are discussed here. These filters have proved to be very 

useful in the task of noise suppression and detail preservation. 

The L Filter 

An L-filter [18] uses a symmetrical window about the output sample posi-

tion and sorts the contents of the window. The output of this filter is the linear 

combination of the rank-ordered samples in the window. 

Consider the input samples {xi_N, xi_N+1, • • • , xi, • • • , xi+N_i, xi+N}. De-

note the ordered samples by x(i), j = 1, • • • , 2N + 1 where 2N + 1 is the window 

size. The output yi of the L filter is then given by 

where the coefficients ai are functions of sample's rank. These coefficients are 

optimized for a given noise statistics according to a given criterion, minimum mean 

square error for example. 
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for the a—trimmed mean. For the a—trimmed mean filter, the value of a must 

satisfy 0 < a < 0.5 with (2N + 1)a being an integer [18]. 

The C filter 

The L and other median-based filters have a drawback. They destroy the 

time-order information of the signal through their ordering procedure. For constant 
8 

level signals time-ordering is not vital, but for non-constant signals this is not the 

case [20]. This drawback becomes more noticeable as' the window size increases, as 

a result the performance of the L filter deteriorates. 

To rectify the time-ordering problem the combination filter (C filter) was 

developed [21]. The output of the C filter is also given by a linear combination of 

order statistics, but the filter coefficients are now functions of both the rank and 

time index of the sample. This is represented by, 

where {xi_N, • • • ,xi, • • • ,xi+N} are the input data samples in the window, R(xi) 

and i are the rank and the time index of xi  sample respectively. The C filter can 

thus be looked to as a time varying L filter. 

8 



The Stack Filter 

The threshold decomposition property for median filter was discussed in 

section 1.2 and appendix B. It was pointed out that the process of median filtering 

binary sequences generated from an m-ary level signal, by threshold decomposition, 

and then reversing the decomposition is equivalent to median filtering the original 

signal. 

If the filtered binary sequences are piled at any instance of time, each pile 

will consist of a column of l's having a column of 0's on its top, see fig. 1.2. 

The above property is known as the stacking property. These properties, threshold 

decomposition and stacking, favored the VLSI implementation of the median filter 

and other rank-order based filters in general [23]. They also gave rise to a new type 

of 'nonlinear filters known as stack titers [22]. Rank-order based filters are special 

cases of stack filters. 
. • 

A close examination of the median operation on binary sequences will reveal 

that it can be represented by a boolean function. For example, consider determining 

the median yi of three binary samples xi_1, xi and This can be represented 

by the following boolean equation 

yi = xi-1 • xi + xi • xi+1  xi+1  • 

where • and + are the AND and OR boolean operations. A number of operators, 

for the binary input case, can be implemented using boolean logic. 

The stack filters are implemented by using a threshold decomposition stage, 

a boolean function, which characterizes the filter, and a stacking stage. Since the 

threshold decomposition and stacking stages are common for all stack filters, the 

design of a stack filter reduces to determining the appropriate boolean function. For 

example, to implement a filter that outputs the maximum of three input samples, 

9 



the following boolean equation may be used, 

yi = xi-1 + xi + Xi.fi 

Through the use of boolean operations new filters were realized. The stack filter 

is still under active research and a number of developments are taking place to 

optimize it [24,25]. 

The next chapter will discuss a new type of rank-order based filter family, 

Max/Min filters. 

10 



Chapter 2 

MAX/MIN FILTER FAMILY 

2.1 Introduction 

The Max/Min filter family is a rank order based family of filters [26]. These 

use an asymmetric window about the output sample, as opposed to the symmetric 

window traditionally used. The Max filter outputs the larger of the two samples 

positioned at each end of the window, while the Min outputs the smaller. 

Depending on the direction to which the window is skewed relative to the 

input sample, two types of Max and Min filters are defined. If the input sequence 

to the filter by is denoted {• • • , xi, xi+1, • • •}, the output of right skewed win-

dow filter by {• • • , yi_i, yi, yi+i , • • •} and the output of left skewed window filter by 

{ • • • , zi_i  , zi, zi+i  , • • •}. 

For Max filter with the right skewed window, yi  is related to xi  by 

where n, known as the filter parameter, is the window size less one. 

For the corresponding Min filter, yi  is given by 

11 



The right skewed Max filter is similar to the left skewed one other than for some 

delay. Consider a left skewed size n + 1 Max filter, where the output zi  is given by 

The left skewed and the right skewed Max filters differ only on where the output 

is taken relative to the window. For the left skewed filter the output is taken to 

the right end of the window, while for the right skewed one it is the opposite. The 

above equivalence is also true for the two types of the Min filter. 

As a result of the above equivalence, the discussion will address only one of 

these and the right skewed types are chosen. 

2.2 Max/Min Filter characteristics 

The signal shown in fig. 2.1 was processed using a size 2 Max filter. Figs. 

2.2, 2.3 and 2.4 show the output of 2, 4 and 7 passes of the filter respectively, 

superimposed with the original noise free signal. Comparing fig. 2.1 with 2.2, 2.3 

and 2.4 reveals the following characteristics of the Max filter: 

(i) Noise smoothing: the Max filter smoothed the noise in the signal substantially. 

(ii) Edge preserving: examining figs. 2.2, 2.3 and 2.4 shows that the Max filter, 

like other rank order based filters, preserves edges. 

(iii) Edge shifting: the Max filter also shifted the rising edges of the signal to the 

left, opposite to the direction of the asymmetry, and kept the falling edge 

intact. 

(iv) Repetitive processing of the Max filter smooths the noise more and introduces 

12 



more edge shifting. The amount of shifting per sample is proportional to the 

number of passes. 

Fig. 2.5 shows the output of 7 passes of a size 2 Min filter. The noise 

smoothing and edge preserving characteristics of the Min filter are clearly demon-

strated. However, notice the Min filter shifted the falling edge while preserved the 

rising in position. 

To study the relationship between edge shifting and window size for fixed 

number of passes, the test waveform shown in fig. 2.6 is used. Figs. 2.7 and 2.8 

show the outputs of single pass size 5 and size 7 Max filters respectively. The 

amount of edge shifting is proportional to the window size. Thus one can conclude 

that the shifting of the rising edge produced by the Max filter is proportional to 

the number of passes and the window size. 

In order to achieve greater amount of noise smoothing more passes and/or 

larger window sizes of Max filters are required. This in turn produces more edge 

shifting and after finite number of passes the edges merge together, fig. 2.9. Further 

processing will wipe out the signal. This tends to limit the use of the filter. Next 

sections will discuss possible applications of the filter family. 

2.3 Edge Preserving and Noise Smoothing 

A possible way to compensate for the above effect is to cascade equal num-

bers of Max and Min filters. The former shifts the rising edge while the latter shifts 

the falling, their cascade will shift both of them by equal amounts, thus finally 

preserving the pulse duration. 

Fig. 2.10 shows a signal corrupted with noise, the signal to noise ratio of 

which is 0 dB, superimposed with the original signal. Use of the above arrangement 

of Max and Min filter with 25 passes of each, smooths the noise and restores the 

13 



shape of the signal, fig. 2.11. Fig. 2.12 shows the output the classical median filter 

with window size 15, the performance of the Max/Min filter is apparently superior. 

The Max/Min filter also requires fewer number of computations. A size 

N median filter requires N log2  N [27] comparisons per output sample, while the 

Max/Min requires one comparison. In the above case, fig. 2.11, 25 passes of Min 

filter followed by 25 passes of Max filter require 50 comparisons per output sample, 

while 3 passes of the size 15 median filter requires 180 comparisons. Thus the above 

arrangement of Max/Min requires less than 30% of the compaisons nedded by the 

median filter. The average signal level at the output of the Max/Min filter is higher 

than that of the input fig. 2.11. This is because Max filter tends to propagate the 

value of the local maximum samples over its neighborhood, thereby increasing the 

average signal level. If Min filter was used in the above arrangement prior to the 

Max, the average signal level at the output would drop below that of the input for 

a similar reason. 

2.4 Max/Min based edge detector 

The edge response of the Max and Min filters can be utilized in edge detec-

tion. It was pointed out earlier that the Max filter preserves the rising edge while 

the MM filter preserves the falling one. Both of them can be used in a scheme to 

detect the falling and rising edges. The figure below shows the block diagram of a 

possible scheme. The scheme consists of three stages: the pre-filtering stage, the 

edge-conversion and enhancement stage and finally the differentiation and thresh-

olding stage. The first stage utilizes two branches, the upper branch contains a 

combination of Max filters, 25 in cascade, which preserves the rising edge, while 

the lower has a cascade of 25 Min filters whose purpose is to preserve the falling 

edge. Each branch is terminated by a median filter, this is used for further smooth- 

14 



ing. 

The second stage consists of a subtracte, a median filter and a Max filter. 

The subtracter converts the preserved rising and falling edges from the prior stage 

into rising edges. The median filter is installed after the subtracter for further 

smoothing. Finally a Max filter is used to enhance the rising edges further and 

smooth out any noise left by prior stages. 

The output of the second stage is then fed into a differentiation and a thresh-

old stage. Fig. 2.14 shows a signal corrupted with noise, the SNR of which is 7dB. 

The edges generated by the scheme in fig. 2.13 and the original signal are shown 

in fig. 2.15. 

15 



16 



17 



18 



19 



20 



21 



22 



23 



Chapter 3 

OPERATIONAL PROPERTIES 

3.1 Introduction 

The previous chapter introduced the Max/Min filter family and some of 

its properties viz, noise reduction, edge preserving and shifting properties. The 

Max/Min filter family also has interesting operational properties [28] some of which 

are unique to the family. These properties are useful for system analysis and for 

understanding the mechanism of the filters. System implementation with Max/Min 

filters can be also facilitated with these properties. 

Before stating these properties and providing their proofs, it is while worth 

to introduce the notation that was developed to present and prove these properties. 

Section 3.2 introduces this notation and draws the equivalence between Max and 

Min filters and section 3.3 discusses the properties. 

3.2 Definition and Notation 

A data sequence or time series is denoted by X and Y, etc. Specifically, let 
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A Max filter of window size n + 1 is denoted by the operator 

max or max(n) 
(n) 

where the subscript (n) indicates the filter's parameter, window size less one. Thus 

if Y is the output of the filter to an input X. Then X and Y are related by 

The output samples yi's are related to the input samples xi's by 

where max is the ordinary maximum operator which outputs the largest member of 
6 

the elements in the argument. For ease of mathematical manipulation, the output 

( sample is also denoted by xin) . Thus 

where the superscript (n) is the filter parameter. 

The cascade of two filters is represented by 

which indicates that the input sequence X is operated on by the filter max(n) of 

window size n + 1 followed by another, max(m), of window size m + 1. For brevity, 

the parentheses between cascaded filters can be omitted. Thus, 
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If the cascaded filters are of the same window size, a superscript is used to indicate 

the number of passes. Thus  

The output Y, to an input X, of a p-pass Max filter of window size m + 1 is given 

by 

For the above case the output sample yi  is also represented by x m)(P). The first 

superscript (m) indicates the window size less one, the second superscript (p) indi-

cates the number of passes the filter is applied. Therefore 

With zero pass, there is no filtering. Thus 

In practice, the smallest window size is two (m = 1). A window size of one (m = 0) 

corresponds to the degenerate situation of no filtering. Thus, 

With a single pass, the second superscript is omitted for brevity. 

Relation (3.1) is generalized, for the multipass Max filter, to 

which reduces to (1) when k = 0. The above notations and relations will be used in 

the next section. The same notations apply for the Min filter with operator "min". 
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3.3 Filter Properties 

This section discusses four properties of the Max filter. Min filter has the 

same properties. Note that Max and Min filters are related by the following, 

Property 1: Commutative Property 

Max filters can be cascaded. The output of the composite filter is independent of the 

order in which the Max filters are cascaded. 

Consider two filters max(m) and max(,). Let X = {xi } be the input sequence 

and denote the output sequence ofc the first and second filters by Y = {yi} and 

Z = {zi } respectively, i.e. 
m 

Then, 

If the order of the filter is changed with the output signals being W = {wi} and 

U = {ui }, 

Then, 
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Comparison of (3.5) and (3.6) shows that 

The above can be extended to more than two filters and it can be shown that 

where (n1, n2, • • • , nk ) is any permutation of (mi, m2, • • • , mk). 

A special case of the above is 

which is useful for later development. Nonlinear filters are in general not commuta-

tive. In this sense the commutative property of the Max/Min filters is very unique. 

The commutative property does not hold for the composite filter of Max and Min. 

It can be noted from relations (3.5) and (3.6) that the composite filter made 

by cascading size m+1 Max filter with another of size n+1 is equivalent to a quater-

nary maximum filter of window size m n +1. A generalization of this observation 

is given in the following property. 

Property 2: 

A p-pass Max filter of window size m + 1 is equivalent to a (p + 1)-ary maximum 

filter of window size pm+1. Using the notation developed earlier, this is represented 

by 
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Proof: 

Assume (3.8) is true for p equal to any integer k, 

Then, for p = k +1, 

By mathematical induction, the proof is complete. 

For the special case of p-pass Max filter of window size two (m = 1), 

Thus the cascade of p Max filters of window size 2 is equivalent to a (p + 1)-ary 

"maximum" filter of window size p + 1. Note that the Max filter max(m) is a binary 

"maximum" filter of window size m + 1. A p-pass Max filter and the equivalent 

(p + 1)-ary "maximum" filter both require p comparisons. The following relation 
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where m, p, pi  are non-negative integers and p > pi, follows from Property 2 and 

the relation 

Property 2 demonstrates the edge shifting property of a Max filter. The 

filter tends to propagate to the left the local maximum sample, thereby shifting the 

rising edge to the left while maintaining the falling edge in position. 

Property 3: 

The cascade of k Max filters whose window sizes are consecutive multiples of a base 

number n, is equivalent to a p-pass Max filter of window size n. 

Proof: 

Thus the relation is true for k = 2. 

(iii) Assume the relation is true for k equal to a positive integer m > 2, i.e., 
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Thus (3.9) is also true for k = m + 1. 
e 

(iv) By mathematical induction, relation (3.9) is true for any positive integer k 

and the proof is complete. 

Alternatively, using the following property, 

it can be shown directly that 

The above property can be utilized to reduce computation time. Suppose it is 

desired to process a given signal using six passes of a Max filter of window size 2. 

This can be implemented either by cascading six filters each with window size 2 or 

cascading three Max filters with window sizes of 2, 3 and 4. The latter arrangement 
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requires one half of the computation needed by the former. 

The next property provides an algorithm for decomposing a p-pass Max filter 

to a cascade of smaller number of single-pass Max filters with different window sizes. 

Property 4: Decomposition Property 

A p-pass Max filter of window size m +1 is equivalent to a cascade of Max filters 

with window sizes bjm +1. 

where the numbers b1, b2, are determined with the following rules, 

I • % 

where lxl is the integer greater or equal to x. 

Before a formal proof is given, two simple examples are examined. 

• Example 1: 

The integers bi's are computed as follows. 
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b4  = b5  = • • • = 0 

• Example 2: 

The integers bi's are computed as follows. . 

To verify, 



where 
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Proof: The property is proved by construction. From Property 2, 

The objective is to split the argument of the operator max into two parts of equal 

number of entries. If there are odd number of entries, the middle entry is counted 

twice. For an odd number of passes, there are an even number (p + 1) entries in 

the argument of the max operator. Thus 

For an even number of passes, there are an odd number of entries in the argument 

of the max operator. So 

If this procedure is repeated once the following will be obtained, 
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This procedure is iteratively repeated until bk+i  = 0 for some integer k. All subse-

quent values of the integers bi  will be zero and. the procedure terminates. As can 

be noted from the above two examples, the last nonzero integer bk  is always equal 

to one and, the corresponding Max filter has a single pass. 

Iefollows that bk  = 1, p —bi  — b2  — • • • — bk_i  = 1. Therefore, b1  b2 + • • • + bk  = p. 

e 
Property 5: Threshold Decomposition and Stacking Property 

This is a typical property for ranked order operations, the proof for threshold 

decomposition for rank order operators are given in [29]. Being a rank-order based 

filter, the threshold decomposition applies for the Max filter. This was stated here 

for the sake of completeness 



Chapter 4 

STATISTICAL AND 
SPECTRAL PROPERTIES 

4.1 Introduction 

In this chapter the statistical and spectral properties are investigated. The 

bivariate distribution function of the Max filter output is derived, the autocorrela-

tion function is then determined and finally power spectral density is given. The 

complete derivation for the Min filter is given in appendix A. 

4.2 Distribution Function 

For two independent random variables U and V respectively with cummula-

tive distrinbution functions, CDFs Fu(u) and Fv(v) and probability density func-

tions, pdfs fu(u) and fv(v), the CDF of a random variable Z given by 
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and the pdf is 

If U and V are independent identically distributed random variables, then 

and 

Let X = {{• • • , Xi_2, Xi_i, Xi, Xi+i Xi+2, X2+3, • • •}1 be a sequence of identically 

distributed random variables. Input X to a Max filter of window size (n + 1) and 

denote the output sequence by Y i = • • • , —2, —1, 0,1,2, • • •}, where 

Joint Probability Density Function • 

Consider samples Y and Y+7,. By definition, Y and Y+7, are given by 

It is apparent that both Y and Yi+.„, depend on As a result Yi and 114,, are 

dependent. By a similar reasoning one can deduce that other samples in Y are 

independent. Thus for 1j1 n and j# 0 

'The upper case letters Xi and Yi are used here for signal samples to indicate that each sample 
is a random variable. 
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For j = n, the joint probability is given by 

For a < 0, the above equation becomes 

Similarly, for a > /3 

Therefore the joint pdf is given by 
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Assume each sample Xi of the signal sequence {• • • , Xi_1, Xi, Xi+i , • • •} has 

a value from the m-ary alphabet {wo, col, - • • com_i} with coo  < W1  < • • • < coni_i. 

Further assume that each of the symbols coj are equally likely. Now, the pdf and 

the CDF for the case of equally likely discrete input alphabets case are given by 

respectively. Assume Xi's are independent, the CDF of the output samples of the 

Max filter is 

and the corresponding pdf is given by 

4.3 Auto correlation Function 

Assume Xi's are independent identically distributed random variables. The 

autocorrelation of the Max filter output for the case of equally likely input alphabet 

is derived below. The autocorrelation function R(k) of Y is given by 

Next consider three cases (i)k = 0, (ii)lkj n and lk I # 0 and (iii) lid = n. 

Case I K = 0, 
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the autocorrelation function is equal to the second order moment, i.e. 

Case II IkI n, 

the autocorrelation function is given by 

e 

the autocorrelation function is thus given by 

Case III = n, 

the autocorrelation function is given by 

where fyiyi+n (a, /3) is given in equation (4.6). Now, substituting equation(4.6) in 

the above 
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where the terms I-1,12  and /3  are given by 
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where, 
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Similarly for the second term of equation(4.13) 

where, 



The values for the Max filter with binary input, {-1,1}, and ternary input, 
• 

{-1, 0, 1}, are given in tables 4.1 and 4.2 below. 

The figures below show the the autocorrelation function for the Max filter with 

window sizes 2 and 5 for the binary and the ternary input cases. 

4.4 Power Spectral Density 

The spectral power density OM is related to the autocorrelation function 

R(k) by, 

Using the above equation and the results of the previous section the power 

spectral density function for the different cases can be determined. For size 2 Max 

filter with a binary input, this is given by 
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For size 5 Max filter the power spectral density is given by, 

Similarly for the ternary input, the power spectral densities for window sizes 2 and 

5 are given by 

The four power spectral densities are shown in figs. 4.5, 4.6, 4.7 and 4.8. 

All of them are characterized by an impulse at zero frequency and a sinusoid. The 

input to the Max filter has an average d.c. level of zero. Due to the Max filter 

this d.c. is increased, which explains -the impulse at zero frequency in the power 

spectral density function. 

Next chapter discusses a model of the Max/Min filter. This model, for Max 

filter, is based on the following relation, 

X — X 
The model thus includes two comb filters, 

Xi +

2 
i+Th Xi 

 2 
i+n 

and . The presence 

of these comb filters explains the sinusoidal function in the power spectral density. 

Increasing the window size n 1 will result in sinusoid of higher frequency. This 

can be explained also by the means of the model. As the window size increases 

the value of n increases as a results the number of the delay elements in the comb 

filters increase. This in turn increase the number of teeth (lobes) in the comb filter. 
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Index Window size 
k 2 3 5 7 9 
0 1.000 1.000 1.000 1.000 1.000 
1 0.500 0.250 0.250 0.250 0.250 
2 0.250 0.500 0.250 0.250 0.250 
3 0.250 0.250 0.250 0.250 0.250 
4 0.250 0.250 0.500 0.250 0.250 
5 0.250 0.250 0.250 0.250 0.250 
6 0.250 0.250 0.250 0.500 0.250 
7 0.250 0.250 0.250 0.250 0.250 
8 0.250 0.250 0.250 0.250 0.500 
9 0.250 0.250 0.250 0.250 0.250 

Table 4.1: The autocorrelation function R(k) for binary input. 

. 

b 

Index Max filter 
k 2 3 5 7 9 
0 0.667 0.667 0.667 0.667 0.667 
1 0.370 0.198 0.198 0.198 0.198 
2 0.198 0.370 0.198 0.198 0.198 
3 0.198 0.198 0.198 0.198 0.198 
4 0.198 0.198 0.370 0.198 0.198 
5 0.198 0.198 0.198 0.198 0.198 
6 0.198 0.198 0.198 0.370 0.198 
7 0.198 0.198 0.198 0.198 0.198 
8 0.198 0.198 0.198 0.198 0.370 
9 0.198 0.198 0.198 0.198 0.198 

Table 4.2: The autocorrelation function 11(k) for ternary input. 
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Figure 4.2: Autocorrelation function for size-5 Max filter with a binary Input. 
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Figure 4.4: Autocorrelation function for size-5 Max filter with a ternary input. 
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Figure 4.6: Spectral power density of size-5 Max filter for a binary input. 
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Figure 4.8: Spectral power density of size-5 Max filter for a ternary input. 
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Chapter 5 

A MODEL OF MAX/MIN 
FILTER 

5.1 Introduction 

In this chapter a model for the Max and Min filter is presented. This model 

provides one possible way for the implementation of the Max/Min filter. It also 

portrays the nonlinear nature of the filter. With the help of this model new mod-

ifications on the Max/Min filter were made possible. Only a few of these are 

introduced here. It is the belief of the author that a thorough investigation of this 

model would lead to new filter structures and would open new research areas in the 

field of signal processing. 

5.2 Max/Min Filter Model 

It can be shown that max and min operations can be expressed mathemat-

ically as, 
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Figure 5.1: Max filter model. 

Examining the above equations, the Max or Min filter can be implemented 

using an adder and full wave rectifier. 

The above scheme can be used for the hardware implementation of the Max 

filter. Min filter can be implemented using a similar scheme with the upper branch 

being inverted in polarity. The nonlinear nature of the Max filter is apparent in 

the full-wave rectifier of the upper branch. Changing the nonlinear element would 

change the scheme to a different filter. As an example, setting to zero the upper 

branch will reduce the filter to an average filter. The nonlinear element f(A) for 

the Max filter is given by 

For positive values of A the nonlinear element is given by 

and 
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thus there will be no filtering. For negative values of A the nonlinear element is 

given by 

i.e. the filter output is the input delay by n samples. 

The edge shifting effect of the Max filter can be explained by considering 

different values of A. For falling edges A is positive, hence they will pass unaffected, 

while for the rising edges A is negative hence the filter will output the input delay, 

resulting in the shifting of the rising edge. 

The next section will present some modifications on the nonlinear element. 

These brought about new filters, whose simulations were carried out. 

5.3 Max/Min Filter Modifications 

The modifications are based on the model shown in fig. 5.1. Four of these 

are described below. A common test signal was used to investigate the performance 

of each of these modifications. The test signal, whose SNR is 10 dB, is shown in 

fig. 5.2 below. 

The first modification is based on the nonlinear element shown in the fig. 

5.3. The output of the resulting filter, with a being set 60, is shown in fig. 5.4. 

The edge shifting, which is inherent in the original Max/Min filter, is absent 

in this modified filter. This can be explained by noting that the element shown in 

fig. 5.3 can be divided into three regions of operation, viz 

(1) Region II, for xi  — xi+1  greater than a, 

(2) Region III, for xi — xi+1  less than —a and 
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Figure 5.2: Test signal. 

(3) Region I, the region in between. 

Referring to the model in fig. 5.1, the input to the nonlinear element is the 

difference between the extreme samples in the window. With the regions described 

for the nonlinear element in fig. 5.3, it follows that regions II and III respectively 

correspond to samples lying in the falling and rising edges whose transitions are 

greater than a. Other samples will lie in region I. 

Next, to understand the edge response of this filter, consider the nonlinear 

element in each of the edge regions i.e. regions II and III. In the falling edge region, 

II, the nonlinear element is positive with unit gradient, thus is identical to the Max 

filter nonlinear element, full-wave rectifier. The same is true for region II, rising 

edge region, the nonlinear element shown in fig. 5.3 corresponds to that of the 

Min filter. Hence for the rising edges the new filter behaves as a Min filter and for 
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Figure 5.3: A Nonlinear element 

the falling edges as a Max filter, as a result it preserves both edges in shape and 

pcisition. 

In region I the filter reduces to a moving average filter, giving better noise 

smoothing performance there. Fig. 5.4 shows the output of this filter with a window 

size of 2. The output of the filter is smooth in some parts of the signal. This is 

explained by the linear behavior of the filter. 

The choice of the parameter a is critical. Setting a to a larger value will 

reduce the system to a moving average filter in a wider range, thus smoothing edges 

out. A small value for a, on the other hand, would pass the signal unchanged as 

the element will then tend to the unit gradient straight line 

f (A) = A 

In this case there will be no filtering. 

The multilevel signal case will put more stringent conditions on a. The 

choice of a must take into consideration the different edges. It must be set to a 

value smaller than the smallest edge transition. A better filter will be the one in 

which the parameter a is adaptive to the different signal and noise levels of the 
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Figure 5.4: The output of the filter whose nonlinear element is given in fig. 5.3 

input signal. In the following, another variation in the nonlinear element is given. 

Understanding of the mechanism of these filter is based on the previous argument 

of dividing the element into three regions. Also, these filters depend on some 

parameter whose value must be optimized relative to the input signal to obtain the 

best result. 

Another possible nonlinear element that can be incorporated in the model 

is shown in fig. 5.5 below. This filter smooths out noise while shifting both edges 

by the same amounts. 

Following a similar argument, this filter has a behavior similar to that of 

the Max filter in region III. This explains the shifting of the falling edge. In region 

II the filter behaves like the Min filter, thus preserving the falling edge in position 

while shifting the rising edge. The net result of the filter is the shifting of both edges 

in the same direction, opposite to that of the window skewness, thus preserving the 
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Figure 5.5: A Nonlinear element 

pulse shape. In region I the filter response is the same as the one above, moving 

average filter. The output of this filter to the input shown in fig. 5.2 is given in fig. 

5.6. The parameter a for the nonlinear element shown in fig. 5.5 was taken as 50. 

A possible modification can be *made in region I of figs. 5.3 and 5.5. In-

stead of using a linear filter in that region a nonlinear Max or Min can be used. 

To preserve the pulse shape the type of the filter to be used in region I should be 

complementary to that in the neighboring region. That is if region II or III is using 

a Max filter then region I should use a Min filter and vice versa. The only possible 

way to achieve this is to divide region I into two, one next to II and other next to 

III, and then use different filter types in these regions to satisfy the above criterion. 

The possible nonlinear elements are shown below. 

The filter utilizing the nonlinear element shown in fig. 5.7 has been simu-

lated, with the value of a set to 60. This filter did not introduce any edge shifting. 

This property can be interpreted by considering the nonlinear element in regions II 

and III. The corresponding output signal is shown in fig. 5.9. 

On the other hand, the filter incorporating the element in fig. 5.8 shifts 

58 



Figure 5.6: Output of the filter whose nonlinear element is shown in fig. 5.5. 

both the rising and falling edges in the same direction. This is because the filter 

behaves like a Max filter region III and like a Min filter in II. The output signal 

for the above filter is shown in fig. 5.10 below. Both the filters using the elements 

shown in figs. 5.7 and 5.8, were simulated with the parameter a set to 60. 

The author believes that a lot can be done in the area of optimization and 

development of new filter structures based on the model in fig. 5.1. A thorough 

study of this model could lead to new research projects in the area. 
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Figure 5.10: Output of filter whose nonlinear element is given in fig. 5.8 
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Chapter 6 

CONCLUSION 

A new nonlinear filter family, Max/Min, was developed. The properties of this 

filter family were investigated and its mechanism is now understood. Some of these 

properties are unique to the family; while others are typical for rank order based 

filters. An algorithm was developed to reduce a given combination of Max or Min 
a 

filter with the same window size into a fewer number of filters with different window 

sizes. This algorithm can be used to enhance the processing time of any scheme 

using this family. The statistical and spectral properties of the Max/Min were also 

studied. It was found that they have a combing effect. 

Two applications for the Max/Min filters were proposed, one in filtering and 

another as an edge detector. As a noise reduction filter, the Max/Min filter was 

found to have better performance than the classical median filter under severe noise 

conditions. The Max/Min filter also requires less number of comparisons compared 

to the median filter. 

A model for the Max filter was introduced in chapter 5. This provides one 

possible way for the implementation of the filter. It also reveals the nonlinear nature 

of the filter. Based on this model, a number of modifications on the Max/Min were 

suggested. These were examined and did not have the edge shifting effect present 
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in the Max/Min filter. These modifications were not studied extensively. 

The Max/Min filter can be extended to two-dimensional signal case. Direct 

application of the Max/Min filter to images is not expected to be successful, as its 

edge shifting effect can remove important image details. Modifications are needed. 

For example, the modifications described in chapter 5 are expected to work better 

for images 

The author believes that more research can be done on the Max/Min filter. 

The model given in chapter 5 is promising, as new nonlinear functions can be 

incorporated in it. Efforts should also be made towards the adaptivity of these 

new filters. With further study, more useful applications can be developed for the 

Max/Min filter family. 
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Appendix A 

Distribution and Autocorrelation 
Function of Min Filter 

A.1 Distribution Function 

For two independent random variables U and V with CDF Fu(u) and Fv(v) 

respectively and pdf fu(u) and fv(v), ithe CDF of a random variable Z given by 

is 

and the pdf is 

If U and V are independent identically distributed random variables, then 

and 
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For j=n, the joint probability is given by 

For a < /3, the above equation becomes 

Similarly for a > 0, the above equation becomes 

Let X = {Xi; i = • • • . — 2, —1,0,1, 2, • • •} be a sequence of identically distributed 

random variables. Input X to a Min filter window size n+1 and the output sequence 

be Y = {11i; i = • • • , —2, —1, 0,1,2, • • •} ,where 

Y° min(Xi,Xi+n) 

Joint Probability Density Function 

Following a similar reasoning as the one in chapter 4, it is readily seen that only 

the elements in Y on steps of n are dependent, while the others are independent, 

i.e. for Iji #nand IA n 



Therefore the joint pdf is given by 

For j = 0, the pdf is given by 

Assume each sample Xi  of the signal sequence { • • • , Xi, Xi+1, • • •} has a value 

from the m-ary alphabet Iwo, coi, • • • Also assume that each of the symbols 

wi are equally likely. Now, the pdf and the CDF for the case of equally likely 

discrete input alphabets case are given by 

respectively. The CDF of the output samples of the Min filter is 

66 



Next consider three cases (i)k = 0, (ii)1k1 n and 1k! 0 01 and (iii)1k1 = n. 

Case I K = 0, 

the autocorrelation function is equal to the second order moment i.e. 

Case II 1k1 n and lk1 0, 

the autocorrelation function is given by 

A.2 Auto correlation Function 

Assume Xi's are independent indentically distributed random variables. The 

autocorrelation of the Min filter output for the case of equally likely input alphabet 

is derived below. The autocorrelation function R(k) of Y is given by 

The autocorrelation function is then given by 
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the autocorrelation function is given by 

where the terms T1, T2 and T3 are given by 

Consider the first term T1  

where 
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Consider each of the above terms separately, 

Thus T11  becomes 

Next consider the other term, T12 
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where 

Similarly for the T2 term in equation (A.9) 

where 

Next consider each term separately, 
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where, 

and 
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Hence T22 is given by 

Therefore the T2 term, 

Finally consider T3 

where, 

Consider each term separately, 
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where, 

Therefore T31 is given by, i 
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Appendix B 

Threshold Decomposition for 
Max/Min Filter 

Since Max and Min filters are related only the Max filter will be considered 

here. Assume input samples xi, are quantized to one of k integer values 0,1, • • • , k —

1. Threshold decomposition maps the sequence {xi} into binary sequences {ti(xi)}. 

The elements t- (xi) of the sequences are given by, for 1 < j < m — 1 

where j is called the threshold level. Filtering of these binary sequences is repre-

sented by 

Three properties which were derived for the threshold decomposition of rank order 

operation are given in [29]. Since max is a rank order operation, then it exhibits 

these properties. 

Property 1 

If the filtered threshold value is 1 at a certain level j, t3in.  ax(xi) = 1, then it will be 
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1 at all levels less than j. This can be represented mathematically as follows 

Proof: 

the function I() is the indicator functon. 

If 

ax(xi) — 1, 

then 

I( at least one of (xi, xi+n) > j) = 1 

implies 

I( at least one of (xi, xi+n) > k) = 1 for 1 < k < j. 

That is 

tit ax(xi) = 1 

Any integer X with 0 < X < m — 1 can be represented in terms of the indicator 

function as follow 
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This point is useful in proving the secon property Property 2 

The set of filtered sequences { tiL(xj)} is related to output sequence fyil by 

Proof: 

From the definition of the Max filter the output sample yi  is given by 

The above property gives the function that reverses the threshold decomposition. 

Property 3 

The binary sequences obtained by threshold decomposing the output sequence of a 

Max filter is identical to that obtained by filtering the sequences of the input. That 

is 
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