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Abstract 

New Jersey Institute of Technology 

Newark, New Jersey 07102 

Dielectric resonators (DR) are suitably shaped objects made of high dielectric con-

stant materials like TiO2, BaO, ZnO, and accessory ingredients, which can function 

as electrical resonators covering a very wide frequency range upto 40GHz. The phys-

ical dimensions of dielectric resonators are in mm range. High dielectric constant 

material resonators seem to be ideally suited for microwave applications because of 

their miniature size, low loss, insensitivity to magnetic dc biasing fields, and ability 

to concentrate large RF magnetic fields in small volumes. However temperature 

stabilization of dielectric resonators is an important consideration as the center 

frequency is a function of temperature. The present dissertation describes the the-

oretical analysis of such DR's based on two different mathematical and physical 

models. These models present a simplified approach to the solution of the electro-

magnetic field behaviour in the DR, and are capable of giving results which are near 

to the exact values. 

One of the practical applications of such DR's is an oscillator. Here in this thesis 

report, the dynamic characteristics of a GaAsFET oscillator have also been investi-

gated in details. Especially, studies have been made about the stabilized oscillator 

temperature coefficient, maximum frequency deviation and the pushing figure as a 

function of the coupling coefficient. These results would be useful for precise custom 

made design of such oscillators. Finally, the effects of the environmental conditions 

on the operation of a practical DR structure are studied by using a computer sim-

ulation technique. The study is based on approximate expression for the resonant 

frequency stability of dielectric resonators. 
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Chapter 1 

1.1 Introduction 

Dielectric resonators are important components in microwave communication cir-

cuits. They are used as filters, oscillators, amplifiers, and tuners among other appli-

cations. Due to recent advances in miniaturization of microwave circuits, the cost 

has gone down. The consequences of the above mentioned facts were that the bulky 

waveguides and rigid coaxial lines have been repladed with microstrip and striplines 

within the majority of microwave systems. Further, carefully designed microwave 

oscillators which utilize dielectric resonators yield better temperature stability over 

conventional microwave resonant cavities. Materials having a dielectric constant 

between 30 and 100 with good temperature stability and low dielectric losses have 

been chosen for the present study. Dielectric resonator of a small size as compared 

to conventional empty resonant cavity can operate at the same frequency provided 

the dielectric constant is higher than unity. 

The usual shape of a dielectric is solid cylindrical type, but one can find tubu-

lar, spherical and parallelopiped shapes too. There are many possible modes which 

can be excited in dielectric resonators. These modes can be divided as, transverse 

electric(TE), transverse magnetic(TM), and hybrid electromagnetic (HEM) modes. 

Selecting the lowest order modes is the approach in choosing the proper mode for a 

1 



Figure 1.1: Magnetic intensity profile 

particular application [17]. A commonly used resonant mode in cylindrical dielec-

tric resonators is denoted by TE016, as introduced by Cohn. In this mode, when the 

,relative dielectric constant is around 40 more than 95% of the electric energy stored 

and about 60% of the magnetic' energy stored is found within the cylinder. The 

remaining energy is distributed in the air around the resonator, where they decay 
• 

rapidly with distance away from the resonator surface. A typical magnetic field 
.• intensity profile is shown in Fig. 1.1. The electric field lines are simple circles con- 

centric with the axis of the cylinder. In order to analyze and get the exact solution 

of the field equations by using Maxwell's theory for an isolated dielectric resonator 

it becomes very much involved. Specially with other configuration such as when the 

dielectric resonator is mounted on a microstrip or placed within a shielding metal 

cavity. For this reason, the exact resonant frequency of certain resonant mode, such 

as TE016, are generally computed by numerical procedures. A simple formula for 

estimating the resonant frequency of the isolated dielectric resonator is given by: 

where 'a' is the radius of the resonator and 'L' is its length. Also 'm' and 'n' are 

used to designate the eigenvalues. A combination.of 'm' and 'n' designate a given 

mode. The above formula has an accuracy of 2% in the range 0.5 < alL > 2 and 
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Figure 1.2: Dielectric resonator in a microwave network 
• 

30 < > 50. A typical dielectric resonator as used in a microwave network is 

shown in Fig. 1.2. The lateral.distance between the resonator and the microstrip 

determines the amount of coupling between them. The entire assembly is enclosed 

within a shielded structure to prevent radiation losses. Two simple mathematical 

models to represent a shielded die.lectric resonator are, the Cohn model and the 

simplified Perturbational model. These two models facilitate the analysis of the 

field distribution. We have considered both the models and have programmed them 

in a personal computer, and the listings are given in appendix 1 and 2. Particularly 

comparison of the two different modes namely T.E016 and TEolo.+6  have been made 

and discussed in details. 

Finally the effects of environmental conditions on the operation of a prac-

tical DR structure has been discussed. The effects of the variation of different 

physical parameters in a simple, shielded dielectric resonator is important espe-

cially when the dielectric resonator is subjected to varying environmental condi-

tions. Dielectric resonators are widely used in microwave circuits due to its high 

Q-value, its low loss characteristics and good temperature stability. It is being used 

in MMIC's(Monolithic Microwave Integrated Circuits) due to its small size and 

its above mentioned characteristics. Also the small size of the DR has an advan- 
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tage over the empty resonant cavity at the same frequency, provided the dielectric 

constant of the DR is much larger than unity. Generally the DR's are placed in 

conductor shields to reduce radiation losses and it operates like a reaction cavity 

which reflects the RF energy at the resonant frequency. One of limitations of the di-

electric resonators is the environmental dependence of the mechanical and electrical 

properties of the dielectric as the resonant frequency of the system becomes a func-

tion of the environmental parameters such as temperature and humidity. However 

one needs to know the type and extent of variation of these parameters in order to 

reduce their effects. Finally a stable resonant frequency is necessary for practical 

applications especially when they are used as stabilized oscillators. 
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Chapter 2 

2.1 Introduction 

This chapter deals with the field analysis of the dielectric resonator, based on two 

mathematical models. These models have been explained in details which can be 

used to analyze dielectric resonators. The computer programs have been written 

based on the above two models, with*some corrections to improve accuracy of the 

results. The computer program gives us the energy distribution and also the plot 

of the field distribution within the DR structure. The results for two particular 

modes, namely TE01, and TE01,1+8  have been discussed in details. 

A "mode" is a particular field configuration. For a given electromagnetic 

boundary value problem, many field configurations may satisfy the wave equations, 

Maxwell's equations and the boundary that usually exists. All these different field 

configurations(or solutions) are usually referred to as modes. Also we have restricted 

ourselves to a circular cylindrical geometry as the dielectric resonator considered 

here has that geometry. Considering TEmnp  mode, where subscript p=1+8 and 

1=0,1,2,3,  When 1=0 it is referred to as MODE=0 and when 1=1 it is referred 

to as MODE=1. '5' is a non-integer whose value is less than 1. As per the theory 

of perfectly electrical conducting (PEC) and perfectly magnetic conducting(PMC) 

walls applied to the DR, the third subscript of TEmnp  represents the number of half 

5 



Figure 2.1: First order Cohn's model 

wavelength variations the field undergoes in the z direction. An accurate mathemat-

ical description of the electromagnetic field in a dielectric resonator(DR) may be a 

little complicated. So it is of great practical interest to approach the solution of the 

electromagnetic field in the DR in a simplified manner that can give us sufficiently 

accurate results.  

2.1.1 The Cohn Model 

The first order Cohn's model which is based on the fact that electromagnetic field 

inside a DR with high dielectric constant, is considered to be covered by PMC. 

This represents a circular cavity resonator, the walls of which are made of PMC 

(Fig. 2.1). An improvement over this was the second order model as described by 

Cohn [1] is shown in Fig. 2.2. This cylindrical PMC shell is retained, but the PMC 

end caps are removed and replaced by the air filled hollow waveguides. The hollow 

waveguides operates below the cut off because they are filled with low dielectric 

constant. Thus the modes in these air filled PMC waveguides are evanescent so the 

fields decay exponentially in the z-direction away from each end resonator. 
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Figure 2.2: Second order Cohn's model 

The Fig. 2.2 is also a case of isolated DR. This isolated DR acts as miniature 

antenna, and the energy lost on radiation is manifested in low Q values. The 

measured Q factor of an isolated TE01,5  resonator is about 50 [2]. In order to keep 

the unloaded Q factor of a DR resonator high (typically 5000), it is necessary to 

prevent radiation by enclosing the DR with a metal shield. The entire substrate 

with DR placed on it is placed in a metal box. The box acts as a shield which 

prevents the external fields from penetrating the system and, at the same time 

reduces the loss of energy due to radiation. 

The modification of the Cohn model which incorporates the parallel plate 

metal enclosure is shown in Fig. 2.3. The radius of the dielectric resonator is 'a', 

its relative dielectric constant is ., and its length is 'L'. The region with dielectric 

constant eri  represents the substrate on which resonator is attached. The thickness 

of the substrate is L1, and outside face of the substrate is covered with the perfect 

electric conductor. The region of length L2 represents the air filled space above the 

resonator, and the PEC cap on the right most side. 

We would like to look into the electromagnetic field of the TE01  mode which 
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Figure 2.3: Modified Cohn's model 

. 
satisfies the boundaries of Fig. 2.3. Since e.,. >> 1, the mode within the PMC 

waveguide of length L is above cut-off so that propagation constant -y becomes 

equal to :0. The field within the region 0 < Z < L is then, 

The azimuthal variation -L-0 due to circular symmetry. The other field components 
bcb — 

can be calculated as follows: 

To obtain the vector components of the electric and magnetic field, we take 

the z component of the magnetic field for convenience. The scalar Helmhotz equa-

tion is then given as: 

By using the method of seperation of variables which is based on the assumption 

that solution of the above differential equation is a product of three functions, as : 
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Then by using the Maxwell's equation vXE —jcop,„H we get three scalar equa-

tions: 

Also the other Maxwell equation, VXH = jwcE is split into the following equations: 

The right hand side of the last equation is zero because, for the TE modes, Ez  is 

zero by defintion. Eliminating .E95  by using (2.4) and (2.8) we get : 

r 

From Bessel function theory, we know that .J,;(x) = —J1(x), therefore 

Using Maxwell's equation, we get 
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Therefore, 

The radial propagation constant of the TE01  mode is fixed by the requirement given 

below: 

And Hz  must be zero at p = a. 

Therefore, 

In the regions 1 and 2 the dielectiic constant is much lower than 6, and hence the 

mode is evanescent. The propagation constant 7 is now given by al  or a2(attenuation 

constant)depending on the region being considered. The radial variation in these 

regions is specified by the same Kp  as,  in (2.17) so that the fields are continuous at 

the interface z=0 and z=L. 

For region 1, the Hz  field is thus, 

E, is obtained from circular waveguide theory as, 

At z = —L1, E4, must vanish because of the conducting wall. This results in, 

Therefore, 
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Substituting (2.21) in (2.19) we get, 

The components of the magnetic field in region 1 are then given by, 

In an analogous manner, the fields in region 2 are given as, 

In region 2 the field vanishes at z = L2 + L. The separation constants are 

given as follows: 

The radial wave number is 1c2 = 72 + ICO 26,.. Also for mode propagating in 

the z-direction 72  = --P'2  and for evanescent mode 72  = a2. Also we have seen that 

in region of the DR it has a propagating mode and in regions 1 and 2 the mode is 

evanescent. Therefore separation constant in the dielectric region is given by, 
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The next step is to ensure that the tangential components of the electric 

as well as the magnetic field, are continuous at the interface. At z=0 we require 

E4,1  = Ect and Hp1  = Hp. 

Equating (2.22) and (2.15) we get: 

Similarly equating (2.24) and (2.13) we get, 

Dividing (2.34) by (2.35) C1  is eliminated giving, 

Similarly by equating .E46  = E02  and Hp  = Ho at z=L we get, 

The constants A and B are the amplitude of the forward and reverse travelling 

waves inside the resonator. For a complete standing wave pattern the amplitudes 
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Therefore, 

of A and B must be same. The ratio of the two constants is a complex number of 

unity magnitude and of undertermined phase given by, 

When (2.39) is substituted'in (2.36) we get the result, 

Here (2.43) is the value of the phase angle cki, expressed in terms of param-

eters of region 1 only. Similarly substituting (2.40) in (2.37) we get, 
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The added angle br gives all possible resonance conditions. When 1=0, the 

mode is called T.E016, where 45 signifies a non-integer number smaller than unity, 

In general the modes may be denoted by T.E01p, where 

Also when 1=1 we have TEoi,1+,5  referred to as MODE=1. 

2.1.2 Special cases • 

1. When L1  = 0 and L2  = 0, we get 11- = iand V = Also the lowest order 

resonance (1=0) is given by /3L = ir. oThis is the case is when the two metal plates 

are touching each resonator ends. 

2. When the two metal plates are removed to infinity (i.e.Li  = co and L2  = oo) we 

get V = tan-1[ ] and V = tan-1[12]. In this case eri  = fr2  = 1, and the resonance 

condition becomes AL = 2tan-1[73] with a and p given by equation (2.31) and 

(2.33). 

The Cohn's first order model gives an accuracy of +32%, while the second order 

model gives an error of about -4.8%. 

2.1.3 To calculate the resonant frequency of parallel-plate 
DR 

14 



ADR  is the DR wavelength, and 'p' is an integer. Thus, the length L is an 

integral multiple of the half wavelength's 

There is only one discrete set of frequencies that satisfies (2.31) and (2.49) 

Rearranging and dividing throughout by (ipr)2  in (2.55) we get, 

Equation (2.57) represents the equation of a family of hyperbolas. Given the 

values of 'a' and 'L', the family of hyperbolas can be plotted for different values 

of p's. The family of curves intersect at a point (2,77,7p, (Koa)mnp). The resonance 

frequencies are then given by, 



Figure 2.4: Expanded DR model 
C 

2.1.4 Perturbational Method 

The electromagnetic field in the Cohn model of-the DR, shown in the Fig. 2.1 

and Fig. 2.2, is zero everywhere outside the PMC wall(i.e. for p > a). But in 

reality the tangential field outside cylindrical surface of the resonator is the same as 

the tangential field inside that surface, and gradually decreases, as we move away 

radially from the surface. Thus a part of the stored electric and the magnetic field 

exists in the region p > a, and this part of the energy was neglected by the Cohn's 

second order model. 

To improve the model, we retain the same electric and magnetic fields inside 

p < a as for the PMC model of the Fig. 2.1. However, the PMC wall is removed and 

is postulated that outside tangential electric field is continuous at p = a with the 

inside tangential field. The expanded DR model consists of six regions, as shown in 

Fig. 2.4. The electric field in this region is the same as in the Cohn model: 
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The multiplicative factors are selected in such a way that 4 is continuous over the 

interfaces between regions 1 and 6, and between regions 2 and 6. The field in the 

outer regions 3, 4, and 5 are now selected in such a way that the radial dependence 

will be determined by the modified Bessel functions, which are monotonically de-

caying with increasing radius. The axial dependence should be the same as in the 

inner regions 1, 6 and 2. Thus, the electric fields are: 

Similarly the magnetic field in each region can be computed by using the Maxwell 

equation. Also it was seen that lizs(p = a) = 0, whereas Hz4  has no zero and hence 

Hz  is not continuous [4]. Thus it shows that this model is far from perfect. A crude 

approximation is made here to make the magnetic field continuous by assuming 

that Hz,3  = 0 Hz4  = 0 and Hz5  = 0 for p > a. 

17 



Figure 2.5: Perturbed DR (before and after) 

The resonant frequency of a perturbed DR is found as follows. Before the 

perturbation the resonant frequency of the cavity is denoted as "wo" and the fields 

?by Eo  and Ho. If now the cavity is disturbed or pushed inward by an amount 6v, 

the resonant frequency change is given by (refer Fig. 2.5), 

In Fig. 2.5, the Av volume of the regions 3, 4, and 5 have been moved 

outward instead of inward. The resonant frequency wr  of the perturbed resonator 

is given as (Wm  and We  are the magnetic and electric energies), 

The computer program 1 listed at the end, written in BASIC language com-

putes the resonant frequency, for the Cohn model and the Perturbational method. 

It also plots the fields distribution as a function of the z-coordinates and also it 

gives the energy distribution table in the various regions. 

18 



2.1.5 Simplification of the model 

From the perturbational correction to the Cohn's model it was seen that Hz4 and 

Hz6 were not continuous at p = a, and also a crude approximation was made that 

Hz4=0 for p > a. The analysis of the model can be simplified by ensuring the 

continuity of both electric and magnetic field, tangential to the surface between 

regions 4 and 6 [5], [6]. 

When we try to equate the fields tangential to the surface at the interface at 

p = a we can come across a matrix "F" which is a 4 x 4 matrix [4], which is further 

split into the following. 

Where J, is the Bessel's function of the first kind and K, is the modified 

Bessel's function. e,. is the dielectric constant of the dielectric rod. "Ko" is the free 

space propagation constant, and 'a' is the radius of the rod. 

There are only finite number of eigenvalues for any specified 'm'. Another 

subscript 'n' is therefore chosen to enumerate the eigenvalues. Hence X,,,„ denote 
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the eigenvalues. If m=0, F3 vanishes and hence (2.68) splits into two equations, as 

The requirement for continuity of the fields in the dielectric rod waveguide 

leads to the following eigenvalue equation for the TE,, modes [3]: 

when eigenvalue Kpia is known, the propagation constant of the dielectric 

rod waveguide is computed from, 

Furthermore, it is postulated that fields in the regions 3 and 5 is zero every-

where. The fields regions in the 1 and 2 should be selected so that the Maxwell's 

equations, the boundary conditions, and the continuity betweens these regions are 

maintained. 
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al, a2 , 01, 02 are the same as described in Cohn model. The continuity of the 

electric and magnetic field leads to the same equation (2.46). The difference here is 

that /3 is now determined by equation (2.77) in terms of the eigenvalue Kola, which 

must be satisfy the transcendental equation (2.75), whereas in the Cohn model, 0 

was given by the equation (2.31) and the eigenvalue was a constant x01=2.4048. 

In the Cohn model, the Hz  field, which is given by the Bessel function .7.0(Kpr) 

vanishes at p = a, but for the simplified model Kola is larger, so Hz  turns out to 

be negative at the resonator surface. Outside the dielectric, the radial dependence 

of Hz  is specified by the monotonically decaying function Ko(Kp2p). For shielded 

DR this model had errors smaller than 2%. However, for an isolated DR the error 

is much larger. 

2.1.6 Numerical solution of the pair of Transcendental equa-
tions 

For an assumed value of frequency, an auxiliary constant "yo" is computed 

using equation (2.72). Then the approximated eigenvalue is obtained as follows: 

The attenuation constants for the regions 1 and 2 given by equations (2.32) 

and (2.33) respectively. The common propagation constant for region 4 and 6 is 
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calculated using equation (2.77). Then finally the length L is calculated using 

equation (2.82). 

For simplicity we denote the implicit functions by f(x,y) and g(x,y) where 

x and y are two independent variables. We are looking for a point (x,y) at which 

both, 

In the vicinity of the solution f and g will be approximated by the linear 

equations: 

The intersection of the above straight lines got by substracting (2.89) from 

(2.88) yielding, 
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Multiplying (2.88) by 4 throughout, 

Thus if the coefficients a, b, c, A, B, C are known, the zero of the equation 

(2.85) can be computed by (2.91) and (2.95). The function f(x,y) is interpreted 

as a three dimensional surface over the x,y plane. If x and y are very small, the 

surface is approximated by a plane. The location of the plane is entirely specified 

by evaluating three points. 

The starting point by x = x2  and y = y2  and corresponding value of f is 

denoted by f2. The next point is chosen as xi  = x2  ± Ax, yi  = y2, with the 

corresponding f denoted by A. The third point is selected as x3  = x2  and y3  = 

Y2 + Ay, with corresponding function denoted by f3. Hence the linear coefficients 

from (2.86) are as follows; 
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The search consists of evaluating the functions 'f' and 'g' at three close 

points, computing the linear coefficients from (2.99) to (2.104) and then shifting 

the new points given by (2.91) and (2.95). The procedure is repeated again. The 

two variables x and y are selected as, 

The argument of the modified Bessel function as in (2.83) is denoted as 

Kp2a = z. The two implicit functions are defined in accordance with (2.83) and 

. . 

The search is rapid and after three to four iterations we acheive an accuracy 

of 10'. If the starting point is far from correct solution, function 'f' and 'g' may 

depart from the linear model, the first computed by (2.91) and (2.95) may be too 

large, and the point may fall outside the feasible range. This situation may be 

seen as an attempt to evaluate the square root of a negative number as in (2.76). 

If this occurs the search algorithm (program 2) reduces the steps by half and the 

procedure is repeated. 

2.1.7 Variational improvement of the simplified model 

The variational formula is used to compute the resonant frequency of the resonant 

cavity. We have seen that the variational expressions contain some ratio of energies 
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Figure 2.6: Variational model 

stored inside the resonator volume. The advantage of the variational formula is 

that the small inaccuracies in the field, distribution have a negligible effect on the 

resulting value of the frequency. The improvment of the simplified model was 

achieved by choosing the electric field in the corner regions according to (2.63) 

and (2.64). Then the electric field in regions 3 and 5 becomes continuous over the 

interfaces with the inner regions. Equations (2.63) and (2.64) do not satisfy the 

Helmholtz wave equation. Hence the magnetic field in the region 3 and 5 is left to 

be zero. However, to account for the sudden jump of the tangential magnetic field 

from zero to a finite value in the neighbouring regions, surface electric currents J, 

are added on the interfaces, as shown in the Fig. 2.6. The variational formula for 

computing the resonant frequency of the model is derived by using the Rumsey's 

reaction concept [7). The electric field is got from the self-reaction: 
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Substituting (2.108) and (2.109) in (2.107), we get 

CI is the unit vector, normal to the surface, pointing out of the inner region of the 

cavity. Using the vector identity, 

0 
for the above integral, we get the following variational formula: 

The surface integral of the above equation is evaluated only on which Js  exists. For 

the isotropic dielectric materials, the Helmholtz wave equation is [7] 

where the propagation constant of the medium is 

In the above equation wo  is the frequency of the simplified model. From (2.112) 

the individual volume integrals in the denominator are denoted by Di  (subscript 'i' 

stands for the region i=1 to 6): 
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Similarly, the volume integrals in the numerator of the equation (2.112) are denoted 

by Ni  : 

Using the analytical approach which includes integration of hyperbolic functions, 

integration of trignometric functions and integration of Bessel functions [3], we get 

the resonant frequency w,. as: 

Ng and Nv  are the surface integral terms (subscript H and V signifying the hor-

izontal and vertical interfaces, respectively, as shown in Fig. 2.6). The computer 

program 2 listed at the end evaluates the approximate resonant frequency by the 

variational method. Also, besides the resonant frequency, the program also evalu-

ates the Q factor due to resistive losses in the two shielding plates. 

2.1.8 Results and discussions 

The following results for TE018  and TE01,1+,5  modes have been discussed using pro- 

gram 1 (which is listed at the end) and Fig. 2.4. 

Case 1) 

Frequencies: For TE01,5  mode the frequency of Cohn as run by the program 

was found to be 4.6GHz. The perturbational frequency was found to be 4.855GHz. 

For the TE01,1+8  mode, frequency of Cohn and Perturbational were found to be 
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7.685GHz and 8.194GHz respectively. Thus we could that change of modes greatly 

influenced the resonant frequency. 

Energy distribution: For TE03.o  mode the percentage magnetic energy stored 

in the region 1, 2, 3 and 5 are greater than that for TE01.0.+b  mode. But in the region 

4 the percentage stored magnetic energy is almost double in TE03.0.4.6  mode. This 

gives us the idea that radial magnetic coupling for TEca,11-6  mode would be more 

than that for TE03.5. In region 6, for both the modes, the percentage stored electric 

and magnetic energies are almost the same. The energy distribution for both the 

TEols and TEof,f-Fs  modes, it was, seen that approximately 97% the electric energy 

and 63% of the magnetic energy is stored within the resonator. Also regions 1 and 2 

have relatively large magnetic fields. So, one way to couple strongly to the resonator 

would be, to place some magnetic coupling mechanism in the regions 1 or 2. 
• 

Field distribution: The horizontal co-ordinate represents the distance in the 

z-direction, and the vertical co-ordinate represents the relative field amplitude. For 

T.E03.6  mode the Hz, E, fields have the same sign everywhere in space, but this not 

true for T.E01,1.+.5  mode. For T.E01.6  the Hz, E4, component is an odd function of z, 

while Hp  component is an odd function of z. The greatest intensity for either field 

is concentrated within the resonator, and only rapidly decaying field exists outside 

the dielectric region. At z=L/2 distance, inside the DR the Hz, Ecb  component has 

maximum amplitude, but Hp  component is almost zero. But for TE01,1.+6  mode the 

case is almost the opposite. Also for TE01,3.+6  mode the Hz, Es component has a 

maximum at z=0 and a minimum at z=L. 

Case 2) 

Ers = 38, a=5.25nam, L=4 6mm. 
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eri =1,  Li = 2.3 

Er2 = 17  L2 = 15 

Here the left hand PEC wall is brought closer to the resonator by selecting L1  = L/2. 

Frequencies: Both the frequencies (Cohn model and Perturbational method) 

of TE015  and TE01,14.6  have increased by a small amount, though not very signifi-

cantly. 

Energy distribution: We could observe that for TE018  mode the electric 

energy is approx. 98% and magnetic energy is approx. 61% within the dielectric 

resonator. For TE01,14.8  mode the electric and magnetic energies are approx. 97.82% 

and 63% respectively within the DR. 

Field distribution: Here the Hz, E,/, field components are even functions of 

z, and Hp  component is an odd function of z for TE015  mode. For TE01,1+6  the 

maximum amplitude of Hz, E0  occurs at about z=0.1L, and drops as distance L 

increases. But Hp  component has a maximum at about z=0.6L. The maximum of 

the Hz, Egs  field is no longer in the right for the TE015  mode. One most important 

fact that is observed in case of TE013+6  mode is that the Hz, E0  and Hp  field 

components have crossovers, which looks as if they interact at some specific point. 

But this is not observed for TEois  mode except when two metal plates are touching 

the ends of the DR. In this case the crossover of Hz, E0  and Hp  is at approximately 

z=0.3L within the DR. 

Case 3) 

67-6 = 38, a=5.25mm, L=4.6mm 

erl = 1 = 0.0001mm 

67-2 = 1,L2 = 1571/777, 
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Here the DR is placed on the metal wall which is to the R.H.S. 

Frequencies: The frequencies of the both TEols  and TE01,1±Ita  modes have 

increased, for both the models. 

Energy distribution: The stored electrical and magnetic energies for both 

TE016  and TE01,1+&  modes in the regions 1, 2, 3 and 5 are zero. The region 2 has 

got a large amount of magnetic energy compared to the rest of the regions. The 

electrical and magnetic energies within the DR for both modes have increased, as 

compared to the previous cases. 

Field distribution: The center of HZ , E0  component for TEois mode has 

shifted much to the right. The Eb ,11z  field component are zero on the left face of 

the resonator. The reason for this is that the tangential electric field on the surface 
a 

of the PEC must vanish. This is true for TE01,5 and TEoi,i+s  modes. In case of 

TE01,1+s mode there is a crossover of Hz, Eps  and Hp  component at z=0.4L. There 

is a kink or notch like structure observed in case of Hp  field at z=0.9L. 

Case 4) 

ETs = 38, a=5.25mm, L=4 6mm 

= 1, L1  = 0.0001mm 

Erg = 1, L2 = 0.0001mm 

In this case both the metal walls are touching the resonator. 

Frequencies: The frequencies for both TE015  and TE01,1+6  modes have been 

increased. This indicates that as the metal plates come closer to the resonator the 

frequency increases. 

Energy distribution: The electrical and magnetic energies in the regions 1, 
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2, 3 and 5 were found to be zero. 

Field distribution: The Hz, Ecb  field components are zero on the left and 

right faces of the resonator. In case of TE016 mode the field variation consists of 

exactly one half wavelength. In case of TE01,14.6  mode, it exhibits more than one 

half wavelength variation in the z-direction, within the resonator. 

Case 5) 

ETs = 70, a=5.25mm, L=4 6mm 

Er1 =1,L1=15mm 

Erg = 1, L2 = 15mm 

When L1  and L2 are greater than. 3 times L, then the situation resembles as if the 

two metal plates are at infinity. The frequency for TE0is is observed to be less than 

that for TEo1,1+6  mode. 

Field distribution: In TE016  mode the Hz, Es field component has the same 

sign everywhere, but in case of Hp  field component it is not so. Hz  is an even function 

of z, whereas Hp  is an odd function of z. The fields fade away as we go away from 

the resonator on the either sides. In between L/2 < z < L the Hp  component 

increases and reaches its maximum, whereas Hz , Ect, slopes go down from its peak 

to approximately 60% of its maximum value. The peaks are broader in case of 

TE016  mode for Hp, Ecb Hz  field components, but in case of TE01,1+5  mode the peaks 

are narrower for the same field components. There is a crossover of the Hp  and 

Hz, Eci, field components at about z=0.35L. The Hz, E4, field components undergo a 

maximum positive peak amplitude to a minimum negative peak amplitude within 

0.1L < z < 0.9L. 
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Case 6) 

ers = 103, a=5.25mm, L=4 6mm 

= 1, L1  = 15mm 

42 = 1, L2  = 15mm 

Frequency of TEolo  mode is less than T.E01,1+6  mode. 

The maximum amount of stored electrical and magnetic energies are con-

centrated within the DR region. Magnetic coupling would be advantageous as the 

magnetic energy is greater in the regions 1 and 2, hence fields would be stronger. 

The field distribution is almost the same as in case of case 5. 

Case 7) 

ers = 70, a=5.25mm, L=4 6mm 

eri = 1, L1  = 2.3mm 

= 1, L2  = 15mm 

Frequency of TE018  mode is greater than that of TE016  mode. 

Stored electrical energy for region 6 is a little greater in case of TE016 mode. 

For region 1, TE018  mode has greater energy than that of TE01,1+&  mode. But it is 

opposite in case of region 2. Magnetic energy stored in region 6 for TE016  mode is 

greater than that of T.E01,1+8 mode. Magnetic coupling is advantageous as for the 

reasons discussed earlier. 

The fields Hz, E4, peaks has slightly shifted to the right, also the crossover 

point of Hp  from its negative to its positive peak has shifted to the right in case of 

T.E01,5  mode. In case of TEo3.,1+6 mode there is a small amount of flattening of the 

33 



positive peak in case of Hz, E0  field components. Also after L < z < L2  the curve 

of Hz, E0  has a change of slope, as seen in the field distribution curve. In TE018  

mode the relative amplitude of the Hp  component is much smaller than the Hz, Eck  

component. 

Case 8) 

= 103, a=5.25mm, L=4.6mm. 

eri  = 1, L1  = 2.3mm 

ere = 1, L2  = 15772M 

Most of the observations were similar to that of case 7, which is discussed above. 
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&16dOL 
INPUT DATA 
er= 38 a= 5.25 L= 4.6 LMODE= 0 
erl= 1 L1= 15 

-2= 1 L2= 15 
mCCURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
COUNTING.... 1 
COUNTING.... 2 
COUNTING.... 3 
COUNTING.... 4 
COUNTING.— 5 
COHN'S MODEL 
FREQ(COHN)= 4.600455 GHz 
PERTURBATIONAL RESULT 
FREQ(PERT)= 4.855179 GHz 
CANT TO PLOT THE FIELD? (Y OR N) 

CANT ENERGY TABLE DISTRI.? (Y OR N) 

)k 

LLIST 2RUN4-.  3LOAD" 4SAVE" 5CONT4- 6,"LPT1 7TRON4- 8TROFF4- 9KEY OSCREEN 

Case 1 



16dOL 
ANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

eps(j) we(j)% wm(j)% 

1.00 1.00 0.33 13.22 
2.00 1.00 0.33 13.22 
3.00 1.00 0.16 3.19 
4.00 1.00 1.27 4.88 
5.00 1.00 0.16 3.19 
6.00 38.00 97.74 62.29 

LIST 2RUIT4-' 3LOAD" 4SAVE" 5CONT4- 6,"LPT1 7TRON4- 8TROFF4- 9KEY OSCREEN 

Case 1 



Case 1) Field distribution 



il6dOL 
ENPUT DATA 
Br= 38 a= 5.25 L= 4.6 LMODE= 0 
Br1= 1 L1= 2.3 

'2= 1 L2= 15 
ICCURCY OF SOLVING TRANSC. EQ. • 6 DIGITS 
MUNTING.... 1 
MUNTING.... 2 
!OUNTING.... 3 
MUNTING.... 4 
MUNTING.... 5 
:OHM'S MODEL 
7REQ(COHN)= 4.68649 GHz 
DERTURBATIONAL RESULT 
PREQ(PERT)= 5.002105 GHz 
IANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

)k 

_LIST 2RUN4-' 3 LOAD" 4SAVE" 5CONT:- 6, "LPT1 7TRON+- BTROFF+- 9KEY OS CREEN 

Case 2 



&16dOL 
WANT ENERGY TABLE DISTRI.? (Y OR N) 
? Y 

eps(j) we(j)% wiri(j)% 

1.00 1.00 0.16 12.52 
2.00 1.00 0.36 13.50 
3.00 1.00 0.07 4.50 
4.00 1.00 1.22 5.39 
5.00 1.00 0.17 3.12 
6.00 38.00 98.02 60.97 

Case 2 



Case 2) Field distribution 



0.6dOL 
INPUT DATA 
Br= 38 a= 5.25 L= 4.6 LMODE= 0 
Br1= 1 L1= .0001 

-2= 1 L2= 15 
.kCCURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
MUNTING.... 1 
:OUNTING.... 2 
MUNTING.... 3 
MUNTING.... 4 
MUNTING.... 5 
=N'S MODEL 
1ZEQ(COHN)= 5.249831 GHz 
DERTURBATIONAL RESULT 
PREQ(PERT)= 5.659552 GHz 
TINT TO PLOT THE FIELD? (Y OR N) 

7ANT ENERGY TABLE DISTRI.? (Y OR N) 

Case 3 



&16d0L 
PANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

.eps(j) we(j)% win (j ) % 

1.00 1.00 -0.00 0.00 
2.00 1.00 0.58 16.93 
3.00 1.00 -0.00 0.00 
4.00 1.00 0.98 11.29 
5.00 1.00 0.22 3.11 
6.00 38.00 98.22 68.67 

Case 3 



Case 3) Field distribution 
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d6dOL 
INPUT DATA 
tr= 38 a= 5.25 L= 4.6 LMODE= 0 
x1= 1 L1= .0001 
2= 1 L2= .0001 

LCCURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
2UNTING.... 1 
*PUNTING.— 2 
'OUNTING.... 3 
:OUNTING.... 4 
=TING—. 5 
'OHN'S MODEL 
'REQ(COHN)= 6.369274 GHz 
ERTURBATIONAL RESULT 
TEQ(PERT)= 6.961879 GHz 
'ANT TO PLOT THE FIELD? (Y OR N) 

'ANT ENERGY TABLE DISTRI.? (Y OR N) 

Case 4 



&16c1OL 
ANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

eps(j) we(j)% wut(j)% 

1.00 1.00 -0.00 0.00 
2.00 1.00 -0.00 0.00 
3.00 1.00 -0.00 0.00 
4.00 1.00 0.73 16.21 
5.00 1.00 -0.00 0.00 
6.00 38.00 99.27 83.78 

k 

Case 4 



Case 4) Field distribution 



INPUT DATA 
er= 70 a= 5.25 L= 4.6 LMODE= 0 
erl= 1 L1= 15 
-r2= 1 L2= 15 
..TURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
20UNTING.... 1 
20UNTING.... 2 
20UNTING.... 3 
COUNTING.... 4 
20UNTING.... 5 
2OHN'S MODEL 
FREQ(COHN)= 3.394764 GHz 
PERTURBATIONAL RESULT 
?REQ(PERT)= 3.593789 GHz 
i'ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

)k 

LLIST 2RUN;' 3LOAD" 4SAVE" 5CONT; 6,"LPT1 7TRON; 8TROFF; 9KEY OSCREEN 

Case 5 



gANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

ePs(j) we(j)% wm(j)% 

1.00 1.00 0.18 13.15 
2.00 1.00 0.18 13.15 
3.00 1.00 0.09 3.15 
4.00 1.00 0.69 4.88 
5.00 1.00 0.09 3.15 
6.00 70.00 98.78 62.51 

)k 

LIST 2RUN;!.  3LOAD" 4SAVE" 5CONT; 6,"LPT1 7TRON; 8TROFF; 9KEY OSCREEN 

Case 5 



Case 5) Field distribution 



NPUT DATA 
r= 103 a= 5.25 L= 4.6 LMODE= 0 
r1= 1 L1= 15 
r2= 1 L2= 15 
CURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 

OUNTING.... 1 
OUNTING.... 2 
OUNTING.... 3 
OUNTING.... 4 
OUNTING.... 5 
OHN'S MODEL 
REQ(COHN)= 2.80021 GHz 
ERTURBATIONAL RESULT 
REQ(PERT)= 2.967771 GHz 
ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

k 

LIST 2RUNC 3LOAD" 4SAVE" 5CONT; 6,"LPT1 7TRON; 8TROFF; 9KEY OSCREEN 

Case 6 



41ANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

eps(j) we(j)% wili(j)% 

1.00 1.00 0.12 13.13 
2.00 1.00 0.12 13.13 
3.00 1.00 0.06 3.14 
4.00 1.00 0.46 4.87 
5.00 1.00 0.06 3.14 
6.00 103.00 99.18 62.60 

>I( 

Case 6 



Case 6) Field distribution 



INPUT DATA 
er= 70 a= 5.25 L= 4.6 LMODE= 0 
er1= 1 L1= 2.3 
2= 1 L2= 15 

tICCURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
COUNTING.... 1 
:OUNTING.... 2 
:OUNTING.... 3 
MUNTING.... 4 
20UNTING.... 5 
:OHN'S MODEL 
?REQ(COHN)= 3.457059 GHz 
DERTURBATIONAL RESULT 
?REQ(PERT)= 3.698976 GHz 
ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

)k 

Case 7 



ANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

eps(j) we(j)% wm(j)% 

1.00 1.00 0.09 12.51 
2.00 1.00 0.19 13.41 
3.00 1.00 0.04 4.43 
4.00 1.00 0.66 5.37 
5.00 1.00 0.09 3.09 
6.00 70.00 98.93 61.19 

1c 

Case 7 



Case 7) Field distribution 



:NPUT DATA 
?Jr= 103 a= 5.25 L= 4.6 LMODE= 0 
?r1= 1 L1= 2.3 
-2= 1 L2= 15 
-2CURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
MUNTING.... 1 
MUNTING.... 2 
MUNTING.... 3 
MUNTING.... 4 
:OUNTING.... 5 
!OHN'S MODEL 
'REQ(COHN)= 2.851218 GHz 
)ERTURBATIONAL RESULT 
'REQ(PERT)= 3.053543 GHz 
IANT TO PLOT THE FIELD? (Y OR N) 

TANT ENERGY TABLE DISTRI.? (Y OR N) 

Case 8 



PANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

eps(j) we(j)% win(j)% 

1.00 1.00 0.06 12.51 
2.00 1.00 0.13 13.38 
3.00 1.00 0.03 4.40 
4.00 1.00 0.45 5.36 
5.00 1.00 0.06 3.07 
6.00 103.00 99.28 61.27 

ik 

Case 8 



Case 8) Field distribution 



cl6dOL 
INPUT DATA 
.r= 38 a= 5.25 L= 4.6 LMODE= 1 
,r1= 1 L1= 15 

2= 1 L2= 15 
A.CURCY OF SOLVING TRANSC. EQ. • 6 DIGITS 
'OUNTING.... 1 
'OUNTING.... 2 
'OUNTING.... 3 
'OUNTING.... 4 
'OUNTING.... 5 
'OHN'S MODEL 
REQ(COHN)= 7.684845 GHz 
ERTURBATIONAL RESULT 
REQ(PERT)= 8.19373 GHz 
ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

k 

Case 1 



&16dOL 
ANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

elps(j) we(j)% wm(j)% 

1.00 1.00 0.88 11.80 
2.00 1.00 0.88 11.80 
3.00 1.00 0.19 1.21 
4.00 1.00 0.56 10.02 
5.00 1.00 0.19 1.21 
6.00 38.00 97.30 63.97 

k 

Case 1 



Case 1) Field distribution 



cl6dOL 
INPUT DATA 
r= 38 a= 5.25 L= 4.6 LMODE= 1 
:r1= 1 L1= 2.3 
'2= 1 L2= 15 
,CURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
'OUNTING.... 1 
'OUNTING.... 2 
'OUNTING.... 3 
OUNTING.... 4 
OUNTING.... 5 
OHN'S MODEL 
REQ(COHN)= 7.830875 GHz 
ERTURBATIONAL RESULT 
REQ(PERT)= 8.37872 GHz 
ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

k 

Case 2 



&16dOL 
fANT ENERGY TABLE DISTRI.? (Y OR N) 
' Y 

eps(j) we(j)% wm(j)% 

1.00 1.00 0.45 12.74 
2.00 1.00 0.89 11.39 
3.00 1.00 0.10 2.07 
4.00 1.00 0.55 9.72 
5.00 1.00 0.19 1.14 
6.00 38.00 97.82 62.94 

qc 

Case 2 



Case 2) Field distribution 



&16dOL 
INPUT DATA 
er= 38 a= 5.25 L= 4.6 LMODE= 1 
er1= 1 L1= .0001 
72= 1 L2= 15 
-CCURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
COUNTING.... 1 
COUNTING.... 2 
COUNTING.... 3 
COUNTING.... 4 
COUNTING.... 5 
COHN'S MODEL 
FREQ(COHN)= 9.24841 GHz 
PERTURBATIONAL RESULT 
FREQ(PERT)= 9.863364 GHz 
WANT TO PLOT THE FIELD? (Y OR N) 
7 

WANT ENERGY TABLE DISTRI.? (Y OR N) 
7 

Dk 

Case 3 



&16dOL 
VANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

elps(j) we(j)% wm,(7)% 

1.00 1.00 -0.00 0.00 
2.00 1.00 1.11 10.02 
3.00 1.00 -0.00 0.00 
4.00 1.00 0.46 11.45 
5.00 1.00 0.20 0.80 
6.00 38.00 98.23 77.73 

Case 3 



Case 3) Field distribution 



cl6dOL 
:NPUT DATA 
r.=. 38 a= 5.25 L= 4.6 LMODE= 1 
:r1= 1 L1= .0001 
" -2= 1 L2= .0001 
--CURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
:OUNTING.... 1 
:OUNTING.... 2 
:OUNTING.... 3 
:OUNTING.... 4 
:OUNTING.... 5 
:olEa's MODEL 
TEQ(COHN)= 11.1583 GHz 
'ERTURBATIONAL RESULT 
TEQ(PERT)= 11.8543 GHz 
TANT TO PLOT THE FIELD? (Y OR N) 

TANT ENERGY TABLE DISTRI.? (Y OR N) 

)k 

Case 4 



&16dOL 
WANT ENERGY TABLE DISTRI.? (Y OR N) 
? Y 

eps(j) we(j)% wm(j)% 

1.00 1.00 0.00 0.00 
2.00 1.00 0.00 0.00 
3.00 1.00 0.00 0.00 
4.00 1.00 0.37 11.39 
5.00 1.00 0.00 0.00 
6.00 38.00 99.63 88.61 

Dk 

Case 4 



Case 4) Field distribution 



INPUT DATA 
er= 70 a= 5.25 L= 4.6 LMODE= 1 
erl= 1 Ll= 15 
erg= 1 L2= 15 
ACCURCY OF SOLVING TRANSC, EQ. : 6 DIGITS 
COUNTING.... 1 
COUNTING.. 2 
COUNTING,... 3 
COUNTING..., 4 
COUNTING.... 5 
COHN'S MODEL 
FREQ(COHN)= 5,68469 GHz 
PERTURBATIONAL RESULT 
FREEPERT)= 6.072447 GHz 
WANT TO PLOT THE FIELD? (V  OR N) 

WANT ENERGY TABLE DISTRI.? (Y OR N) 
'? 
Ok 

Case 5 



ANT ENERGY TABLE DISTRI.? (Y OR N) 
Y 

eps(j) we(j)% wirt(j)% 

1.00 1.00 0.46 11.65 
2.00 1.00 0.46 11.65 
3.00 1.00 0.10 1.22 
4.00 1.00 0.31 9.96 
5.00 1.00 0.10 1.22 
6.00 70.00 98.57 64.30 

Case 5 



Case 5) Field distribution 



:NPUT DATA 
:r= 103 a= 5.25 L= 4.6 LMODE= 1 
:r1= 1 L1= 15 
,1-2= 1 L2= 15 
.CURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
:OUNTING.... 1 
:OUNTING.... 2 
:OUNTING.... 3 
:COUNTING.— 4 
!OUNTING.... 5 
'OHN'S MODEL 
REQ(COHN)= 4.693314 GHz 
ERTURBATIONAL RESULT 
'REQ(PERT)= 5.016868 GHz 
ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

4c. 

Case 6 



WANT ENERGY TABLE DISTRI.? (Y OR N) 
?Y 
j eps(j) we(j)X wm(j)Y. 

1.00 1.00 0.31 11.60 
2.00 1.00 0.31 11.60 
3,00 1.00 0.07 1,22 
4,00 1.00 0.21 9.94 
5.00 1.00 0.07 1.22 
6.00 103.00 99.04 64,42 

Ok 

Case 6 



Case 6) Field distribution 



ENPUT DATA 
Br= 70 a= 5.25 L= 4.6 LMODE= 1 
Br1= 1 L1= 2.3 
'r2= 1 L2= 15 

!CURCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
MUNTING.... 1 
MUNTING.... 2 
MUNTING.... 3 
MUNTING.... 4 
MUNTING.... 5 
:MINIS MODEL 
'REQ(COHN)= 5.787344 GHz 
PERTURBATIONAL RESULT 
'REQ(PERT)= 6.200962 GHz 
1ANT TO PLOT THE FIELD? (Y OR N) 

IANT ENERGY TABLE DISTRI.? (Y OR N) 

)k 

Case 7 



CANT ENERGY TABLE DISTRI.? (Y OR N) 
? Y 

eps(j) we(j)% wm(j)% 

1.00 1.00 0.25 12.66 
2.00 1.00 0.47 11.25 
3.00 1.00 0.05 2.04 
4.00 1.00 0.30 9.67 
5.00 1.00 0.10 1.15 
6.00 70.00 98.84 63.23 

Case 7 



Case 7) Field distribution 



NPUT DATA 
r= 103 a= 5.25 L= 4.6 LMODE= 1 
r1= 1 L1= 2.3 
r2= 1 L2= 15 
.URCY OF SOLVING TRANSC. EQ. : 6 DIGITS 
OUNTING.... 1 
OUNTING.... 2 
OUNTING.... 3 
OUNTING.... 4 
OUNTING.... 5 
OHN'S MODEL 
REQ(COHN)= 4.776432 GHz 
ERTURBATIONAL RESULT 
REQ(PERT)= 5.120466 GHz 
ANT TO PLOT THE FIELD? (Y OR N) 

ANT ENERGY TABLE DISTRI.? (Y OR N) 

k 

Case 8 



WANT ENERGY TABLE DISTRI.? (Y OR N) 
? Y 
j ePs(j) we(j)% wm(j)% 

1.00 1.00 0.17 12.63 
2.00 1.00 0.31 11.20 
3.00 1.00 0.04 2.02 
4.00 1.00 0.20 9.65 
5.00 1.00 0.07 1.15 
6.00 103.00 99.22 63.34 

Ok 

Case 8 



Case 8) Field distribution 



Chapter 3 

3.1 Introduction 

The recent advanced technology has produced GaAsFET oscillator to function as a 

high efficiency and low operational voltage solid state microwave oscillator [18] [19]. 

An oscillator is specifically a system which consists of a passive circuit (typically 

DR mounted near a microstrip transmission line), and of an active device, which 

produces the oscillation. The oscillations occur at'the frequency where the suscep-

tance of the active device is equal and opposite to the susceptance of the passive 

circuit. In order to ensure that the oscillation frequency does not depend on the 

temperature, the temperature coefficient of the passive circuit susceptance must be 

equal and opposite to the temperature coefficient of the active device susceptance. 

The use of a dielectric resonator, made of Barium tetratitanate ceramic com-

pound, coupled to the oscillator drain output terminal gives an enhanced temper-

ature stability and very low loss characteristics of such oscillators. Also, the small 

size, easy coupling and tunability makes these very popular microwave device com-

ponents. GaAsFET oscillators are expected to be less noisy, more efficient and more 

flexible to design than other solid-state oscillators. The dielectric material used for 

the resonator is a low-loss ceramic compound, mainly consisting of BaTi4O9. The 

microwave characteristics of this dielectric material can be determined by measuring 
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the resonant frequency for any T Em„p  for cylindrical resonator short circuited with 

metal plates on both sides. The above ceramic material has an expansion coefficient 

and dielectric constant temperature coefficient that offset each other and result in 

a small resonant frequency temperlture coefficient. 

Here in this, a typical GaAsFET oscillator integrated with a dielectric res-

onator is considered as shown in Fig. 3.1. For designing a stabilized FET oscillator, 

frequency temperature coefficient, pushing figure, pulling characteristics, stabiliza-

tion range width etc. have to be taken into account. These performances depend 

strongly on the coupling constant between the resonant circuit and the transmis-

sion line. We have developed a computer aided design procedure for such stabilized 

oscillator circuits. The procedure also incorporates the numerical calculation of the 

resonant frequency of the dielectric resonator based on its physical dimensions such 

as the dimensions of the resonator itself, the air gap between the DR and the top 

wall and the substrate thickness. The dynamic characteristics of these oscillators 

are investigated. Especially the studies have been made about the stabilized oscil-

lator temperature coefficient. The results of these investigations are presented and 
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compared with the experimental values. These results are important for precise 

custom made design of such oscillators [8]. 

3.1.1 Analysis 

A typical oscillator circuit, considered here is shown in Fig. 3.2. The dielectric 

resonator is coupled to the 50f2 microstrip line :which is connected to the output 

terminal. When a dielectric resonator is placed in the vicinity of a microstrip line 

on the alumina substrate, magnetic coupling between the resonator and the line is 

caused. Coupling constant increases if distance 91," between resonator edge and 

microstripline edge decreases, this is shown in Fig. 3.3. It can be shown that the 

dielectric resonant circuit is expressed as a high 'Q' parallel resonant circuit coupled 

to the transmission line of characteristic impedance zo  = 50n (Fig. 3.3). 

A block diagram of a stabilized oscillator is shown in Fig. 3.4. The dielectric 

resonator is placed in the vicinity of a 50S2 microstripline, is connected to the drain 

end of the active subnetwork. 
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Figure 3.4: Stabilized oscillator 
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3.1.2 Theoretical aspects of the oscillator stabilization 

Stabilization of a solid state microwave oscillator by loading a band rejection filter 

was theoretically investigated by K.Shirahata [9]. 

When a resonant circuit is coupled to a transmission line terminated by a 

load with reflection coefficient I'S°, then the oscillation frequency can be obtained 

by equating the total susceptance 'B' to zero, under the condition that 8.131f > 0. 

fo  = unstabilized oscillator oscillation frequency. 

Qo  = unstabilized oscillator external Q values. 

fr  = resonant circuit resonant frequency. 

= resonant circuit Q value. 

= coupling constant between resonant circuit and the transmission line. 

In the equation (3.1), jer /fo  is approximated as unity. When the terminating 

load is a non-reflecting load and subsequently the expression for unstabilized oscil-

lator frequency (normalized to resonant circuit resonant frequency) as a function 

of the coupling constant can be obtained. Since it is a non-reflecting load, the re-

flecting load, the reflection coefficient iri=o, hence ad-jb=0 from (3.2) i.e. a=b=0. 
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Thus by substituting a=b=0 in (3.1) we get, 

1-hP Jr ' 

The maximum deviation as a function of the coupling coefficient is estimated by 

the above expression. Further, such oscillator circuits also exhibits hysteresis effect 

[4], [10] (i.e. when 8 flblo  and fr  go to infinity). Differentiating both sides of 

(3.8), derivatives (g) and (#) 
1 

are obtained as follows, 
vJo v.11" 4, 

From (3.8) differentiating both sides w.r.t. fo  and keeping fr  constant, 
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Similarly taking derivatives w.r.t. f,. on both sides of (3.8) and keeping fo  constant 

we get, 

Stabilization range with hysteresis effect can be expressed, 

Whereas the stabilization range without hysteresis is given as, 

The above equations (3.19)and (3.20) is due to the unequality Qo  << Qr . 

The stabilization range (with and without) are evaluated as a function of coupling 

constant and the results are presented. Further, the stabilized oscillator tempera-

ture coefficient (p) and the pushing figure (q) can be expressed as a function of the 

coupling coefficient, frequency 'f' and Q value and are given as follows: 
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Substituting values of (3.12) and (3.18) into (3.21) we get, 

After substituting f = fo  = froin the above equation, it gets reduced to, 

Similarly substituting (3.18) into (3.22) and substituting f = f o  = fr  we get, 

Pulling characteristics, when fo  = f r  are obtained by approximately solving 

equation (3.8), on the assumption that Irl << /3, Irl « 1. This shows that when 

unstabilized oscillator oscillation frequency becomes equal to the resonator circuit 

resonant frequency the reflection coefficient is almost zero. 
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Maximum frequency deviation can be_ thought as (Af)pull  = f — fr  and 

sin8 = 1 which is given by, 

The above expressions are evaluated and results are presented. The computer 

aided design procedure presented here incorporates the evaluation of all the above 

dynamic characteristics of such oscillator circuits. The microwave performances of 

these are evaluated in the frequency range 6 - 12GHz. For designing a stabilized FET 

oscillator, frequency temperature coefficient, pushing figure, pulling characteristic, 

stabilization width, and output power level have to be taken into account. These 

strongly depend upon the coupling' constant /3. In the oscillator stabilization by a 

dielectric resonator, /3 is adjusted continuously by changing the resonator position o 
for this the distance q' between the resonator and the line as shown in Fig. 3.3 

has to be selected with great care. A computer program was written to calculate 

the stabilized oscillator temperature coefficient 'p', pushing figure 'q', stabilization 

range 'Acil(SR) with hysteresis, stabilization range 'Ab'(SR) without hysteresis, and 

maximum frequency deviation '0 1'. The result is plotted against 'Da',' Ab' versus 

coupling constant 73' for various values of 'Q,' (resonant circuit Q value) and a 

resonant frequency of 6GHz. One can choose any other resonant frequency and get 

the results from the computer program. These results are used in designing any 

sophisticated microwave system. 

3.1.3 Mechanical tuning of a DR mounted on microstrip 

In many applications, dielectric resonator is mounted on a microstrip substrate, 

and the tuning of the resonant frequency is provided by a tuning screw coming 
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Figure 3.5: Tuning mechanism of a DR mounted on microstrip 
. 

from the top cover, this situation is shown in Fig. 3.5. The operation of the tuning 

mechanism can be explained by the eperturbational principle, equation(2.66). When 

a metal wall of any cavity is moved inward, the change in resonant frequency is 

proportional to the difference in stored magnetic and electric energies within the 

displaced volume Av. If the stored magnetic energy in Av is larger than the stored 

electric energy in the volume Ay, then the resonant frequency would increase after 

the wall has moved inward. 

The above resonant system possesses a rotational symmetry. Thus electric 

field of the mode T.E01,5  has only the cb- component. This E, is tangential to 

the surface of the metal plate at the end of the tuning screw. In the immediate 

vicinity of the plate, the boundary condition requires that the tangential electric 

field to be zero. Hence when the screw is lowered the only displaced stored energy 

is magnetic energy and the resonant frequency has to increase in accordance with 

equation(2.66). While designing a tuning mechanism, it is of interest to determine 

the change of frequency as a function of the distance L2. Obviously smaller the L2, 
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Figure 3.6: Experimental set-up for calculating the oscillation frequency 

larger would be the resonant frequency. However bringing the metal surface of the 

screw closer to the resonator, would produce appreciable surface currents, which in 

turn reduces the Q factor of the resonator. By knowing how much the overall Q 

will deteriorate when the frequency is tuned by a given amount, it becomes possible 

to select materials and their dimensions in such a way that an optimum design is 

acheived. 

An experiment was carried out to measure the oscillation frequency for the 

sample as shown in Fig. 3.5, the block diagram of the set up is as shown in Fig. 

3.6. Length of the tuning screw as measured was 13mm. Number of turns on the 

mechanical tuning screw was 30. Therefore, pitch of the screw was calculated to be 

0.4333mm/turn. The operating voltage of the oscillator was 10Volts and when the 

current was varied to 85mA, the oscillation frequency was observed to be 10.7GHz 

on the microwave frequency counter. The power at that frequency was +18.2dBm. 
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The above measurement was carried out at //2=13mm. When the tuning screw 

was turned in to about, L2=3 5mm the oscillation frequency was observed to be 

10.746GHz. This increase in frequency satisfies the theory as discussed previously. 

The change in frequency was found to be 46 MHz. If we could know the Q, due 

to conductor losses in the two metal plates at a particular value of L2, and then 

by varying L2 if we could get the Q,, it is then possible to select the tuning range 

in which the resonator operates in a satisfactory manner, so that Q, does not drop 

below a certain value from its maximum. Usually tuning ranges acheived in practice 

are between 1% to 5%. 
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-ript started on Thu Oct 12 lf:54:46 1989 
cat man.c 

include <stdio.h> 
include <math.h> 
Lain () 

double templ,temp2,temp3,temp4,temp5,deltaA,deltaB,constant 
deltafp,deltafo,deltafr,deltat,fr,k,beta,qr,qo,gama,p,q; 
double true=0.0; 

{ 
beta = 1; */ 

/* qo = 10; 
qr = 4000; */ 
tempi = 3.1; 
temp2 = -100; 
temp4 = 200; 
gama = 0.13; 
temp5 = 0.7; 

/* fr = 6000; */ 
printf("Input the values for beta,qo,qr,fr"); 
printf("\n"); 
scanf("%f%f%f%f",&beta,&qo,&qr,&fr); 

/* tempi = deltafr/(deltat*fr); */ 
/* temp2 = deltafo/(deltat * fo); */ 

temp3 = 1 + beta*qr / ( (1 + beta)*(1 + beta)*qo); 
constant = temp4; 
p = tempi + temp2/temp3; 
q = temp4/temp3; 
k = temp5 / ( 1 + beta); , 
deltafp = gama * fr /( qr * beta)* 1000; 
deltaA = beta * fr / ( 2 * qo * (1 +. beta)); 
deltaB = 2 * fr * sqrt ((double)(beta /(qr*qo))); 
printf("The output is\n"); 
printf("P=%f ppm/centigrade\n",p); 
printf("Q=%f megahertz/volt\n",q); 
printf("deltaA=%f Mhz\n",deltaA); 
printf("deltaB=%f Mhz\n",deltaB); 
printf("deltafp=%f Khz\n",deltafp); 
printf("k=%f\n", k); 

; 

a.out 
nput the values for beta,qo,qr,fr 
5 10 4000 6000 
he output is 
=1.987515 ppm/centigrade 
=2.224969 megahertz/volt 
a1taA=100.000000 Mhz 
a1taB=42.426407 Mhz 
altafp=390.000000 Khz 
=0.466667 - 

:ript done on Thu Oct 12 11:55:16 1989 





Chapter 4 

4.1 Introduction 

The effects of the variation of different physical parameters in a simple, shielded di-, 

electric resonator structure are discussed in this chapter. The present study uses an 

approximate analytical expression for the resonance frequency stability of dielectric 
e 

resonators. The results are of importance specially in such applications where the 

dielectric resonators are subjected to varying environmental conditions. 

The dielectric resonators are widely used in microwave circuits mainly due 

to its high Q-value, its low loss characteristics and good temperature stability [11], 

[12]. Further the advantage of dielectric resonator is that the size of the DR is 

smaller than the size of an empty resonant cavity at the same frequency as long 

as the relative dielectric constant of the DR material such as barium tetratitanate 

(Ba2Ti409) etc. is much larger than unity. This barium tetratitanate material, 

usually identified as K-38 was developed with a temperature stable dielectric con-

stant of 38. Generally, the dielectric resonators are placed in conductor shields to 

reduce the radiation losses and are placed adjacent to a microstrip line. The dielec-

tric resonator then operates like a reaction cavity which reflects the RF energy at 

the resonant frequency. A typical diagram of such an assembly is shown in Fig. 4.1. 

The dielectric resonator diameter is 'D' and the height of the dielectric resonator 
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Figure 4.1: DR on a substrate 

is 'L'. The relative dielectric constant of the material is considered to be ei. and 

the same for the substrate is chosen as e2. The relative dielectric constant of the 

dielectric resonator is higher than that of the substrate. The alumina substrate is 

not convenient to use at the lower end of the microwave spectrum because of its low 

dielectric constant, also it has high temperature coefficient, in the 120-150ppm/°C 

range. The surrounding material is either air or some other filling like polyfoam. 

One of the main limitations of the dielectric resonators is the environmental depen-

dence of the mechanical and electrical properties of the dielectric as the resonant 

frequency of the system becomes a function of the environmental parameters such 

as temperature and humidity. The proper selection of the materials and the suitable 

combination of the dimensions may result in a temperature-compensated system. 

The other method of reducing the temperature dependence in particular, is by heat 

sinking with Boron Nitride especially in low power applications. However, one needs 

to know the type and extent of the variations of these parameters inorder to be able 

to reduce the effects. For example, the effects of the variations of parameters like 

the dielectric constant el  in the region between the dielectric resonator and the top 
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wall, the diameter of the dielectric resonator, etc. on the frequency of resonance 

are definitely important for many practical applications of the dielectric resonators 

especially when these are used as stabilized oscillators [13]. 

4.1.1 The resonant frequency stability 

In the resonant structure shown in Fig. 4.1. 'D' and 'L' are as defined earlier and 

Ei , e2 , er  are the dielectric constants of the medium shown. 'hi is the gap between 

the dielectric resonator and the top wall and '14 is the thickness of the substrate. 

The resonant conditions for TE modes [14] [15], [16]are analyzed in details 

below and are given as, 
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where is the resonant frequency, 'c' the velocity of light, J, is the n-th 

order Bessel function of the first kind and Ic is the modified Hankel of the n-th 

order. The computation of the resonant frequency is done by assuming the eigen 

value as, 

where poi  = 2.405 (the first root of the equation .10(x) = 0). This approximation 
• 

is good for the range 1x,„ < 4, which holds in practical cases. The equation 

(4.15) simplifies the job of computation of resonant frequency without utilizing 

the Bessel functions. By using (4.6),(4.7),(4.8) and (4.11) the resonant frequency 

stability 

Where, the coefficients CD  etc. can be evaluated from the following expressions. 

Note that AA is the small variational change in the value of a general parameter 

A. 
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The practical implementation of equation (4.15) is obvious. From the di-

mensions of the resonant system and the known properties of materials, one can 

evaluate the numerical value of each coefficients "C". This value indicates the rel-

ative importance of each part used in the system. Then it is possible to select the 

parts in such a manner that the overall frequency is minimized. When the resonator 

material is isotropic, we can assume that --4t = °I3- then D 
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The main factor affecting the resonant frequency stability is the change rate 

of dimension of the dielectric resonator, and the second factor is the change rate of 

resonator dielectric constant. For the dielectric resonator terminated with metal on 

both sides, the equation (4.31) 

is a good approximation. 

The simplest form of temperature effect in microwave resonator is the ex-

pansion of the material. It is an experimental fact that most solids expand with 

increase in temperature. A rod of leAgth L will expand by AL when the tempera-

ture increases by AT. the constant of proportionality is a, the linear coefficient of 

expansion: 

Similarly we have, 

1  7; is the sensitivity of the resonant frequency with temperature using the 

linear temperature coefficients we can rewrite equation (4.15) as, 
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Where 7,1  denotes the temperature coefficient of the relative dielectric con-

stant €1. Similarly subscript indicate that part of the entire system to which the 

individual coefficient refers. re is the resulting temperature sensitivity of the entire 

system, given in ppm1°C. 

4.1.2 Computation 

Based on the equation (4.15), the differential parameters have been varied to sim-

ulate the small changes in the environmental conditions and the results are being 

plotted. The Fig. 4.2 shows the variation of the coefficient C,1  as a function of 

the distance between the top wall and the dielectric resonator. This simulates the 

variation in the frequency stability when the enclosure is subjected to variable hu-

midity. The Fig. 4.3 shows the variation of CD  as a function of frequency. The 

Fig. 4.4 and Fig. 4.5 shows the variation of coefficients CL  and CE? as a function of 

cr. The plots also show the variation with different frequency of operation. These 

parameters are of importance for the investigations since, in many applications, the 

dielectric resonators are exposed to different environmental conditions and as such 

it is important to know the effects of such changes on the frequency stability. 
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The Coefficient C,i  as a function of the distance between the DR and the top wall, 

Dia. of DR= 14mm, thickness of substrate= 0.8mm, height of DR= 10mm, ei.= 

30.3, 62= 2.54, freq= 4GHz. 



Fig. 4.3. 

The Coefficient CD  as a function of frequency for different dielectric materials, 

thickness of the substrate= 0.8mm, height of DR= 10mm, er  of substrate= 2.54, 

h= distance between DR and top wall. 10mm. 



Fig. 4.4. 

The Coefficient CL  as a function of e,. at different frequencies, Dia. of DR= 14mm, 

thickness of substrate= 0.8mm, height of DR= 10mm, ei. of substrate= 2.54, h= 

10mm. 



Fig. 4.5. 

The Coefficient C„ as a function of ei. at different frequencies, Dia. of DR= 14mm, 

thickness of substrate= 0.8mm, height of DR= 10mm, ei. of substrate= 2.54, h= 

10mm. 



Chapter 5 

5.1 Conclusion 

The thesis is divided mainly into three parts. 

Part 1 - The field distribution in a shielded coupled dielectric resonator has been 
• 

analysed by using computer models. Both E and H field distribution and also en- 

ergy distribution have been obtained for different cases (with different dielectric 

materials, different seperation distances between the metal plates etc.). Specially 

the comparisons have been made with two modes namely 0-th order and 1st order 

mode. The plots are shown and the comments are made on how the distribution of 

electric and magnetic energies get affected in all cases that have been investigated. 

Part 2 - One important application of dielectric resonator is studied namely GaAs 

FET oscillator with dielectric resonator used for stabilization. Using a computer 

modelling technique, one such DR oscillator circuit is investigated in details specially 

with reference to its pushing figure, stabilization range and pulling characteristics. 

The experiment has been done to observe the frequency deviation as a function of 

gate voltage. Also, the experimental data has been obtained on the effect of the 

resonant frequency by varying the gap width with the help of the tuning screw. The 
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results are important for any system design using such dielectric resonator stabilized 

oscillators. 

Part 3 - In this last part, the effects of the dielectric resonator characteristics on 

environmental conditions have been studied and reported. The results will find ex-

tensive application in practical cases where dielectric resonators need to be mounted 

on any outside environment which is subject to a wide variation of temperature and 

humidity conditions. 
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O REM PROGRAM 1 M.R.KAMATH 
O REM Dielectric resonator analysis by perturbational method 
O REM Based on Cohn's model 
0 REM 

DIM ER(6), NUM(6), DEN (6) 
DIM WW(3), DWE(3), DWM(3) 

O PO1=2.40483 
O P012=P01*P01 
O DATA 70,5.25,4.6 
00 DATA 1,2.3,1,15 
10 LMODE= 0 
20 ACC=5 
30 PI=3.141593 
40 READ ER(6),A,L 
50 READ ER(1),L1,ER(2),L2 
60 PRINT "INPUT DATA" 
70 PRINT "er=";ER(6); "a=";A; "L=";L; "LMODE=";LMODE 
80 PRINT "erl=";ER(1); "Ll=";Ll 
90 PRINT "er2=";ER(2); "L2=";L2 
00 PRINT "ACCURCY OF SOLVING TRANSC. EQ. : "ACC+1;" DIGITS" 
10 FOLD=150*P01/(PI*A*SQR(ER(6))) 
20 FFNEW=FOLD*1.001 
30 GOSUB 560 
40 DF=FOLD*.1 
50 REM****SOLVING TRANSC.EQ******** 
60 FFNEW=FOLD+DF 
70 FUNCOLD=FUNC 
80 GOSUB 560 
90 SIGN=FUNC*FUNCOLD 
no FOLD=FFNEW 6 

NTRIAL=NTRIAL+1 
z0 IF SIGN<0 GOTO 350 
30 IF NTRIAL>50 THEN GOTO 390 
40 GOTO 260 
50 DF=-DF*.1 
60 COUNT=COUNT+1 
70 PRINT "COUNTING....";COUNT 
30 IF COUNT<ACC GOTO 260 
90 SH1=(X1-XI1)/2 
DO SH2=(X2-XI2)/2 
10 ETA=120*PI 
20 REM******COMP.AMPL.***** 
30 HZ10=COS(TH1)/SH1 
10 HR10=-AL1A*HZ10/PO1 
50 HRR=BA/PO1 
50 HZ20=-COS(TH2)/SH2 
70 HR20=-AL2A*HZ20/P01 
30 GOSUB 1550 
)0 PRINT "WANT TO PLOT THE FIELD? (Y OR N)" 
)0 INPUT A$ 
LO IF A$="Y" THEN GOSUB 810 
20 PRINT "WANT ENERGY TABLE DISTRI.? (Y OR N)" 
30 INPUT A$ 
10 IF A$="Y" THEN GOSUB 2010 
50 END 

REM*****TRANSC. FUNCTION***** 
KOA=PI*FFNEW*A/150 

30 KOA2=KOA*KOA 
)0 RADIC=P012-K0A2*ER(1) 
)0 AL1A=SQR(RADIC) 



10 RADI=P012-K0A2*ER(2) 
20 AL2A=SQR(RADI) 
30 RADA=K0A2*ER(6)-P012 
40 BA=SQR(RADA) 
-0 AL1L1=AL1A*L1/A 
J AL2L2=AL2A*L2/A 

70 X1=EXP(AL1L1) 
80 XI1=1/X1 
90 X2=EXP(AL2L2) 
00 XI2=1/X2 
10 CT1=(X1+XI1)/(X1-XI1) 
20 CT2=(X2+XI2)/(X2-XI2) 
30 ARG1=AL1A*CT1/BA 
40 ARG2=AL2A*CT2/BA 
50 TH1=ATN(ARG1) 
60 IF TH1<0 THEN PRINT "NEGATIVE LENGTH TH1" 
70 TH2=ATN(ARG2) 
80 IF TH2<0 THEN PRINT "NEGATIVE LENGTH TH2" 
90 FUNC=(TH1+TH2+LMODE*PI)/BA-L/A 
00 RETURN 
10 REM****COMPT.OF.FIELD DISTRIBBUTION.****** 
20 PRINT"HOW MANY POINTS IN EACH REGION? (nl,n,n2) 
30 INPUT N1,N,N2 
40 NTOT=N1+N+N2+1 
50 DIM ZZ(NTOT),HZ(NTOT),HR(NTOT) 
60 REM***REGION1****** 
70 DZ=L1/N1 
80 Z=-L1 
90 FOR I1=1 TO N1 
00 AEX1=AL1A*(Z+L1)/A 
) XP=EXP(AEX1) 

_o XIP=1/XP 
30 SHA1=(XP-XIP)/2 
40 CHA1=(XP+XIP)/2 
50 ZZ(I1)=Z 
60 HZ(I1)=HZ10*SHA1 
70 HR(I1)=HR10*CHA1 
80 Z=Z+DZ 
90 NEXT I1 
000 REM****REGION INSIDE****** 
010 DZ=L/N 
020 FOR I=N1+1 TO N1+N 
030 ANG=BA*Z/A-TH1 
040 ZZ(I)=Z 
050 HZ(I)=COS(ANG) 
060 HR(I)=HRR*SIN(ANG) 
070 Z=Z+DZ 
080 NEXT I 
090 REM***REGION2***** 
100 DZ=L2/N2 
110 IF HZ(N1+N)<0 THEN HZ20=-HZ20 
120 IF HR(N1+N)<0 THEN HR20=-HR20 
130 FOR I2=N1+N+1 TO NTOT 
140 AEX2=AL2A*(Z-L2-L)/A 
150 SP=EXP(AEX2) 
SO SPI=1/SP 
,0 SHA2=(SP-SPI)/2 

_180 CHA2=(SP+SPI)/2 
.190 ZZ(I2)=Z 
.200 HZ(I2)=HZ20*SHA2 



!10 HR(I2)=HR20*CHA2 
!20 Z=Z+DZ 
:30 NEXT 12 

REM*****PLOTTING.FIELD DISTRI.**** 
'50 CLS 
30 KEY OFF 
r70 SCREEN 1 
80 LOCATE 25,1 
90 PRINT TIME$+" "+DATE$ 
300 LINE (0,0)-(319,199)„B 
310 VV=99 
320 VVV=199 
330 HH=319 
340 LENGTH=L1+L+L2 
350 SCALE=319/LENGTH 
360 L1H=L1*SCALE 
370 LLH=(L1+L)*SCALE 
380 LINE (L1H,0)-(LLH,VVV)„B 
390 LINE (HH,VV)-(0,VV) 
100 FOR 1=2 TO NTOT 
110 ZL=(ZZ(I)+L1)*SCALE 
420 HHL=VV*(1-HZ(I)) 
430 LINE -(ZL,HHL) 
440 NEXT I 
450 VAM=.5 
460 HHL=VV*(1-VAM*HR(1)) 
470 PSET (0,HHL) 
480 FOR 1=2 TO NTOT 
490 ZL=(ZZ(I)+L1)*SCALE 
500 HHL=VV*(1-VAM*HR(I)) 
10 LINE -(ZL,HHL),,,&HCCCC 

..,20 NEXT I 
530 WAIT 1,0 '(FOR PRINTER), THEN PRESS CTRL BREAK TO GET OUT 
540 RETURN 
550 REM****PERTURBATIONAL FORMULA****** 
560 ER(3)=ER(1) 
570 ER(4)=1 
580 ER(5)=ER(2) 
590 KC4A2=K0A2*(ER(6)-ER(4))-P012 
600 KC4A=SQR(KC4A2) 
610 HZ102=HZ10*HZ10 
620 HZ202=HZ20*HZ20 
630 KOB=1/(1+(.4832-.0511/KC4A)/KC4A) 
640 IF KC4A‹.8 THEN PRINT "BESSEL APPROX. NOT ACCURATE" 
650 KOB2=KOB*KOB 
660 PRX=KOB2+2*KOB/KC4A-1 
670 QRX=1-KOB2 
680 SIF1=SIN(TH1*2) 
690 SIF2=SIN(TH2*2) 
700 THET=(SIF1+SIF2)*.5/(TH1+TH2+LMODE*PI) 
710 ARG1=2*AL1L1 
720 XH1=EXP(ARG1) 
730 XHI1=1/XH1 
740 SIG1=(XH1-XHI1)*.25/AL1L1 
750 ARG2=2*AL2L2 
-60 XH2=EXP(ARG2) 
70 XHI2=1/XH2 

780 SIG2=(XH2-XHI2)*.25/AL2L2 
790 A2=A*A 
800 WW(1)=ER(1)*HZ102*A2*L1*(SIG1-1) 



10 WW(2)=ER(2)*HZ202*A2*L2*(SIG2-1) 
20 WW(3)=ER(6)*A2*L*(1+THET) 
30 DWE(1)=ER(3)*HZ102*A2*L1*PRX*(SIG1-1) 
40 DWE(2)=ER(4)*A2*L*PRX*(1+THET) 
-0 DWE(3)=ER(5)*HZ202*A2*L2*PRX*(SIG2-1) 
..0 DWM(1)=(RADIC/KOA2)*HZ102*A2*L1*PRX*(SIG1+1) 
70 DWM(2)=(RADA/K0A2)*A2*L*PRX*(1-THET) 
:80 DWM(3)=(RADI/KOA2)*HZ202*A2*L2*PRX*(SIG2+1) 
90 FOR I=1 TO 3 
)00 SWW=SWW+WW(I) 
ao SDWE=SDWE+DWE(I) 
)20 SDWM=SDWM+DWM(I).  
)30 NEXT I 
)40 PERT=(SDWE-SDWM)*.5/SWW 
)50 PERFRE=FOLD*(1-PERT) 
)60 PRINT "COHN'S MODEL" 
070 PRINT "FREQ(COHN)= ",FOLD,"GHz" 
)80 PRINT "PERTURBATIONAL RESULT" 
)90 PRINT "FREQ(PERT)=",PERFRE, "GHz" 
)00 RETURN 
)10 REM*********ENERGY DISTRIBUTIONAL******** 
)20 DIM WE(6) ,WM(6) 
)30 PRINT "j eps(j) we(j)% wm(j)% 
)40 PRINT 
)50 SUME=SWW+SDWE 
)60 SUMM=SWW+'SDWM 
)70 WE(1)=WW(1)/SLIME 
)80 WE(2)=WW(2)/SUME 
)90 WE(3)=DWE(1)/SUME 
1 00 WE(4)=DWE(2)/SUME 
0 WE(5)=DWE(3)/SUME 

L20 WE(6)=WW(3)/SUME 
130 TEM=(RADIC/K0A2)*(SIG1+1)+(P012/K0A2)*(SIG1-1) 
140 WM(1)=TEM*HZ102*A2*L1/SUMM 
150 TEM=(RADA/K0A2)*(1-THET)+(P012/K0A2)*(1+THET) 
160 WM(6)=TEM*L*A2/SUMM 
170 TEM=(RADI/K0A2)*(SIG2+1)+(P012/K0A2)*(SIG2-1) 
180 WM(2)=TEM*HZ202*L2*A2/SUMM 
190 WM(3)=DWM(1)/SUMM 
200 WM(4)=DWM(2)/SUMM 
210 WM(5)=DWM(3)/SUMM 
220 FOR J=1 TO 6 
230 WM(J)=100*WM(J) 
240 WE(J)=100*WE(J) 
250 PRINT USING "W####.W#"; J,ER(J),WE(J),WM(J) 
260 NEXT J 
270 RETURN 



O REM PROGRAM 2 M.R. KAMATH 
O REM dielectric resonator analysis by variational method 
O REM based on Simplified Perturbational model 
O REM q factor computed by the incremental frequency rule 
REM 

J DIM ER(6),NUM(6),DEN(6) 
O DIM XX(3),KK(3),ALF(2),FIH(2),LL(2),FCT(3),tCT(3) 
O REM length should be entered in mm 
O DATA 38,5.25,4.6 
00 DATA 1,2.3,1,15 
10 LMODE=0 
20 READ ER(6),A,L 
30 READ ER(1),LL(1),ER(2),LL(2) 
40 ER(3)=ER(1) 
50 ER(4)=1 
60 ER(5)=ER(2) 
70 REM 
80 REM 
90 REM 
00 PRINT "input data" 
10 PRINT "er=";ER(6);"a=";A;"L=";L;"LMODE=";LMODE 
20 PRINT "er1=";ER(1);"L1=";LL(1) 
30 PRINT "er2=";ER(2);"L2=";LL(2) 
40 PI=3.141593 
50 NQ=0 
60 REM ********** 2 - DIMENSIONAL SEARCH FOR THE SOLUTION ****** 
70 REM ********** of the transcendental equation *************** 
80 XX(2)=2.9 
90 IF ER(2)-ER(1)>0 THEN EMAX=ER(2) ELSE EMAX=ER(1) 
00 KMIN=XX(2)/SQR(ER(6)-ER(4)) 
0 KMAX=XX(2)/SQR(EMAX) 
20 KK(2)=(9*KMIN+KMAX)/10 
30 DXX=.00001 
40 DKK=.00001 
50 ITER=0 
60 PRINT "searching for the eigenvalue..." 
70 XX(1)=XX(2)+DXX 
80 KK(1)=KK(2) 
90 XX(3)=XX(2) 
00 KK(3)=KK(2)+DKK 
10 FOR ITI=1 TO 3 
20 X=XX(ITI) 
30 KO=KK(ITI) 
40 KO2=KO*KO 
50 XIT2=X*X 
60 GOSUB 1940 
70 RA=K02*(ER(6)-ER(4))-XIT2 
80 IF RA>0 GOTO 550 
90 STEPX=STEPX/2 
00 STEPK=STEPK/2 
10 XX(2)=XX(2)-STEPX 
20 KK(2)=KK(2)-STEPK 
30 PRINT "step too large. start again with 1/2 smaller step" 
40 GOTO 350 
50 YY=SQR(RA) 
) KC4A=YY 
/0 GOSUB 2000 
80 FCT(ITI)=JOB+YY*KOB/X 
90 BA=SQR(K02*ER(6)-XIT2) 
00 FOR JIT=1 TO 2 



,10 ALF(JIT)=SQR(XIT2-K02*ER(JIT)) 
20 POW=ALF(JIT)*LL(JIT)/A 
20 IF POW>8 GOTO 680 

EP=EXP(POW) 
'0 EI=1/EP 
,60 AGU=(EP+EI)/(EP-EI) 
70 GOTO 690 
80 AGU=1 
ao AGU=AGU*ALF(JIT)/BA 
'00 FIH(JIT)=ATN(AGU) 
'10 NEXT JIT 
'20 GCT(ITI)=FIH(1)+FIH(2)-BA*L/A+LMODE*PI 
'30 NEXT ITI 
'40 AL=(FCT(1)-FCT(2))/DXX 
'50 AU=(GCT(1)-GCT(2))/DKK 
'60 BL=(FCT(3)-FCT(2))/DXX 
70 BU=(GCT(3)-GCT(2))/DKK 
80 CL=FCT(2)-AL*XX(2)-BL*KK(2) 
'90 CU=GCT(2)-AU*XX(2)-BU*KK(2) 
00 DENO=AU*BL-AL*BU 
10 XNEW=(CL*BU-CU*BL)/DENO 
20 KNEW=(CU*AL-CL*AU)/DENO 
30 STEPX=XNEW-XX(2) 
40 STEPK=KNEW-KK(2) 
50 STEP2=STEPX^2+STEPK^2 
60 PRINT ITER+1,"koa=",KK(2),"eigx="/XX(2) 
70 XX(2)=XNEW 
80 KK(2)=KNEW 
90 IF STEP2<1E-12 THEN 960 
n0 ITER=ITER+1 
_0 IF ITER>10 THEN 930 
20 GOTO 370 
30 PRINT "SOLUTION NOT FOUND AFTER 10 ITERATIONS" 
40 GOTO 1870 

'50 REM IF THE SEARCH IS SUCCESSFUL, RE-EVALUATE THE CONSTANTS 
60 KOA=KK(2) 
70 FIR=KOA*150/(PI*A) 
80 PRINT "Simplified Perturbational model" 
90 PRINT "freq(S&P)=",FSP," GHz" 
000 EIGX=XX(2) 
010 KOA2=KOA*KOA 
020 EIG2=EIGX*EIGX 
030 RADIC=EIG2-KOA2*ER(1) 
040 AL1A=SQR(RADIC) 
050 RADI=EIG2-KOA2*ER(2) 
060 AL2A=SQR(RADI) 
070 RADA=K0A2*ER(6)-EIG2 
080 BA=SQR(RADA) 
090 AL1L1=AL1A*LL(1)/A 
100 AL2L2=AL2A*LL(2)/A 
110 IF AL1L1>8 THEN GOTO 1170 
120 Z1=EXP(AL1L1) 
130 ZI1=1/Z1 
140 CT1=(Z1+ZI1)/(Z1-ZI1) 
150 SIH1=(Z1-ZI1)*.5 
SO GOTO 1180 

170 CT1=1 
180 IF AL2L2>8 THEN GOTO 1240 
190 Z2=EXP(AL2L2) 
200 ZI2=1/Z2 



210 CT2=(Z2+ZI2)/(Z2-ZI2) 
220 SIH2=(Z2-ZI2)*.5 
230 GOTO 1250 
240 CT2=1 
50 ARG1=AL1A*CT1/BA 
260 ARG2=AL2A*CT2/BA 
270 TH1=ATN(ARG1) 
280 TH2=ATN(ARG2) 
290 REM *************VARIATIONAL FORMULA***************** 
300 KC4A2=RADA-K0A2*ER(4) 
310 KC4A=SQR(KC4A2) 
320 GOSUB 2000 
330 X=EIGX 
340 GOSUB 1940 
350 JOB2=JOB*JOB 
360 TRX=JOB2-2*JOB/EIGX+1 
370 KOB2=KOB*KOB 
380 PRX=K0B2+2*KOB/KC4A-1 
390 SIF1=SIN(TH1*2) 
400 SIF2=SIN(TH2*2) 
410 THET=(SIF1+SIF2)*.5/(TH1+TH2+LMODE*PI) 
420 C012=A*(COS(TH1)-2)/AL1A 
430 IF AL1L1>8 THEN 1470 
440 SECN=AL1L1/(SIH1*SIH1) 
450 PARM1=CT17SECN 
460 GOTO 1480 
470 PARM1=1 
480 COPAM1=C012*PARM1 
490 CO22=A*(COS(TH2)-2)/AL2A 

IF AL2L2>8 THEN 1540 
_10 SECN=AL2L2/(SIH2*SIH2) 
520 PARM2=CT2-SECN 
530 GOTO 1550 
540 PARM2=1 
550 COPAM2=CO22*PARM2 
560 NUM(1)=ER(1)*COPAM1*TRX 
570 NUM(2)=ER(2)*COPAM2*TRX 
580 NUM(3)=-(RADIC+KC4A2)*PRX*COPAM1/K0A2 
590 NUM(4)=ER(4)*L*(1+THET)*PRX 
600 NUM(5)=-(RADI+KC4A2)*PRX*COPAM2/K0A2 
610 NUM(6)=ER(6)*L*(1+THET)*TRX 
620 DEN(1)=NUM(1) 
630 DEN(2)=NUM(2) 
640 DEN(3)=ER(3)*PRX*COPAM1 
650 DEN(4)=NUM(4) 
660 DEN(5)=ER(5)*PRX*COPAM2 
670 DEN(6)=NUM(6) 
680 DENSUM=0 
690 SURVER=-BA*A*(SIF1+SIF2)*PRX/K0A2 
700 SURHOR=X*JOB*2*(COPAM1+COPAM2)/K0A2 
710 NUMSUM=SURHOR+SURVER 
720 FOR J=1 TO 6 
730 DENSUM=DENSUM+DEN(J) 
740 NUMSUM=NUMSUM+NUM(J) 
750 NEXT J 
30 VARKOA=KOA*SQR(NUMSUM/DENSUM) 

770 VARFRE=VARKOA*150/(PI*A) 
780 PRINT "varitional result" 
790 PRINT "freq(var)=",VARFRE," GHz" 
800 IF NQ=1 THEN RETURN 



310 PRINT "want the percent error in frequency? (y or n)" 
320 INPUT A$ 
330 IF A$="Y" THEN GOSUB 1880 
340 PRINT "want to compute the Q factor? (y or n)" 
50 INPUT B$ 
360 IF B$="y" THEN GOSUB 2060 
370 END 
380 REM ****************percent error ****************** 
390 PRINT "enter the exact frequency in GHz" 
300 INPUT EXCFRE 
310 PERC=100*(VARFRE/EXCFRE-1) 
320 PRINT USING "+##•## 20;PERC 
330 RETURN 
340 REM ***************** function JOB=JO(X)/J1(X) **************** 
350 XMXO=X-2.4048 
360 TEM=(.0282*XMX0-.1177)*XMX0+.2571 
370 TEM=(TEM*XMX0-.716)*XMX0+1.4282 
380 JOB=TEM*XMX0/(X-3.8317) 
390 RETURN 
DOO REM ****************** function KOB=KO(KC4A)/K1(KC4A) ************** 
D10 KI=1/KC4A 
320 TEM=(.00445*KI-.02679)*K1+.06539 
330 TEM=(TEM*KI-.11226)*KI+.49907 
D40 KOB=1/(1+TEM*KI) 
D50 RETURN , 
D60 REM *************** q factor ***************************** 
)70 NQ=1 
D75 QD=5000 
)80 FO=VARFRE 
'90 PRINT "shield : copper, aluminum, bf'ass, or other? (c,a.b.or o)" 
JO INPUT A$ 
110 IF A$="c" THEN SIGMA=5.8E+07 
120 IF A$="a" THEN SIGMA=3.72E+07 
130 IF A$="b" THEN SIGMA=1.57E+07 
140 IF A$>< "o" GOTO 2180 
L50 PRINT "enter conductivity in Siemens/meter" 
L60 INPUT SIGMA 
L70 IF SIGMA<.1 GOTO 2300 
L80 SKIN=50/ (SQR(FO*SIGMA) *PI) 
L90 PRINT "skin depth=",1000*SKIN,"microns" 
200 LL(1)=LL(1)-SKIN 
210 LL(2)=LL(2)-SKIN 
220 GOSUB 350 
230 DF=VARFRE-FO 
240 IF DF/FO<.000001 GOTO 2280 
250 Q=FO/DF 
260 PRINT "Q(due to shield losses)=",Q 
261 QOVER= 1/(1/QD+1/Q) 
262 PRINT "Q(OVERALL)=",QOVER 
270 RETURN 
280 PRINT "insignificant losses in the shield, quit" 
290 RETURN 
MO PRINT "conductivity too small, quit" 
U0 RETURN 
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