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ABSTRACT

Title of Thesis : -
Non-parametric Dominant Point
Detection Algorithms.

Kuo-wei Huang, New Jersey Institute of Technology,
Master of Electrical Engineering, 1990

Thesis directed by :  Dr. Nirwan Ansari
New J ersey Institute of Technology,
Department of Electrical and

Computer Engineering Center for
Communications and Signal Processing.

Dominant point detection is one of the most important preprocessing steps for
landmark-based shape recognition and point-based motion estimation. Two new methods
for detecting dominant points are presented.sBoth methods do not require any input

parameter and the dominant points obtained by these methods remain relatively the same

even when the object curve is scaled or rotated.

In the first method, for each boundary point, a support region is assigned to the
point based on its local properties. Each point is then smoothed by a Gaussian filter with
a width proportional to its determined support region. A significance measure for each
point is then computed. Dominant points are finally obtained through nonmaximum

suppression.

The second method is rather simple. It traces the contour of an object curve, and,
for each boundary point, it assigns a "chain code" which indicates the direction of the
trace. Dominant points are then determined by detecting the change of direction of each

point.



These two methods lead to an important observation that the performance of a
dominant points detection algorithm depends not only on the significance measure and

the support region but aiso on the presence of noise.

Unlike other dominant point detection algorithms which are sensitive to scaling
and rotation of the object curve, these two new methods will overcome this difficulty.

Furthermore, they are robust in the presence of noise.

The proposed two methods are compared to those of several other dominant
point detection algorithms in terms of the CPU processing time, the approximation errors

and the number of the detected dominant points of a given curve.
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Chapter 1

Introduction

It has been suggested from the viewpoint of the human visual system [3]
that dominant points along an object contour are rich in information content
and are sufficient to characterize the object contour. The dominant points
are the high curvature points along a digital curve that have important shape
attributes.

Many algorithms have been suggested for detecting dominant points.
They fall into two categories [2][11][12][16][20][23][25][29] — one is to find
the dominant points through edge or angle detection and the other is to ob-
tain a piecewise linear polygonal approximation of the digital curve subject

to certain constraints on the goodness of fit.



In polygonal approximation, dominant points are the intersecting points
of any two adj acent line segments. These points are also known as the vertices
or break points of the closed curve(polygon).

Due to the discrete boundary representation and quantization errors, false
local concavities and .convexities along a boundary are introduced when es-
timating curvature. Smoothing is thus necessary to reduce those false con-
cavities and convexities, it has been shown in [22] that a Gaussian filter is
an ideal smoothing filter for numerical differentiation.

Most dominant-point detection algorithm(either angle detection or polyg-

N

onal approximation), except [28], require one or more input parameters. Ac-
cording to [29], these parameters usually represent the region of support for
the measurement of local properties(curvature). In general , it is hard, if
not impossible, to find a set of parameters that will work on a curve with
various size or rotation. Too large a region of support will smooth out the
fine features of a curve, whereas too small a region of support will generate a
large number of redundant dominant points. This difficulty can be avoided
by a non-parametric method [29] in which the support region of each contour
point is obtained based on its local properties.

In this thesis, we introduce two new methods to detect dominant points.

2



The first method adopts the idea of support region [29], and follows by Gaus-
sian smoothing [3]. The smoothing is used to suppress noise. The details
of this method will be discussed in Chapter 3. The second method obtains
dominant points by detecting the change of direction of the contour tracing.
It 1s a simple and fz;ust method, and performs as well as any other meth-
ods without the presence of noise. This method will further be discussed in
Chapter 4.

In Chapter 2, we will review other dominant points detection algorithms,
and the elements of detecting dominant points. The review includes the

N

Gaussian smoothing algorithm (30], the angle detection procedure by Rosen-
feld and Johnston [23], the improved angle detection procedure by Rosenfeld
and Weszka [27], the Determination of region of support by Teh-Chin algo-
rithm [29], the Freeman chain code [26], the Freeman-Davis corner finding
algorithm [12], the Sankar-Sharma dominant-point detection procedure [28],
the Anderson-Bezdek vertex detection algorithm [1].

In Chapter 8, a comparison among the two new methods and other pre-
viously known algorithms will be made in terms of the maximum error, the
integral squares error, the computational complexity and the number of de-

tected dominant points. We will also discuss the effect and presence of noise

3



to the dominant point detection problem.



Chapter 2

Literature Review and The
Elements for Detecting

Dominant Points

2.1 Introduction

In this chapter, various dominant point detection algorithms will be re-
viewed briefly, and the elements used in this thesis, such as, Gaussian smooth-

ing and the determination of support region, will be discussed.



2.2 Review

In this section, several dominant points detection algorithms will be re-
viewed briefly. The review includes the angle detection algorithm by Rosenfeld-
Jothnston [23], the improved angle detection by Rosenfeld-Weszka [27], the
corner finding algorithm by Freeman-Davis [12], the Sankar-Sharma dominant-
point detection procedure [28] and Anderson-Bezdek vertex detection algo-

rithm [1].

2.2.1 Rosenfeld-Johnston Angle Detection Procedure

This parallel procedure [23] is analogous to the Rosenfeld-Thurston edge
detection algorithm [14] which detects significant maxima in average gray-
level gradients by using a variable degree of smoothing. This procedure
\fvill be described in the next section. However, this algorithm can lead to
incorrect results when edges occur too close to one another [26]. The results

of detecting dominant points by this procedure are shown in Appendix A.



2.2.2 The Improved Angle Detection Procedure

This proced.ure [27] is modified from the above Rosenfeld-Johnston algo-
rithm [23]. It was originally developed by Davis and Rosenfeld [10}, and was
later improved by Rogenfeld and Weszka [27]. Although, it has overcome the
difficulty described above, it still needs some input parameters. The results

of dominant points detected by this algorithm are shown in Appendix A.

2.2.3 Freeman-Davis Corner Finding Algorithm

This algorithm [12] starts with scanning the chain {¢;, 1 = 1,...,n} with a
moving straight line segment which connects the end points of a sequence of s
links (it is defined as €;¢;11). As the line segment moves from one chain node
to the next, the angular differences between successive segment positions are
used as a smoothed measure of local curvature along the chain.

This algorithm also exhibits the same problem of the Rosenfeld-Johnston
algorithm [23]. It also need some input parameters, and when the object
curve is round-shape, a big error will happen. The results of detecting dom-

inant points by this algorithm are shown in Appendix A.

~I



2.2.4 Sankar-Sharma Dominant-point Detection Pro-
cedure

In this procedure [28], the dominant points are computed iteratively as
the points of maximum global curvature, based on the local curvature of each
point with respect to its immediate neighbors. First it is observed that each
point of a closed curve having exactly two neighbors can be classified into

three classes based on the local curvature, as shown in Fig. 2.1

Type of Curvature iy Weight Assigned
No curvature 0

Positive curvature +1

Negative curvature -1

Fig. 2.1 Local curvature assignment.

For those points having more than two neighbors, let (i, j) be the
point with £ immediate neighbors where £ > 3. Find all possible pairs of 2-
neighbor configurations of (i, j). Assign to each such pair the corresponding

local curvature, using Fig. 2.1. From this collection, omit those pairs which



have been assigned positive (negative) curvature, then the point (i, j) is
assigned the .wei‘ght +1(—=1); on the other hand, if some pairs have positive
curvature while the rest have negative curvature, then the point (i, j) is
assigned the weight 0.

Because no smoothing procedure is included in this algorithm, false local
concavities and convexities along a boundary are introduced. The results of

dominant points detected by this algorithm are shown in Appendix A.

a

2.2.5 Anderson-Bezdek Vertex Detection

&

In this algorithm [1], tangential deflection and curvature of discrete curve
are defined based on the geometrical and statistical properties associated with
the eigenvalue-eigenvector structure of sample covariance matrices.

Specifically, it has been proven [1] that the nonzero entry of the commu-
tator of a pair of scatter matrices constructed from discrete arcs is related
to the angle between their eigenspaces, and the entry is also proportional to
the analytical curvature of the plane curve from which the discrete data are
drawn.

The sequential algorithm then identifies the location of vertices of the



discrete curves based on excessive cumulative tangential deflection between
successive vertices, an approach which differs markedly from all the previous
approaches of searching for points of relative curvature extreme.

The results of dominant points detected by this algorithm are shown in
Appendix A. This alg‘orithm has the same problem as the Rosenfeld—Jéhnston
algorithm and it also needs input parameters. If the object curve has sharpen-

angle shape, some real dominant points will be missed.

2.3 Background

In this section, elements for detecting dominant points that will be used

in this thesis are discussed.

2.3.1 (Gaussian Smoothing Algorithm

As mentioned before, a Gaussian filter is ar ideal smoothing filter for
numerical differentiation [3]. Using this filter to smooth an object contour,
some noise points present on the contour can be eliminated. Note that the
encoded Gaussian smoothed curve emphasizes the flatness of the region be-

tween ridges. A planar curve {3] can be defined in a parametric form ,

10



(z(t),y(t)) € R? (2.1)

where ¢ is the path length along the curve.

Basically, smoothing by a Gaussian filter is just convoluting z(¢) and

y(t), respectively,. with a Gaussian filter. A one-dimensional Gaussian filter

<

can be written as follow ,

where w is the width (spatial support) of the filter.

The smoothed curve is denoted by the set of points:

(X(t,w), Y (t,w)). (2.3)

where

X(t,w) = 2(t) * n(t,w), (2.4)

11



Y(t,w) =y(t) * n(t,w), (2.5)

and * indicates the convolution operator.

It can be shown that the Gaussian smooth curvature [3] is :

- XY -vX
k(t,w) = m (26)

where ¢
¢ is the path length along the curve.
w is the width of the Gaussian filter.

k is the curvature at t.

and

. dX . &BX
X=—X=—0 (2.7)
. dY d?Y
Y=t = (2:8)

Note that tracing the object curve along the contour in increasing values

12



of ¢, a positive curvature corresponds to a concavity on the left, and a negative

curvature corresponds to a concavity on the right.

2.3.2 Freeman Chain Code

A digital closed curve C can be denoted by a sequence of n integer-

coordinate points [12],

C= {pi = (‘miayi)ai =1, 777‘} (29)

where p;1; is a neighbor,of p;(module n).

3 2 1
4 0
5 6 7

Fig. 2.2 Freeman code.

13



The Freeman chain code of C consists of n vectors, written as {c¢;,7 =
0,1,2,....,n — 1}, where

Ci = Pii1Pis (2.10)

and ¢; takes on an integer f where

F=40,..,7} (2.11)

as shown in Fig. 2.2, Note that f/4 is the angle between the X-axis and
the vector. The chain of C is defined by {&,t=1,..,n} and & = Gz,. All

integers are of module n [29]. s

2.3.3 Rosenfeld-Johnston Procedure

On the real Euclidean plane, the curvature of a curve is defined as the
rate of change of slope as a function of arc length. For a curve y = f(z) [27],

it can be expressed as follows :

d%y
dz? (2.12

~

If the curvature at p; is defined by simply replacing the derivatives

14



above by the first differences, the successive slope angles on the digital curve
can only differ by a multiple of 45°, and thus small changes in slope cannot
be evaluated. This problem can be alleviated by using a smoothed slope

measurement, e.g., defining the slope at p; as,

(Yirk — ¥i)
T2’ (2.13)

for some k > 1, rather than simply using the first difference (k = 1).

Define the k-vectors at p; as

ik = (Ti — Tivk, Yi — Yirk) (2.14)

bir. = (Zi — Tik, Yi — Yiok) (2.15)

so the k-cosine at p; is defined,

ik, - bik

@ | b |

15



where the c;j, is the cosine of the angle between the k vectors @ir and by.

Thus, —1 < ¢;. S‘l, where ¢;;. is close to 1 if @;; and b;, make aﬁ angle
close to 0°, and ¢ is close to -1 if @ and by, make an angle near 180° ;
that is, ¢, 1s larger when the curve is turning rapidly , and smaller when the
curve is relatively straight. To chogse an appropriate k, we use the following

procedure :

L]

1. Select a smoothing factor m. For example, let m be [n/10], i.e. 1/10

of the perimeter of the curve.

2. Assign region of support h and curvature value c¢;j to point p; for the

largest A such that,

Cim < Cim—1 < ... < Cip > Ci h—1 (2.17)
where ¢;0 = -1 and the cosine at p;, is denoted by c;.

3. Finally, retain those points p; where ¢; 5, > Cj.h, for all j such that

li—g < R/2.

16



2.3.4 Improved Angle Detection Algorithm

The. above aﬁgle detection algorithm is analogous to the edge detection
algorithm developed in [28]. It will obtain an incorrect result when edges
occur too close to one another.

A modified scheme [25] overcomes this difficulty. In the modified angle
detection scheme, the k-cosines are smoothed by averaging. Each point with

(k> 1) will be smoothed as follows :

a

2 & N
Cr = —— Z Ci; for  k=even (2.18)
k42 j=k/2 !
2 k
Gk =g > ey for k= odd (2.19)
+ 93 o1y

The ¢ are then treated just like the ¢;;, in the original method [23].

17



2.3.5 Teh-Chin Algorithm

In the Rosenfeld-Johnston procedure [23], the &; is chosen to satisfy the

following constraint :
Cim < Cim=1 < -oo < Cihi 2 Cihiy - (2.20)

Note that A; is the regioﬁ of support. Davis [9] pointed out that
incorrectly chosen regions of suppdrt may cause the measures of significance
to be computed over inappropriate ngighborhoods which may subsequently
cause dominant points to be discarded. In the Rosenfeld-Johnston procedure,
the h; is decided from an input parameter.

To overcome the difficulty of choosing incorrect regions of support, Teh

and Chin [29] use the following procedure :
1. Determine the length of the chord joining the points p;_rpizr as,
i =| Bilkpirs | - (2.21)

Let d;;. be the perpendicular distance from the point p; to the chord

Di—kPitik-

18



2. Start with k = 1. Compute [;;, and d;; until,

(a) Lk 2 Ligs

or
w _ dig
(b) i, dikns for dyx>0  (2.22)
L = Lk
d; d;
_k _<_ ___-’k+l . fOT‘ d,’k <0 (223)
L ™ Lk

Then the region of support of p; is the set of points which satisfy either

condition (a) or condition (b),

D(p;) = {(Picky s Pic1s Dir Pix1, - Pivk) | condition (a) or condition (b)}
(2.24)

2.3.6 The Computation of Perpendicular Distance

Let p;_1,p; and p;yy be three points in the 2-Dimensional (2D) plane. To
compute the perpendicular distance from p; to the chord joining p;—; and

Pit1, We use the following procedure [6] :

19



1. The area of this triangle made by p;_j, p; and p;y; is computed as

follows :
S1 = pi — pic1. (2.25)

S2 = pi — Pita- (2.26)

Si = Pi1 — Pi1. (2.27)

P= (S:+ Sy + S3)/2. (2.28)

A=/(Px(P—=351)x (P —5)x(P—Ss)) (2.29)

Where S1, Sa, S3 is the three side lengths of this triangle.

o P is the parameter of the triangle.
e A is the area of the triangle.

o The perpendicular distance D is, thus,

(2x A) o

D= (2.30)

20



Chapter 3

The First Method

3.1 Introduction

In this Chapter, the Teh-Chin dominant points detection procedure and
the polygonal approximation procedure will be discussed in details. The
advantages and disadvantages of these two procedures are analyzed, and the

implementation of first method will be described.



3.2 Motivation

Image processing is concerned with the manipulation and analysis of

picture by computer [2]. Its major subareas include:

1. Acquisition and compression : Converting analog pictures to digital
form; efficient coding or approximation of pictures so as to save memory

space.

2. Enhancement, restoration @nd reconstruction : Improving degraded
pictures; reconstructing pictures¢' by integrating partial information such

as projections.

3. Matching, description, and recognition : Comparing and registering
pictures to one another; segmenting pictures into parts, measuring
properties and relationships among the parts, also comparing the re-

sulting descriptions to models that define classes of pictures.

This thesis will focus on detecting dominant points, a necessary seg-
mentation procedure to achieve landmark-based shape recognition [3]. As
mentioned before, many dominant point detection algorithms have been sug-

gested, and they can be divided into two categories, edge or angle detection

22



and polygonal approximation.

In the forﬁer category, the dominant points are obtained by measuring
the angles(curvature) of the boundary points. The angle is related to the
curvature, and the smaller the angle, the larger the curvature. There are
many method for com;;uting the curvature. The following three are adopted

in the Teh-Chin algorithm :

1. The cosine measure in Rosenfeld-Johnston procedure, ¢;. (This has

been discussed in Chapter 2).¢

L4
2. Curvature measure : The curvature at point p; 1s taken to be the
difference in the mean angular direction of k vectors on the leading

and trailing curve segments of the point. It is as follows :

1 -1 1 k~1
CURy = P > fini— A > fisi (3.1)
. =

ek

where f;_; is the Freeman chain code.

3. l-curvature measure : By taking & = 1 for the curvature measure, the

1-curvature measure is defined by,
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CURil = f1'.|_1 - fi. (32)

Each boundary point is characterized by its support regional curvature.
Candidates for domjne_mt péints are boundary points which have the maxi-
mum curvature in their corresponding support regions. The dominant points
are finally obtained from the candidate points by using various suppression

schemes.

a

3.2.1 An Example of Detecting Dominant Point by
Angle Detection

Teh-Chin algorithm [29] is a good example of detecting dominant points
that falls in the first category, angle-detection. The algorithm does not re-
quire input parameter, and it makes use of the concept of support region.
The dominant points detected by Teh-Chin algorithm is better than others
In many aspects, such as the maximum error, the integral square error, the
number of detected dominant points and the computational complexity. The

algorithm works as follows :
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1.

o

Determine the region of support for each point. This procedure is

described in Chapter 2,

D(Pi) = {pi—k>--->pi—1>pi,pi+1a---vpi+k}' (3-3)

Select a measure of significance(curvature) from one of the three defined
significance measures mentioned above, and calculate its absolute value

for each point, | S(p:) |.

<

Suppress nonmaximum points.

*

(a) 1st pass : Perform nonmaxima suppression as follows : retain only

those points p; where

| S(p:) | = [ S(ps) | (3.4)
for all j such that
L
-7 < = .
li=il = 5 (3.5)
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(b) 2nd pass : Further suppress those points having zero l-curvature

(CU Riy=0).

(c) 3rd pass : For those points survived after 2nd pass, if ([k; of D(p;)]
= 1) and (pi—1 or piy1 still surviv.ed) then further suppress p;, if (| S(p:) |<|
S(pi-1) |) or (1 S(p:) I<] S(pia) )

If 1-curvature is selected as a measure of significance, then go to step

(3d), otherwise those points survived are the dominant points.

(d) 4th pass : For those groups of more than 2 points that still survived,
suppress all the points except the two end points of each of the groups.

Owing to quantization error and noise effect, the false concavities and
convexities along object boundary are introduced. These false concavities
and convexities can easily be detected as dominant points.

The above noise factor was not considered in Teh-Chin algorithm. If the

object curve is corrupted with noise, noisy boundary points may have high
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significance measure; thus, resulting in incorrect dominant points.

The Teh- (;hina,lgorithm works well on object curve which is not corrupted
with noise. However, it will produce false dominant points if the curve is
noisy. We will demonstrate this disadvantage by an experimental result in
Chapter 5. To reduce the noise effect, we introduce a smoothing proéedure
to be incorporated with the Teh-Chin algorithm. This smoothing procedure
is used in ”curvature guided polygonal approximation” method [3] which will

be discussed next.

3.2.2 An Example of A Po'lygonal Approximation Al-
gorithm

The "curvature guided polygonal approximation” [3] is a good exam-
ple of detecting dominant points by polygonal approximation. Here, a pre-
processing step, Gaussian smoothing, is used to reduce effect of noise and

quantization error. The algorithm can be summarized as follows :

1. Remove all one-pixel wide protrusions. An example of a one-pixel wide

protrusion which may result due to the discrete boundary representa-
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tion and quantization error, shown in Fig. 3.1 :

* indicates a boundary protrusion pixel.
&

z indicates a boundary pixel.

Fig. 3.1

2. Smooth the boundary with a Gaussian filter.

3. Find the set of positive maximum and negative minimum curvature

points on the smoothed boundary.
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4. The points along the original boundary that correspond to the set of
points found in Step (3) are used as the starting set of break points for

polygonal approximation of the original boundary.

5. Employ the split-and-merge polygonal approximation algorithm. A
split-and-merge polygonal approximation procedure is summarized as

follows :

(a) Assign an arbitrary numbel’~ of points along the boundary as the
nitial set of break points. The initial approximated polygon is formed
by joining the sequence of break points along the original boundary

with straight lines.

(b) For each pair of adjacent break points, determine the point along
the boundary portion that yields the maximum perpendicular distance
to the straight line segment joined by the two break points. If the
maximum perpendicular distance is greater than the given tolerance,

that point becomes a new break point; i.e., the line segment is replaced
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by two line segments. This is the ”splitting” part of the algorithm.

(c) For each pair of adjacent line segments consisting of three consecu-
tive break points, say A, B and C, compute the maximum perpendicular

distance from the boundary portion between A and C to line AC.

If the distance is in the tolerance, break point B is removed. That is,

line segment AB and BC are replaced by line segment AC. Note that

a

each replacement is immediately tested for merging with the next line

segment. This is the "merging”* part of the algorithm.

(d) Replace Steps (b) and (c) until an equilibrium is reached; i.e., no

more splitting and merging.

6. The resulting break points are the dominant points of the boundary.

Though this algorithm reduces the effects of noise, it requires two pa-

rameters, namely, the width, w, of the Gaussian filter and the collinearity
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tolerance. There is a trade-off in selecting the width , w. That is, a larger
value of w will remove small details of the boundary curvature, while a smaller
value will permit false concavities and convexities. It is very hard to chose

an appropriate w.

3.2.3 Ewvaluation

While the Teh-Chin algorithm is non-parametric, it is sensitive to noise.
On the other hand, the ”curvature guide polygonal approximation” reduce
the effect of noise, but it requires two input parameters. By taking the

N

advantages of both algorithms, we introduce a new method which is both
non-parametric and less sensitive to noise. The method employs the concept
of support region and Gaussian smoothing.

If noise is not severe, we also introduce a very computational efficient
method which works as good as the Teh-Chin algorithm. This method is
simply done by detecting change of direction from the Freeman chain code.

The first method will be described in details in the next section. The second

method will be discussed in the next chapter.
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3.3 The First Method

The first method that we introduce can be summarized as follows :

1. Contour tracing : Encode the contour by Freeman chain code.

Determine the sﬁpport region for each contour point by the Teh-Chin

N

algorithm. This has been discussed in Section 2.2.5.

3. Smooth the contour by a Gaussian filter with a width proportional to

the support region.

4. Compute significance measure foreach point on the Gaussian smoothed
curve. Here, we used the cosine measure(Equation 2.16) as our signifi-

cance measure.

5. According to the significance measure obtained in Step (4), do the

nonmaximum and nonminimum suppression.

We will discuss Steps (3) and (5) of the algorithm in the following sections.

3.3.1 Selection of the Width of A Gaussian Filter

In this section, we will discuss the relationship between the support re-
gion and the width of the gaussian filter. It has been shown that a Gaussian
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filter is an ideal smoothing filter for numerical differentiation [30]. For con-
~ venience, we will repeat part of the discussion in Section 2.2.1. Denote a

planar curve by a set of points in parametric form,

(z(£),y(t)) € R? (3-6)

where ¢ is the path length along the curve.

Smoothing the curve with a Gaussian filter is equivalent to convoluting

z(t) and y(t), respectively, with a one-dimensional Gaussian filter,

1 =t2
n(t_‘w) = \/i;w expaw?

where w is the width(spatial support) of the filter.

For a given support region, what should w be ?

According to the support region determination algorithm(Equation 2.21
to 2.25), the joining chord length p; 1711 of p;, and the perpendicular dis-
tance d;(from p; to p;_1Pi11) are used as parameters in determining the sup-

port region. In a closed digital curve, the curvature of each boundary point

33



is affected by and related to its neighbor points. A break point is formed at
the intersect;on of two segments of a consecutive sequence of points where
points on one segment have positive(negative) slopes while points on the
other segment have negative(positive) slopes.

Thus, the deﬁnitién of support region for a contour point p; can be stated

as,

e An expanded region on both side of p;. Within this region, the point
p; should have the maximum curvature than other points.

&
When noise is present on the contour, we use a Gaussian filter to smooth

the contour to reduce the noise effect. Again, since concavities and convex-
ities along an object contour occur at different scales, how much smoothing
is necessary 7 In addition, as mentioned earlier, the curvature of a point is
determined by its neighboring points, and thus, we want to make the amount
of smoothing adaptive.

Since the measurement of the curvature of a point should be based on
the local properties within its region of support, we propose to smooth the
point with a Gaussian filter of length equal to the region of support. What

should be the width of the filter 7 Intuitively, the neighboring points closer
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to the point of interest should have higher weights than those points further
away.

Figures 3.2 to 3.10 (shown in the end of this chapter), show the shape of a
Gaussian filter with widths = 1, 1.5, 2, 2.5, 3.3, 4, 4.5, 5 and 5.5, respectively.
The window length of the filter is 21 which can be considered to be 2(sﬁpport
region) + 1.

From the figures, with too large a width, points that are far away from
the point of interest are contributing too much to the smoothing while with
too small a width, they hardly contribute at all. The best compromise,
subjectively, is when w=3.3 as show:l in Fig. 3.6 where the neighboring
points closer to the point of interest have higher weights while points farther
away still contributes the smoothing but in less amount. In conclusion, each
point is smoothed by a Gaussian filter of "length = 2(support region) + 1?
and with "width = 0.33 x (support region).”

The above analysis can be used to explain the trade-off in selecting
the width w of a Gaussian filter : ”A larger value of w will remove small
details of the boundary curvature, a smaller value of «w will permit false
concavities and convexities.”

The Gaussian smoothing is done as follows :
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1. For each boundary point, determine its support region. The support
region is determined by the two conditions which are mentioned in
Section 2.2.5 (Equation 2.22, 2.23 and 2.24). However, for the special
case when a contour point forms a straight line with its two adjacent

points, we make the support region of this point ”0.”

2. Determine the width w of the Gaussian filter. That 1s, w = 0.33 X

support region.

3. Use a Gaussian filter with length = 2(support region) + 1, and width

obtained in Step (2).

4. Each smoothed point is thus obtained by the weighted sum of the
products of the boundary points within the region of support and the

respective coeflicients of the Gaussian filter.
Two special condition should be noted,
e For a point with a support region equal to 0, skip thc smoothing
step. Because the point with a "0” support region, should be

a point along a straight line. In this situation, its curvature is

equal to -1 (the smallest curvature), and therefore it cannot be a
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dominant point.

e For the point with a support region equal to 1, we use the following

smoothing procedure :

A 1
(25, 9:) = 0.4(zs, y:) + Z[(mi—la Yic1) + (Zig1, Yiv1)] (3.8)

This is because the point with support region equal to 1, is usually

a point characterized by a region with small details. Thus, this point

should be smoothed out. If we use Gaussian smoothing with the length
&

and the width defined in Steps (2) and (3), this point will be immuned

from smoothing. Therefore, we smooth this point according to Equa-

tion (3.8).

3.3.2 Determination of Dominant Points

Based on the computed significance measure of each contour point, the
last step is to determine which of those contour points are the dominant
points.

In the Teh-Chin algorithm [29], four levels of suppression are used to
chose the dominant points. In the first level suppression, any contour point
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that have the maximum significance measure within half of its support region
is eliminated as a dominant point. In the second level, any pdiﬁt having a
zero 1-curvature (defined by Equation 3.2) is suppressed. In the third level
suppression, if there are two consecutive points that survive from the first
and second level suplg)ression, eliminate the one with less significance.

In the "curvature guided polygonal approximation algorithm,” points
with local maximum and minimum curvature are first selected. That is, all
nonmaximum and nonminimum gurvature points are suppressed. However,
a "split and merge polygonal approximation ,” is then used to alternatively

L]

selecting and suppressing the possible dominant points.

Strategy for selecting dominant points

The first method we introduced use the following two levels of suppres-

sion :

1. Select the points that achieve the maximum significance measure within
the corresponding support regions : For each point, check if this point
achieves the maximum significance measure within its support region.

If not, suppress this point.
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2. For those points survived after first level of suppression, if the support
region of point p; is equal to 1, and either Pit1 OF p;—y s still sur-\}ivéd,

then suppress the point with a smaller significance.

If small details along the object curve is desirable, such scheme will,
however, eliminate the small details because of the Gaussian smoothing. The

experimental results will be discussed in Chapter 5.

3.3.3 Summary

We have reviewed the Teh-Chin algorithm and ”curvature guide polyg-

3

onal approximation ” in great details. Their advantages and disadvantages
are also discussed.
Our first method is introduced by incorporating the above two algorithms.

It inherits the merits of both algorithms; that is, it is non-parametric and it

is relatively robust in the presence of noise.
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Chapter 4

The Second Method

4.1 Introduction

In this Chapter, we introduce a simple and computational efficient method

which performs as well as the Teh-Chin algorithm in the noise-free case.

4.2 Motivation

The contour presented in the Teh-Chin algorithm [29] are all traced
from the Freeman chain code. They are also noise-free. Under this situation,

the vertices are usually the dominant points. Using the first method we
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introduced in Chapter 3 to detect dominant points of this kind of object
contour will result in Ihissing dominant poiﬁts because of the smoothing

effect. Therefore, the second method is introduced.

4.3 The Seéond Method

If noise is not present on the object curve, detecting the dominant points
on this curve is essentially detecting the vertices.

To trace an object curve by ; Freeman chain code, each point on the
contour will be assigned a digit nuniber according to the direction of the
trace of this point to the next adjacent boundary point. As mentioned in
section 2.2.2, there are eight possi'ble directions associated with the Freeman
code. Each direction is represented by a digit number from 0 to 7.

The second method use Freeman chain code to trace the contour of an
object curve. During the tracing, when the direction of the point p; is differ-
ent with the point p;;;, then keep the point p; as an dominant point. The
dominant points obtained by this method are also the vertices of the object

curve. Because it is based on the assumption of noise-free situation, the sup-

pression scheme is not needed. Results of detecting dominant points by the
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second method will also be discussed in Chapter 5.

4.4 Summary

According to above discussion, the second method is summarized by the

following :

1. Encode the object contour by a Freeman chain code.

2. Check the Freeman code of each point, if the Freeman code of p; is
different, with the Freeman codesof p;11, that is, the trace for the next

point has changed direction, p; is considered as the dominant point.
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Chapter 5
Conclusion

5.1 Introduction

In this Chapter, we present experimental results of detecting dominant
points by the two methods we introduced. The results are compared to those
obtained by other methods in term of the maximum error, the integral square
error and the computational complexity. These three figure of merits have

been used in many dominant point detection algorithms [23][25][26][29].
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5.2 Experiment Results

The first and second dominant point detection methods have introduced
and discussed in details in Chapter 3 and Chapter 4, respectively. Before we
make any comparison among various dominant point detection algorithms,
we want to emphasize two points — what are the dominant points used for ?
and what kind of dominant point; are concerned 7

As mentioned in the previous chapters, dominant points are used for
shape recognition. The goodness :)f a dominant point detector thus directly
depends on how the dominant points ®btained by the detector can be readily
used to achieve recognition.

For a given contour, we have to address the following three questions :

1. How many dominant points are sufficient to characterize the contour ?

An adequate number of dominant points along an object contour are
necessary to describe the object contour. If only a few number of dom-
inant points can be detected, they may not be sufficient to describe
the shape of the contour. However, if too many dominant points are
detected, some of these points may be extraneous due to discrete rep-
resentation of the object contour and noise. A bad dominant point
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detector will burden the subsequent shape recognition algorithm to
identify the shape of the object. Thﬁé, the ? adequate” number of dom-
inant points to characterize an object contour is subjective, and closely

depend on the subsequent postprocessing procedure.

2. Are the dominant points obtained by the detector invariant to the size
and the orientation of the contour ? That is, for a given contour at a
different scale and/or orientation, do the number of dominant points

. . . (-3 -
and their relative locations remain the same ?

3. Can the noise present on the coftour be removed ?

In the presence of noise, many false concavities and convexities along
an object contour are introduced. A robust dominant point detector
should be able to eliminate these false concavities and convexities as

dominant points.

A robust dominant points detector is essential for shape recognition, we
will use the above criteria to compare various dominant points detection
algorithms.

In this thesis, we will experiment on the contours which are commonly
used in the Teh-Chin algorithm [29] and many other algorithms [9][12][23].
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According to the chain codes provided in [29], the original contour are shown
in Flg 5.1 to Fig. 5.4, namely and respeétively, CHROMOSOME, LEAF ,
EIGHT and SEMICIR.

The results [29] of dominant points obtained various algorithms are shown
in Figures A.l to A.éi, in Appendix A. Fig. 5.5 to 5.8 show the dominant
points obtained from the set of contours (Fig. 5.1 to 5.4) by the Teh-Chin
algorithm. The dominant points obtained by Teh-Chin algorithm on a set of
rotated (by 30°) and scaled (by 2).contours are shown in Figures 5.9 to 5.16,
respectively. Note that the rotated and scaled contours are superimposed

N
with their respective resulting dominant points in the figures. The dominant
points obtained is quite stable to scaling and rotation. The number of dom-
inant points detected by this algorithm on the set of contours is about 25 %

of total contour points. Note that the number of dominant points obtained

are certainly dependent on the type of contours we are approximating.

5.2.1 The First Method

The results of detecting the dominant points on the contours shown in

Figures 5.1 to 5.4 by using first method are shown in Figures 5.17 to 5.20.
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The results for the rotated and scaled contours using the first method are
~shown in Fig; 5.21 to 5.28. Again, in each figure, we have superimpbséd the
original contour with the resulting approximated contour. Like the Teh-Chin
algorithm, this method is also stable to scaling and rotation. The number of
dominant points obtai'ned for the same given contour is also about 25 % of

total contour points.

5.2.2 The Second Method

The second method simply uses thf Freeman code to detect the dominant
points. Support region, Gaussian smoothing and complicated significance
measurement are not needed to determine the dominant points.

The results of the dominant points obtained by this method on the set
of contours shown in Fig. 5.1 to 5.4 and their respective rotated and scaled
contours are shown in Fig. 5.29 to 5.40. Since vertices of an object contour
are considered as the dominant points, the method is naturally stable to
rotation and scaling. However, the number of dominant points obtained is

the largest because every vertices are considered as dominant points.
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5.3 Comparison

In this section, the two new dominant point detecting methods are com-
pared to other algorithms. Like other authors, the results are compared in
term of the approximation errors, the number of detected dominant points,

and the computational complexity.
e The Approximation errors :-

In this thesis, we adapted the samé quantitative measure of the quality of the
detected dominant points described in the Teh-Chin algorithm [29]. The error
between a point p; of a digital closed curve C and the approximating polygon
is defined as the perpendicular distance of the point to the approximating
line segment. This error is denoted by e;. Two error norms between C and

its approximating polygon defined below are used :

1. Integral square error,

B, =i6? (5.1)

=1

2. Maximum crror,
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Eco =maz e (5.2)

The comparison results are shown in Table 5.1 to Table 5.4, respectively. In
this thesis, the results of the Rosenfeld-Johnston algorithm, the Rosenfeld-
Weszka algorithm, the Freeman-Davis algorithm, the Sankar-Sharma algo-
rithm and the Anderson—BezdekAalgorithm are directly obtained from [29].
The approximated contours detected by the above algorithms had been sum-
marize by Teh and Chin [29]. Sinuce they are not discussed in this thesis, the
results are shown in Appendix B. #

Though the Teh-Chin algorithm achieves very small error, the second
method we introduce achieve the zero error. However, this does not mean
that the second method is the best dominant point detector. Dominant point
detector cannot be simply compared based on this quantitative measure of
quality that are used by many researchers. The quality is usually very subjec-
tive. In general, large concavities and convexities should be dominant points.
Small concavities and convexities may not be dominant points becausc these
may be caused by noise and quantization error. If noise is not present, the

second method would certainly be the best detector. If noise is severe, the
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first method is preferable because this method will smooth out the effect of

noiseé. We will emphasize this point by another experiment result later.
o The Computational Complexity.

The second method we introduce is the simplest and most computational
efficient. The first method requires more computation than the Teh-Chin
algorithm because additional computation is spent on Gaussian smoothing.
In the next section, we will discuss the noise effeét and justify that it is worth

a

on taking additional computation to reduce the noise effect.
e The Effect of Noise

Consider a contour CROSS which has been corrupted with noise is shown
in Fig. 5.41. The original contour should be a CROSS. The dorninant points
obtained by Teh-Chin algorithm are shown in Fig. 5.42, by the first method
we introduce are shown in Fig. 5.43. Note that the contour approximated
by the dominant points which are obtained by first method resembles curve
closely to the original contour than that by the Teh-Chin algorithm. Since
the Teh-Chin algorithm does not smooth out the noise, spurious points are

taken as dominant points. The Gaussian smoothing incorporated in the first
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method has gracefully reduce the noise effect, and thus eliminating most of
the spurious points.
On the other hand, the second method would produce an approximated

contour which is an exact copy of the corrupted CROSS contour.

5.4 Summary

We have introduced two new dominant point detection methods. The first
method incorporates concept of th; support region and Gaussian smooth-
ing for detecting dominant points. THe second method simply obtains the
dominant points(or vertices) by detecting the change of direction along the
contour being traced.

Both methods are relatively insensitive to the rotation and scaling of the
object contour. The first method is robust in the presence of noise while
the second method is very sensitive to noise. The goodness of a dominant
point detector is very subjective . The figure of merits which have been used
by many rescarcher to compare the quality of dominant point detectors,

as points out, is not reliable. In the presence of noise, the first method

performs better than the best known angle detection algorithm, the Teh-Chin
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algorithm. If noise is not considered, the second method provides the best

figure of merit, which, as we emphasize, are not good criteria for comparison.
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TABLE 5.1
Results of the CHROMOSOME curve

Number of input Contour points n = 60

No. .of Max. Integral CPU
Algorithm dominant error error time
points ( secs)
Rosenfeld
and 8 1.54 21.94 4,19
Johnston
Rosenfeld
and 12 1.58 22.61 6.04
Weszka R
Freeman
and 8 ’1.51 22.56 3.12
Davis
Sankar
and 12 2.03 28.89 16.46
Sharma
Anderson
and °] 2.03 26.50 5.31
Bezdek
Teh-Chin
by 15 0.74 7.2C 4.47
k~cosine
First
16 2.00 20.2% 2
Method
Second
37 6] 0 1
Method




TABLE 52

Results of the LEAF curve

Number of input Contour points n = 120

No. of Max. Integral CPU
Algorithm dominant error error time
points ( secs)
Rosenfeld
and 17 1.76 43.42 10.91
Johnston
Rosenfeld
and 18 1.53 30.57 17.40
Weszka .
Freeman
and 17 1.72 45,27 8.16
Davis s
Sankar
and 20 3.48 71.15 44 .63
Sharma
Anderson
and 20 1.49 39.18 13.19
Bezdek
Teh-Chin
by 29 0.99 14.96 .70
k-cosine
First
30 2.13 25.57 3
Method
Second
57 0] 0 1
Method

99




TABLE 53°

Results of the EIGHT curve

Number of input Contour points n = 45

No. of Max. Integral CPU
Algorithm dominant error error time
points secs)
Rosenfeld
and 10 l1.61 22.83 2.97
Johnston
Rosenfeld
and 16 1.59 12.67 3.74
Weszka i
Freeman
and 11 1.34 14.61 2.80
Davis M
Sankar
and 6 2.36 38.57 11.55
Sharma
Anderson
and 9 1.11 8.97 4.49
Bezdek
Teh~-Chin
by 13 1.00 5.93 3.99
k-cosine
First
14 1.00 5.06 2
Method
Second
30 0 0 1
Method

60




TABLE 54

Results of the SEMICIR curve

Number of input Contour points n = 102

No. of Max. Integral CPU
Algorithm dominant error error time
points ( secs)
Rosenfeld
and 30 0.74 8.85 8.09
Johnston
Rosenfeld
and 34 1.00 15.40 10.13
Weszka
Freeman
and 19 1.41 23.31 9.46
Davis ¢
Sankar
and 10 8.00 769.53 35.04
Sharma
Anderson
and 29 1.18 6.43 12.04
Bezdek
Teh—-Chin
by 22 1.00 20.61 S.66
k~cosine
First
28 1.26 17.€&3 2
Method
Second
53 0 0 1
Method

61




55

54 —1—

@ o—0—@
5 - o o
o - o e
50 —— ‘ Q/
MH —— /0/ /6
i JF ¢ P AN
o - e L] _e—e .
8 - —lp— .
°T ./o o—-0e—0 ./o
7 ~
“o—- . e
4 —l— ® o—0
~ Ve
@ e—e e
0 'Y ° °
/ e Vs
“ 1 o e . s
]
% LN - e L
» - *o—o@ . e
¥ —r— . e
% |- . ®
as _L ./ .'/
~

4

I
1
!
®

8
i 1

| R [ N U S N U N VUM (NN AU Y ANV AU IO HNNN EO NN A
r—r—r—rTr—rTr—r— 1T T1 1 11T 1T

I
]
$5 88 @7 88 Pe 100 10f 102 108 104 105 108 107 103 10 110 111 112 118 114 115 116 117 119 118 120

Fig. 5.1 The CHROMOSOME Contour.



€9

126
134
iza
122
121
120
119
118
117
116
115
$14
113
112
111
110
108
108
107
100
105
104
108
102
101
100

85

98

o7

88

96

94

5]

02

91

80

4 )
1)
-~ )
[
. )
]
- .
]
- )
|
-4 .
i
- )
NN
- .-
4 e
N Y N N S Y O Y S N N I T o O N S S I A S O o oy |
rrrrrrrerrrerrrrrrrrr Ty T e rrrrr rrrrrrrrrrrrrrrrrrr rerr i

B0 91 82 68 B4 B5 98 97 86 $0 100101 102103104105108107 108100110111 112118114 145116117118119120121122129124125126127128120180131 192193184 155138 1571968199140

Fig. 5.2 The LEAF Contour



¥9

46
45
44
43
42
41
40
39
38
37
38
35
34
33
32
31
30
29
<8
27
28

- /o\ /o—o—o——o
T ¢ ¢ /‘ ¢
-+ o ® o ®
1 /./ \.\ /./ +
-+ ° ® o o
[ | ~ /

- ® * M
1 o'/ ‘\. ‘
-+ o/ o—o/ \o—o—o o——o/

i e ~_ .
—+ ' ™ o

| e
-+ o—o\ /o—o .
—+ °

[ ! [ I [ ] I I | ] ] I I i | I ] | ] | ] I ] i |
80 91 92 93 94 85 96 97 9B 99 100 101 102 103 104 105 106 107 108 108 110 111 112 113 114 115

Fig. 5.3 The EIGHT Contour

118



g9

180
e
118
117
118
115
114
113
112
1
110
108
108
107
108
106
104
108
102
101
100

08
97
96
96
94
93
2:4
91
90
a9
ga
a7
[::]
85
a4
83
82
a1
80

- 8-90-0-0-0—-0-0-
9-8-0-0-0-0-0 .\

1—- s-0-0
D e \.

- .
T 5
- .
-+ .
— [
T :
1. .
T .
— P ’
- . ¢
T * e
T ¢ *
T ¢ ¢
—- ) [}
—+ “e ®
0 ‘\ /‘
-T- ] @ [ ]
—+ “e-o ®
- \o-o—o—o;o ®
—+ ° ®
-~ ® '
— ./ o

1 Pl

-+ : *

- ° .
—~— \9 N ,o—o—o’
- o—b\ _e-e *-0-0-0-0-0—-0-8-0
1 °-0-9

_JIIIIIIIlllIIIJIlIIILILIIIIIIIJ_ILILILIIILI I SO Y A |

T rrrrrrrrrrrrryrrrrrrrrrrrrrrrrrer T rrrrrrr e T T

0 1 2 8 4 6 a 7 6 9 10 11 12 19 14 15 18 17 1B 19 20 21 22 28 24 25 28 27 26 20 90 91 32 39 34 95 96 87 I 29 4D 41 42 49 44 45 46 47 46 40 50

Fig. 5.4 The SEMICIR Contour




99

556
54 -

53 *—<S—0
52 —

51 —+
50 + O
48 - O

o
o
o
®
48 . z//,o__o
~N
47 - O ® o O
48 —- o 0 0 0
45 -~ o
44 6 /
43
42 o_e

a1 /e/
10 Y

39 - o\ o 0O

36 -
35 |- °

34 1 }./d
33 |-

az |-

31 +

| | | ] ! | | | ] | | | | | ] | | | | | | | ] | ] ] | ] |
30 | I [ I [ I I I I ] i I i I I I 1 { I [ I [ | [ I I I | 1

80 91 92 93 94 95 96 97 9B 99 100101 102 103 104 105 106 107 108 109110111 112118114 115116117118 119 120

Fig. 5.6 Detected by Teh—Chin algorithm



L9

125
124
123
122
121

+ oReX |

t s

-+ . 00

-1 &drv“g ® ° o

+ o

NN 9-0-5-6-6-0-6-0-5-0 8/ oo 5

-+ 4 0000 GTTe A

+ e-c-o

-+ 8\0 sooe

-+ e 00O

- e %M\S\&

—+ ° *c'e

-+ O O~_0

—+ 560

- o

-+ o

+ o

+ o\ @

-+ X Xe

+ o

T

1 AN TN T N T TN SN SN N SN U NN OO DU NN (NS R U JNN AN N DUUN SN NS NN AN U JUN N A [ A Y ) S S A s
| NN A Y I T T (N A N O A Y I Y Y Ut O A D N Y Y Y N R N R B

151617181892021 222324 252627282930313233343536373839404142434445464748485051625354555657585960

Fig. 5.6 Detected by Teh—Chin Algorithm



46
45
44
43
42
41
40
39
38
37
38
35
34
a3
32
31
30
29
28
a7
28
25

:: a *—C—C—®
1 o/ g\ o
-+ /o O
£ 0] O
1 ® O *
~ o

TS TN o oL
i 4) T’

I ~

] | | | | | | ] | | ] | | | | | | | | | I | | | |
I I [ I | I I I f i I I [ I [ { I I [ 1 I I I [ 1

80 91 82 93 94 95 96 ©7Y 98 99 100 101 102 103 104 105 1068 107 108 108 110 111 112 113 114 115 116

Fig. 5.7 Detected by Teh—Chin Algorithm



69

Fig. 5.8 Detected by Teh—Chin Algorithm
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Fig. 5.9 Detected by Teh—Chin Algorithm (Rotation).
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Fig. 5.10 Detected by Teh—Chin Algorithm (Rotation).
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Fig. 5.11 Detected by Teh—Chin Algorithm (Rotation).
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Fig. 5.12 Detected by Teh—Chin Algorithm (Rotation).
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Fig. 5.14 Detected by Teh—Chin Algorithm (Scaling).
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Fig. 5.16 Detected by Teh—Chin Algorithm (Scaling).
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Fig. 5.18 Detected by First Method.
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Fig. 5.22 Detected by First Method (Rotation).
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Fig. 5.23 Detected by First Method (Rotation).
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Fig. 5.24 Detected by First Method (Rotation).
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Fig. 5.25 Detected by First Method (Scaling).
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Fig. 5.26 Detected by First Method (Scaling).
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Fig. 5.28 Detected by First Method (Scaling).
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Fig. 5.30 Detected by Second Method.
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Fig. 5.31 Detected by Second Method.
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Fig. 5.32 Detected by Second Method.
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Fig. 5.33 Detected by Second Method (Rotation).
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Fig. 5.34 Detected by Second Method (Rotation).
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Fig. 5.36 Detected by Second Method (Rotation).
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Fig. 5.37 Detected by Second Method (Scaling).
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Appendix A : Results detected by other Algorithms -

A-l : The results of detecting CHROMOSOME contour by

other algorithms.

(a)

(b}

(c)

(d)

(e)

(a) Rosenfeld-Johnston algorithm.
(b} Rosenfeld-Weszka algorithm. (c) Freeman-Davis algorithm. (d)
Sankar-Sharma algorithm. (e) Anderson-Bezdek algorithm.
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A-2 : The results of detecting LEAF contour by other
algorithms.

1

(c) (d) (e)

. (a) Rosenfeld-Johnston algorithm. (b) Ro-
senfeld-Weszka algorithm. (¢) Freeman-Davis algorithm. (d) Sankar-
Sharma algorithm. (e) Anderson-Bezdek algorithm.
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A-3 : The results of detecting EIGHT contour by other

-

[ravaey

algorithms.

{b)

()

(d)

(e)

; _ {a) Rosenteld-johnston algorithm. (b) Rosen-
feld-Weszka algorithm. (¢) Freeman-Davis algorithm. (d) Sankar-
Sharma algorithm. (e) Anderson-Bezdek algorithm. ’

107



A-4 : The resuits of detecting SEMICIR contour by other

algorithms.

.........

(b

(©)

(f)

(i)

- Weszka algorithm. (d) Rosenfeld-Weszka algorithm. (e) Freeman-Davis algorithm.
kar-Sharma algorithm. (h) Anderson-Bezdek algorithm. (i) Anderson~Bezdek algorithm.

(g)

th)

(a) Rosenfeld-Johnston algorithm. (b) Rosenfeld-Johnston algorithm. (¢) Rosenfeld-
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(f') Freeman-Davis algorithm. (g) Sun-
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PENDIX B

Chain Code for Fig. 5.1
55454 32011 01111 12112 12006 65655
60010 10765 55455 55555 55431 12122

Chain Code for Fig. 5.2
33332 30700 00003 32307 00003 32322
26777 22212 76661 11116 66566 55000
10056 65655 00110 66565 65555 56667
66666 66664 22222 22222 23224 43433

Chain Code for Fig. 5.3
76776 77007 10121 22234 44555 55654
55453 42211 21121

C.]

Chain Code for Fig. 5.4
00007 00777 77766 76666 66665 76766
56454 43436 66656 55454 44434 33232
22254 54434 23221 21322 22222 21221
11111 00100 0O
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