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ABSTRACT 

Title of Thesis : 

Non-parametric Dominant Point 

Detection Algorithms. 

Kuo-wei Huang, New Jersey Institute of Technology, 
Master of Electrical Engineering, 1990 

Thesis directed by : Dr. Nirwan Ansari 

New Jersey Institute of Technology, 
Department of Electrical and 
Computer Engineering Center for 
Communications and Signal Processing. 

Dominant point detection is one of the most important preprocessing steps for 

landmark-based shape recognition and point-based motion estimation. Two new methods 

for detecting dominant points are presented. *Both methods do not require any input 

parameter and the dominant points obtained by these methods remain relatively the same 

even when the object curve is scaled or rotated. 

In the first method, for each boundary point, a support region is assigned to the 

point based on its local properties. Each point is then smoothed by a Gaussian filter with 

a width proportional to its determined support region. A significance measure for each 

point is then computed. Dominant points are finally obtained through nonmaximum 

suppression. 

The second method is rather simple. It traces the contour of an object curve, and, 

for each boundary point, it assigns a "chain code" which indicates the direction of the 

trace. Dominant points are then determined by detecting the change of direction of each 

point. 



These two methods lead to an important observation that the performance of a 

dominant points detection algorithm depends not only on the significance measure and 

the support region Mit also on the presence of noise. 

Unlike other dominant point detection algorithms which are sensitive to scaling 

and rotation of the object curve, these two new methods will overcome this difficulty. 

Furthermore, they are robust in the presence of noise. 

The proposed two methods are compared to those of several other dominant 

point detection algorithms in terms of the CPU processing time, the approximation errors 

and the number of the detected dominant points of a given curve. 
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Chapter 1 

Introduction 

It has been suggested from the viewpoint of the human visual system [3] 

that dominant points along an object contour are rich in information content 

and are sufficient to characterize the object contour. The dominant points 

are the high curvature points along a digital curve that have important shape 

attributes. 

Many algorithms have been suggested for detecting dominant points. 

They fall into two categories [2][11][12][16][20][23][25][29] — one is to find 

the dominant points through edge or angle detection and the other is to ob-

tain a piecevvise linear polygonal approximation of the digital curve subject 

to certain constraints on the goodness of fit. 
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In polygonal approximation, dominant points are the intersecting points 

of any two adjacent line segments. These points are also known as the vertices 

or break points of the closed curve(polygon). 

Due to the discrete boundary representation and quantization errors, false 

local concavities and convexities along a boundary are introduced when es-

timating curvature. Smoothing is thus necessary to reduce those false con-

cavities and convexities, it has been shown in [22] that a Gaussian filter is 

an ideal smoothing filter for numerical differentiation. 

Most dominant-point detection algorithm(either angle detection or polyg-

onal approximation), except [28], require one or more input parameters. Ac-

cording to [29], these parameters usually represent the region of support for 

the measurement of local properties(curvature). In general , it is hard, if 

not impossible, to find a set of parameters that will work on a curve with 

various size or rotation. Too large a region of support will smooth out the 

fine features of a curve, whereas too small a region of support will generate a 

large number of redundant dominant points. This difficulty can be avoided 

by a non-parametric method [29] in which the support region of each contour 

point is obtained based on its local properties. 

In this thesis, we introduce two new methods to detect dominant points. 
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The first method adopts the idea of support region [29], and follows by Gaus-

sian smoothing [3]. The smoothing is used to suppress noise. The details 

of this method will be discussed in Chapter 3. The second method obtains 

dominant points by detecting the change of direction of the contour tracing. 

It is a simple and fast method, and performs as well as any other meth-

ods without the presence of noise. This method will further be discussed in 

Chapter 4. 

In Chapter 2, we will review other dominant points detection algorithms, 

and the elements of detecting dominant points. The review includes the 

Gaussian smoothing algorithm [30], the angle detection procedure by Rosen-

feld and Johnston [23], the improved angle detection procedure by Rosenfeld 

and Weszka [27], the Determination of region of support by Teh-Chin algo-

rithm [29], the Freeman chain code [26], the Freeman-Davis corner finding 

algorithm [12], the Sankar-Sharma dominant-point detection procedure [28], 

the Anderson-Bezdek vertex detection algorithm [1]. 

In Chapter 5, a comparison among the two new methods and other pre-

viously known algorithms will be made in terms of the maximum error, the 

integral squares error, the computational complexity and the number of de-

tected dominant points. We will also discuss the effect and presence of noise 
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to the dominant point detection problem. 
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Chapter 2 

Literature Review and The 
C 

Elements for Detecting 

Dominant Points 

2.1 Introduction 

In this chapter, various dominant point detection algorithms will be re-

viewed briefly, and the elements used in this thesis, such as, Gaussian smooth-

ing and the determination of support region, will be discussed. 
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2.2 Review 

In this section, several dominant points detection algorithms will be re-

viewed briefly. The review includes the angle detection algorithm by Rosenfeld-

Jothnston [23], the improved angle detection by Rosenfeld-Weszka [27], the 

corner finding algorithm by Freeman-Davis [12], the Sankar-Sharma dominant-

point detection procedure [28] and Anderson-Bezdek vertex detection algo-

rithm [1]. 

2.2.1 Rosenfeld-JohnstonAngle Detection Procedure 

This parallel procedure [23] is analogous to the Rosenfeld-Thurston edge 

detection algorithm [14] which detects significant maxima in average gray-

level gradients by using a. variable degree of smoothing. This procedure 

will be described in the next section. However, this algorithm can lead to 

incorrect results when edges occur too close to one another [26]. The results 

of detecting dominant points by this procedure are shown in Appendix A. 
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2.2.2 The Improved Angle Detection Procedure 

This procedure [27] is modified from the above Rosenfeld-Johnston algo-

rithm [23]. It was originally developed by Davis and Rosenfeld [10], and was 

later improved by Rosenfeld and Weszka [27]. Although, it has overcome the 

difficulty described above, it still needs some input parameters. The results 

of dominant points detected by this algorithm are shown in Appendix A. 

2.2.3 Freeman-Davis Corner Finding Algorithm 

This algorithm [12] starts with soanning the chain {ci, i = 1,...,n} with a. 

moving straight line segment which connects the end points of a sequence of s 

links (it is defined as cici+i ). As the line segment moves from one chain node 

to the next, the angular differences between successive segment positions are 

used as a smoothed measure of local curvature along the chain. 

This algorithm also exhibits the same problem of the Rosenfeld-Johnston 

algorithm [23]. It also need some input parameters, and when the object 

curve is round-shape, a big error will happen. The results of detecting dom-

inant points by this algorithm are shown in Appendix A. 
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2.2.4 Sankar-Sharma Dominant-point Detection Pro-

cedure 

In this procedure [28], the dominant points are computed iteratively as 

the points of maximum global curvature, based on the local curvature of each 

point with respect to its immediate neighbors. First it is observed that each 

point of a closed curve having exactly two neighbors can be classified into 

three classes based on the local curvature, as shown in Fig. 2.1 

Type of Curvature * Weight Assigned 

No curvature 0 

Positive curvature +1 

Negative curvature -1 

Fig. 2.1 Local curvature assignment. 

For those points having more than two neighbors, let (i, j) be the 

point with k immediate neighbors where k > 3. Find all possible pairs of 2-

neighbor configurations of (i, j). Assign to each such pair the corresponding 

local curvature, using Fig. 2.1. From this collection, omit those pairs which 
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have been assigned positive (negative) curvature, then the point (i, j) is 

assigned the weight +1(-1); on the other hand, if some pairs have positive 

curvature while the rest have negative curvature, then the point (i, j) is 

assigned the weight 0. 

Because no smoothing procedure is included in this algorithm, false local 

concavities and convexities along a boundary are introduced. The results of 

dominant points detected by this algorithm are shown in Appendix A. 

2.2.5 Anderson-Bezdek Vertex Detection 
o 

In this algorithm [1], tangential deflection and curvature of discrete curve 

are defined based on the geometrical and statistical properties associated with 

the eigenvalue-eigenvector structure of sample covariance matrices. 

Specifically, it has been proven [1] that the nonzero entry of the commu-

tator of a pair of scatter matrices constructed from discrete arcs is related 

to the angle between their eigenspaces, and the entry is also proportional to 

the analytical curvature of the plane curve from which the discrete data are 

drawn. 

The sequential algorithm then identifies the location of vertices of the 
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discrete curves based on excessive cumulative tangential deflection between 

successive vertices, an approach which differs markedly from all the previous 

approaches of searching for points of relative curvature extreme. 

The results of dominant points detected by this algorithm are shown in 

Appendix A. This algorithm has the same problem as the Rosenfeld-Johnston 

algorithm and it also needs input parameters. If the object curve has sharpen-

angle shape, some real dominant points will be missed. 

2.3 Background 

In this section, elements for detecting dominant points that will be used 

in this thesis are discussed. 

2.3.1 Gaussian Smoothing Algorithm 

As mentioned before, a Gaussian filter is an ideal smoothing filter for 

numerical differentiation [3]. Using this filter to smooth an object. contour, 

some noise points present on the contour can be eliminated. Note that the 

encoded Gaussian smoothed curve emphasizes the flatness of the region be-

tween ridges. A planar curve [3] can be defined in a, parametric form , 
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(x(t), y(t)) E R2 (2.1) 

where t is the path length along the curve. 

Basically, smoothing by a Gaussian filter is just convoluting x(t) and 

y(t), respectively,. with a Gaussian filter. A one-dimensional Gaussian filter 

C 

can be written as follow , 

1 -t2 
77(t,w) — exp277 

07,7rw 
(2.2) 

where w is the width (spatial support) of the filter. 

The smoothed curve is denoted by the set of points: 

(X(t,w),Y(t,w)). (2.3) 

where 

X(t,w) = x(t)*77(t,w), (2.4) 
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Y (t , w) = y (t) * (t , , (2.5) 

and * indicates the convolution operator. 

It can be shown that the Gaussian smooth curvature [3] is : 

- YX  
(t , co) = . . (2.6) (x2 + 1/2)3/2 

where 

t is the path length along the curve. 

w is the width of the Gaussian filter. 

k is the curvature at t. 

and 

dt 
2 

dt2 
A = = (2.7) 
dX 

dY 2Y = =  (2.8) 
dt dt2  

Note that tracing the object curve along the contour in increasing values 
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of t, a positive curvature corresponds to a concavity on the left, and a negative 

curvature corresponds to a concavity on the right. 

2.3.2 Freeman Chain Code 

A digital closed curve C can be denoted by a sequence of n integer-

coordinate points [12], 

C = {p, = yi), i = 1, ..., 77,1 (2.9) 

where Pi+i  is a neighborof pi(module n). 

13 



The Freeman chain code of C consists of n vectors, written as {ci,i = 

0,1,2, ...,n — 1}, where 

and ci  takes on an integer f where 

as shown in Fig. 2.2, Note that f/47r is the angle between the X-axis and 

the vector. The chain of C is defined by {ei,i =1,...,n} and E2  = All 

integers are of module n [29]. a 

2.3.3 Rosenfeld-Johnston Procedure 

On the real Euclidean plane, the curvature of a curve is defined as the 

rate of change of slope as a function of arc length. For a curve y = f (x) [27], 

it can be expressed as follows : 

If the curvature at pi is defined by simply replacing the derivatives 

14 



above by the first differences, the successive slope angles on the digital curve 

can only differ by a multiple of 45°, and thus small changes in slope cannot 

be evaluated. This problem can be alleviated by using a smoothed slope 

measurement, e.g., defining the slope at pi  as, 

for some k > 1, rather than simply using the first difference (k = 1). 

Define the k-vectors at pi as 

so the k-cosine at pi is defined, 
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where the cik  is the cosine of the angle between the k vectors 72,7, and bik. 

Thus, —1 < cik  < 1, where cik  is close to 1 if aik  and bik  make an angle 

close to 0°, and cik  is close to -1 if a7iT and bik  make an angle near 180° ; 

that is, cik  is larger when the curve is turning rapidly , and smaller when the 

curve is relatively straight. To choose an appropriate k, we use the following 

procedure : 

1. Select a smoothing factor m. For example, let m be [n/10], i.e. 1/10 

of the perimeter of the curve. 

2. Assign region of support h and curvature value ci,h  to point pi for the 

largest h such that, 

< Ci,m-i < < Ci,h > Ci,h-1 (2.17) 

where cio  = -1 and the cosine at pi, is denoted by 

3. Finally, retain those points pi  where ci,h, > cj,h, for all j such that 

j 1;5 h/2. 
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2.3.4 Improved Angle Detection Algorithm 

The above angle detection algorithm is analogous to the edge detection 

algorithm developed in [28]. It will obtain an incorrect result when edges 

occur too close to one another. 

A modified scheme [25] overcomes this difficulty. In the modified angle 

detection scheme, the k-cosines are smoothed by averaging. Each point, with 

(k > 1) will be smoothed as follows : 

The "EiT. are then treated just like the cik  in the original method [23]. 

17 



2.3.5 Teh-Chin Algorithm 

In the Rosenfeld-Johnston procedure [23], the hi  is chosen to satisfy the 

following constraint : 

Note that hi  is the region of support. Davis [9] pointed out that 

incorrectly chosen regions of support may cause the measures of significance 

to be computed over inappropriate neighborhoods which may subsequently 

cause dominant points to be discarded. In the Rosenfeld-Johnston procedure, 

the hi is decided from an input parameter. 

To overcome the difficulty of choosing incorrect regions of support, Teh 

and Chin [29] use the following procedure : 

1. Determine the length of the chord joining the points Pi-kPi+k as, 

Let dik  be the perpendicular distance from the point Pi  to the chord 

18 



2. Start with k = 1. Compute /ik  and dik until, 

Then the region of support of pi is the set of points which satisfy either 

condition (a) or condition (b), 

2.3.6 The Computation of :Perpendicular Distance 

Let pi_i ,pi  and pi+i  be three points in the 2-Dimensional (2D) plane. To 

compute the perpendicular distance from pi to the chord joining pi_ 1  and 

pi+i , we use the following procedure [6] : 
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1. The area of this triangle made by pi_i , pi  and pi+i  is computed as 

follows : 

Where Si, S2, S3  is the three side lengths of this triangle. 

• P is the parameter of the triangle. 

• A is the area of the triangle. 

• The perpendicular distance D is, thus, 

20 



Chapter 3 

The First Method 

3.1 Introduction 

In this Chapter, the Teh-Chin dominant points detection procedure and 

the polygonal approximation procedure will he discussed in details. The 

advantages and disadvantages of these two procedures are analyzed, and the 

implementation of first method will be described. 
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3.2 Motivation 

Image processing is concerned with the manipulation and analysis of 

picture by computer [2]. Its major subareas include: 

1. Acquisition and. compression : Converting analog pictures to digital 

form; efficient coding or approximation of pictures so as to save memory 

space. 

2. Enhancement, restoration and reconstruction : Improving degraded 

pictures; reconstructing pictures by integrating partial information such • 

as projections. 

3. Matching, description, and recognition : Comparing and registering 

pictures to one another; segmenting pictures into parts, measuring 

properties and relationships among the parts, also comparing the re-

sulting descriptions to models that define classes of pictures. 

This thesis will focus on detecting dominant points, a necessary seg-

mentation procedure to achieve landmark-based shape recognition [3]. As 

mentioned before, many dominant point detection algorithms have been sug-

gested, and they can be divided into two categories, edge or angle detection 
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and polygonal approximation. 

In the former category, the dominant points are obtained by measuring 

the angles(curvature) of the boundary points. The angle is related to the 

curvature, and the smaller the angle, the larger the curvature. There are 

many method for computing the curvature. The following three are adopted 

in the Teh-Chin algorithm : 

1. The cosine measure in Rosenfeld-Johnston procedure, cik  (This has 

been discussed in Chapter 2). 

2. Curvature measure : The curvature at point pi is taken to be the 

difference in the mean angular direction of k vectors on the leading 

and trailing curve segments of the point. It is as follows : 

where fi_j  is the Freeman chain code. 

3. 1-curvature measure : By taking k = 1 for the curvature measure, the 

1-curvature measure is defined by, 
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Each boundary point is characterized by its support regional curvature. 

Candidates for dominant points are boundary points which have the maxi-

mum curvature in their corresponding support regions. The dominant points 

are finally obtained from the candidate points by using various suppression 

schemes. 

3.2.1 An Example of Detecting Dominant Point by • 

Angle Detection 

Teh-Chin algorithm [29] is a good example of detecting dominant points 

that falls in the first category, angle-detection. The algorithm does not re-

quire input parameter, and it makes use of the concept of support region. 

The dominant points detected by Teh-Chin algorithm is better than others 

in many aspects, such as the maximum error, the integral square error, the 

number of detected dominant points and the computational complexity. The 

algorithm works as follows : 
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1. Determine the region of support for each point. This procedure is 

described in Chapter 2, 

2. Select a measure of significance(curvature) from one of the three defined 

significance measures mentioned above, and calculate its absolute value 

for each point, I S (pi) I. 

3. Suppress nonmaximum points. 

a 
(a) 1st pass : Perform nonmaxima suppression as follows : retain only 

those points pi  where 

for all j such that 
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(b) 2nd pass : Further suppress those points having zero 1-curvature 

(CURii=0). 

(c) 3rd pass : For those points survived after 2nd pass, if aki  of D(pi)] 

= 1) and (pi_i  or pi+i  still survived) then further suppress pi, if (1 S (pi ) 

S(pi_i ) I) or (I S(pi) S(pi+i ) I. 

If 1-curvature is selected as a measure of significance, then go to step 
a 

(3d), otherwise those points survived are the dominant points. 

(d) 4th pass : For those groups of more than 2 points that still survived, 

suppress all the points except the two end points of each of the groups. 

Owing to quantization error and noise effect, the false concavities and 

convexities along object boundary are introduced. These false concavities 

and convexities can easily be detected as dominant points. 

The above noise factor was not considered in Teh-Chin algorithm. If the 

object curve is corrupted with noise, noisy boundary points may have high 
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significance measure; thus, resulting in incorrect dominant points. 

The Teh-Chin-algorithm works well on object curve which is not corrupted 

with noise. However, it will produce false dominant points if the curve is 

noisy. We will demonstrate this disadvantage by an experimental result in 

Chapter 5. To reduce the noise effect, we introduce a smoothing procedure 

to be incorporated with the Teh-Chin algorithm. This smoothing procedure 

is used in "curvature guided polygonal approximation" method [3] which will 

be discussed next. 

3.2.2 An Example of A Polygonal Approximation Al-

gorithm 

The "curvature guided polygonal approximation" [3] is a good exam-

ple of detecting dominant points by polygonal approximation. Here, a pre-

processing step, Gaussian smoothing, is used to reduce effect of noise and 

quantization error. The algorithm can be summarized as follows : 

1. Remove all one-pixel wide protrusions. An example of a one-pixel wide 

protrusion which may result due to the discrete boundary representa- 
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tion and quantization error, shown in Fig. 3.1 : 

Fig. 3.1 

2. Smooth the boundary with a Gaussian filter. 

3. Find the set of positive maximum and negative minimum curvature 

points on the smoothed boundary. 
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4. The points along the original boundary that correspond to the set of 

points found in Step (3) are used as the starting set of break points for 

polygonal approximation of the original boundary. 

5. Employ the split-and-merge polygonal approximation algorithm. A 

split-and-merge polygonal approximation procedure is summarized as 

follows : 

(a) Assign an arbitrary number of points along the boundary as the a 

initial set of break points. The initial approximated polygon is formed 

by joining the sequence of break points along the original boundary 

with straight lines. 

(b) For each pair of adjacent break points, determine the point along 

the boundary portion that yields the maximum perpendicular distance 

to the straight line segment joined by the two break points. If the 

maximum perpendicular distance is greater than the given tolerance, 

that point becomes a new break point; i.e., the line segment is replaced 
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by two line segments. This is the "splitting" part of the algorithm. 

(c) For each pair of adjacent line segments consisting of three consecu-

tive break points, say A, B and C, compute the maximum perpendicular 

distance from the boundary portion between A and C to line AC. 

If the distance is in the tolerance, break point B is removed. That is, 

line segment AB and BC are replaced by line segment AC. Note that 

each replacement is immediately tested for merging with the next line 

segment. This is the "merging"epart of the algorithm. 

(d) Replace Steps (b) and (c) until an equilibrium is reached; i.e., no 

more splitting and merging. 

6. The resulting break points are the dominant points of the boundary. 

Though this algorithm reduces the effects of noise, it. requires two pa-

rameters, namely, the width, w, of the Gaussian filter and the collinearity 
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tolerance. There is a trade-off in selecting the width , w. That is, a larger 

value of w will remove small details of the boundary curvature, while a smaller 

value will permit false concavities and convexities. It is very hard to chose 

an appropriate w. 

3.2.3 Evaluation 

While the Teh-Chin algorithm is non-parametric, it is sensitive to noise. 

On the other hand, the "curvature guide polygonal approximation" reduce 

the effect of noise, but it requires two input parameters. By taking the 
8 

advantages of both algorithms, we introduce a new method which is both 

non-parametric and less sensitive to noise. The method employs the concept 

of support region and Gaussian smoothing. 

If noise is not severe, we also introduce a very computational efficient 

rnethod which works as good as the Teh-Chin algorithm. This method is 

simply done by detecting change of direction from the Freeman chain code. 

The first method will be described in details in the next section. The second 

method will be discussed in the next chapter. 
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3.3 The First Method 

The first method that we introduce can be summarized as follows : 

1. Contour tracing : Encode the contour by Freeman chain code. 

2. Determine the support region for each contour point by the Teh-Chin 

algorithm. This has been discussed in Section 2.2.5. 

3. Smooth the contour by a Gaussian filter with a width proportional to 

the support region. 

4. Compute significance measure for'each point on the Gaussian smoothed 

curve. Here, we used the cosine measure(Equation 2.16) as our signifi-

cance measure. 

5. According to the significance measure obtained in Step (4), do the 

nonmaximum and nonminimum suppression. 

We will discuss Steps (3) and (5) of the algorithm in the following sections. 

3.3.1 Selection of the Width of A Gaussian Filter 

In this section, we will discuss the relationship between the support re-

gion and the width of the gaussian filter. It• has been shown that a Gaussian 
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filter is an ideal smoothing filter for numerical differentiation [30]. For con-

venience, we will repeat part of the discussion in Section 2.2.1. Denote a 

planar curve by a set of points in parametric form, 

where t is the path length along the curve. 

Smoothing the curve with a Gaussian filter is equivalent to convoluting 

x(t) and y(t), respectively, with a one-dimensional Gaussian filter, 

where w is the width(spatial support) of the filter. 

For a given support region, what should w be ? 

According to the support region determination algorithm(Equation 2.21 

to 2.25), the joining chord length pi_ipi+1  of pi, and the perpendicular dis-

tance di  (from pi  to pi_i pi+i ) are used as parameters in determining the sup-

port region. In a closed digital curve, the curvature of each boundary point 
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is affected by and related to its neighbor points. A break point is formed at 

the intersection of two segments of a consecutive sequence of points where 

points on one segment have positive(negative) slopes while points on the 

other segment have negative(positive) slopes. 

Thus, the definition of support region for a contour point pi  can be stated 

as, 

• An expanded region on both side of pi . Within this region, the point 

i pi should have the maximum curvature than other points. 

• 
When noise is present on the contour, we use a Gaussian filter to smooth 

the contour to reduce the noise effect. Again, since concavities and convex-

ities along an object contour occur at different scales, how much smoothing 

is necessary ? In addition, as mentioned earlier, the curvature of a point is 

determined by its neighboring points, and thus, we want to make the amount 

of smoothing adaptive. 

Since the measurement of the curvature of a point should be based on 

the local properties within its region of support, we propose to smooth the 

point with a Gaussian filter of length equal to the region of support. What 

should be the width of the filter ? Intuitively, the neighboring points closer 
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to the point of interest should have higher weights than those points further 

away. 

Figures 3.2 to 3.10 (shown in the end of this chapter), show the shape of a 

Gaussian filter with widths = 1, 1.5, 2, 2.5, 3.3, 4, 4.5, 5 and 5.5, respectively. 

The window length of the filter is 21 which can be considered to be 2(support 

region) + 1. 

From the figures, with too large a width, points that are far away from 

the point of interest are contributipg too much to the smoothing while with 

too small a width, they hardly contribute at all. The best compromise, 
e 

subjectively, is when w=3.3 as shown in Fig. 3.6 where the neighboring 

points closer to the point of interest have higher weights while points farther 

away still contributes the smoothing but in less amount. In conclusion, each 

point is smoothed by a Gaussian filter of "length = 2(support region) + 1" 

and with "width = 0.33 x (support region)." 

The above analysis can be used to explain the trade-off in selecting 

the width w of a Gaussian filter : "A larger value of w will remove small 

details of the boundary curvature, a smaller value of w will permit false 

concavities and convexities." 

The Gaussian smoothing is done as follows : 
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1. For each boundary point, determine its support region. The support 

region is determined by the two conditions which are mentioned in 

Section 2.2.5 (Equation 2.22, 2.23 and 2.24). However, for the special 

case when a contour point forms a straight line with its two adjacent 

points, we make the support region of this point "0." 

2. Determine the width w of the Gaussian filter. That is, w = 0.33 x 

support region. 

3. Use a Gaussian filter with length = 2(support region) + 1, and width 

obtained in Step (2). 

4. Each smoothed point is thus obtained by the weighted sum of the 

products of the boundary points within the region of support and the 

respective coefficients of the Gaussian filter. 

Two special condition should be noted, 

• For a point with a support region equal to 0, skip the smoothing 

step. Because the point with a "0" support region, should be 

a point along a straight line. In this situation, its curvature is 

equal to -1 (the smallest curvature), and therefore it cannot be a 
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dominant point. 

• For the point with a support region equal to 1, we use the following 

smoothing procedure : 

This is because the point with support region equal to 1, is usually 

a point characterized by a region with small details. Thus, this point 

should be smoothed out. If we use Gaussian smoothing with the length 
i 

and the width defined in Steps (2) and (3), this point will be immuned 

from smoothing. Therefore, we smooth this point according to Equa-

tion (3.8). 

3.3.2 Determination of Dominant Points 

Based on the computed significance measure of each contour point, the 

last step is to determine which of those contour points are the dominant 

points. 

In the Teh-Chin algorithm [29), four levels of suppression are used to 

chose the dominant points. In the first level suppression, any contour point 
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that have the maximum significance measure within half of its support region 

is eliminated as a dominant point. In the second level, any point having a 

zero 1-curvature (defined by Equation 3.2) is suppressed. In the third level 

suppression, if there are two consecutive points that survive from the first 

and second level suppression, eliminate the one with less significance. 

In the "curvature guided polygonal approximation algorithm," points 

with local maximum and minimum curvature are first selected. That is, all 

nonmaximum and nonminimum curvature points are suppressed. However, 

a "split and merge polygonal approximation ," is then used to alternatively 

selecting and suppressing the possible dominant points. 

Strategy for selecting dominant points 

The first method we introduced use the following two levels of suppres-

sion : 

1. Select the points that achieve the maximum significance measure within 

the corresponding support regions : For each point, check if this point 

achieves the maximum significance measure within its support region. 

If not, suppress this point. 
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2. For those points survived after first level of suppression, if the support 

region of point pi is equal to 1, and either pi+1  or pi_i  is still survived, 

then suppress the point with a smaller significance. 

If small details along the object curve is desirable, such scheme will, 

however, eliminate the small details because of the Gaussian smoothing. The 

experimental results will be discussed in Chapter 5. 

3.3.3 Summary 

We have reviewed the Teh-Chin algorithm and "curvature guide polyg-

onal approximation " in great details. Their advantages and disadvantages 

are also discussed. 

Our first method is introduced by incorporating the above two algorithms. 

It inherits the merits of both algorithms; that is, it is non-parametric and it 

is relatively robust in the presence of noise. 
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Chapter 4 

The Second Method 

4.1 Introduction 

In this Chapter, we introduce a simple and computational efficient method 

which performs as well as the Teh-Chin algorithm in the noise-free case. 

4.2 Motivation 

The contour presented in the Teh-Chin algorithm [29] are all traced 

from the Freeman chain code. They are also noise-free. Under this situation, 

the vertices are usually the dominant points. Using the first method we 
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introduced in Chapter 3 to detect dominant points of this kind of object 

contour will result in missing dominant points because of the smoothing 

effect. Therefore, the second method is introduced. 

4.3 The Second Method 

If noise is not present on the object curve, detecting the dominant points 

on this curve is essentially detecting the vertices. 
a 

To trace an object curve by a Freeman chain code, each point on the 

contour will be assigned a digit nunTher according to the direction of the 

trace of this point to the next adjacent boundary point. As mentioned in 

section 2.2.2, there are eight possible directions associated with the Freeman 

code. Each direction is represented by a digit number from 0 to 7. 

The second method use Freeman chain code to trace the contour of an 

object curve. During the tracing, when the direction of the point pi is differ-

ent with the point pi+i , then keep the point pi as an dominant point. The 

dominant points obtained by this method are also the vertices of the object 

curve. Because it is based on the assumption of noise-free situation, the sup-

pression scheme is not needed. Results of detecting dominant points by the 
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second method will also be discussed in Chapter 5. 

4.4 Summary 

According to above discussion, the second method is summarized by the 

following : 

1. Encode the object contour by a Freeman chain code. 

2. Check the Freeman code of 4each point, if the Freeman code of p, is 

different; with the Freeman codeeof pi+i , that is, the trace for the next 

point has changed direction, pi is considered as the dominant point. 
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Chapter 5 

Conclusion 

5.1 Introduction 

In this Chapter, we present experimental results of detecting dominant 

points by the two methods we introduced. The results are compared to those 

obtained by other methods in term of the maximum error, the integral square 

error and the computational complexity. These three figure of merits have 

been used in many dominant point detection algorithms [23] [25][26][29]. 
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5.2 Experiment Results 

The first and second dominant point detection methods have introduced 

and discussed in details in Chapter 3 and Chapter 4, respectively. Before we 

make any comparison among various dominant point detection algorithms, 

we want to emphasize two points — what are the dominant points used for ? 

and what kind of dominant points are concerned ? 

As mentioned in the previous chapters, dominant points are used for 

shape recognition. The goodness of a dominant point detector thus directly 

depends on how the dominant points tbtained by the detector can be readily 

used to achieve recognition. 

For a given contour, we have to address the following three questions : 

1. How many dominant points are sufficient to characterize the contour ? 

An adequate number of dominant points along an object contour are 

necessary to describe the object contour. If only a few number of dom-

inant points can be detected, they may not be sufficient to describe 

the shape of the contour. However, if too many dominant points are 

detected, some of these points may be extraneous due to discrete rep-

resentation of the object contour and noise. A bad dominant point 
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detector will burden the subsequent shape recognition algorithm to 

identify the shape of the object. Thus, the "adequate" number of dom-

inant points to characterize an object contour is subjective, and closely 

depend on the subsequent postprocessing procedure. 

2. Are the dominant points obtained by the detector invariant to the size 

and the orientation of the contour ? That is, for a given contour at a 

different scale and/or orientation, do the number of dominant points 

and their relative locations remain the same ? 

3. Can the noise present on the contour be removed ? 

In the presence of noise, many false concavities and convexities along 

an object contour are introduced. A robust dominant point detector 

should be able to eliminate these false concavities and convexities as 

dominant points. 

A robust dominant points detector is essential for shape recognition, we 

will use the above criteria to compare various dominant points detection 

algorithms. 

In this thesis, we will experiment on the contours which are commonly 

used in the Teh-Chin algorithm [29] and many other algorithms [9][12][23]. 
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According to the chain codes provided in [29], the original contour are shown 

in Fig. 5.1 to Fig. 5.4, namely and respectively, CHROMOSOME, LEAF, 

EIGHT and SEMICIR. 

The results [29] of dominant points obtained various algorithms are shown 

in Figures A.1 to A.4, in Appendix A. Fig. 5.5 to 5.8 show the dominant 

points obtained from the set of contours (Fig. 5.1 to 5.4) by the Teh-Chin 

algorithm. The dominant points obtained by Teh-Chin algorithm on a set of 

rotated (by 30°) and scaled (by 2)„contours are shown in Figures 5.9 to 5.16, 

respectively. Note that the rotated and scaled contours are superimposed 

with their respective resulting dominant points in the figures. The dominant 

points obtained is quite stable to scaling and rotation. The number of dom-

inant points detected by this algorithm on the set of contours is about 25 % 

of total contour points. Note that the number of dominant points obtained 

are certainly dependent on the type of contours we are approximating. 

5.2.1 The First Method 

The results of detecting the dominant points on the contours shown in 

Figures 5.1 to 5.4 by using first method are shown in Figures 5.17 to 5.20. 
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The results for the rotated and scaled contours using the first method are 

shown in Fig. 5.21 to 5.28. Again, in each figure, we have superimposed the 

original contour with the resulting approximated contour. Like the Teh-Chin 

algorithm, this method is also stable to scaling and rotation. The number of 

dominant points obtained for the same given contour is also about 25 % of 

total contour points. 

5.2.2 The Second Method 

The second method simply uses the Freeman code to detect the dominant 

points. Support region, Gaussian smoothing and complicated significance 

measurement are not needed to determine the dominant points. 

The results of the dominant points obtained by this method on the set 

of contours shown in Fig. 5.1 to 5.4 and their respective rotated and scaled 

contours are shown in Fig. 5.29 to 5.40. Since vertices of an object contour 

are considered as the dominant points, the method is naturally stable to 

rotation and scaling. However, the number of dominant points obtained is 

the largest because every vertices are considered as dominant points. 
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5.3 Comparison 

In this section, the two new dominant point detecting methods are com-

pared to other algorithms. Like other authors, the results are compared in 

term of the approximation errors, the number of detected dominant points, 

and the computational complexity. 

• The Approximation errors : 

In this thesis, we adapted the same quantitative measure of the quality of the 

detected dominant points described in.the Teh-Chin algorithm [29]. The error 

between a point p, of a digital closed curve C and the approximating polygon 

is defined as the perpendicular distance of the point to the approximating 

line segment. This error is denoted by et. Two error norms between C and 

its approximating polygon defined below are used : 

1. Integral square error, 

2. Maximum crror, 
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The comparison results are shown in Table 5.1 to Table 5.4, respectively. In 

this thesis, the results of the Rosenfeld-Johnston algorithm, the Rosenfeld-

Weszka algorithm, the Freeman-Davis algorithm, the Sankar-Sharma algo-

rithm and the Anderson-Bezdek algorithm are directly obtained from [29]. 

The approximated contours detected by the above algorithms had been sum- 

o 
marize by Teh and Chin [29]. Since they are not discussed in this thesis, the 

results are shown in Appendix B. + 

Though the Teh-Chin algorithm achieves very small error, the second 

method we introduce achieve the zero error. However, this does not mean 

that the second method is the best dominant point detector. Dominant point 

detector cannot be simply compared based on this quantitative measure of 

quality that are used by many researchers. The quality is usually very subjec-

tive. In general, large concavities and convexities should be dominant points. 

Small concavities and convexities may not be dominant points because these 

may be caused by noise and quantization error. If noise is not present, the 

second method would certainly be the best detector. If noise is severe, the 
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first method is preferable because this method will smooth out the effect of 

noise. We will emphasize this point by another experiment result later. 

• The Computational Complexity. 

The second method we introduce is the simplest and most computational 

efficient. The first method requires more computation than the Teh-Chin 

algorithm because additional computation is spent on Gaussian smoothing. 

In the next section, we will discuss the noise effect and justify that it is worth 

on taking additional computation to reduce the noise effect. 

• The Effect of Noise 

Consider a contour CROSS which has been corrupted with noise is shown 

in Fig. 5.41. The original contour should be a CROSS. The dominant points 

obtained by Teh-Chin algorithm are shown in Fig. 5.42, by the first method 

we introduce are shown in Fig. 5.43. Note that the contour approximated 

by the dominant points which are obtained by first method resembles curve 

closely to the original contour than that by the Teh-Chin algorithm. Since 

the Teh-Chin algorithm does not smooth out the noise, spurious points are 

taken as dominant points. The Gaussian smoothing incorporated in the first 
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method has gracefully reduce the noise effect, and thus eliminating most of 

the spurious points. 

On the other hand, the second method would produce an approximated 

contour which is an exact copy of the corrupted CROSS contour. 

5.4 Summary 

We have introduced two new dominant point detection methods. The first 

method incorporates concept of the support region and Gaussian smooth-

ing for detecting dominant points. The second method simply obtains the 

dominant points(or vertices) by detecting the change of direction along the 

contour being traced. 

Both methods are relatively insensitive to the rotation and scaling of the 

object contour. The first method is robust in the presence of noise while 

the second method is very sensitive to noise. The goodness of a dominant 

point detector is very subjective . The figure of merits which have been used 

by many researcher to compare the quality of dominant point detectors, 

as points out, is not reliable. In the presence of noise, the first method 

performs better than the best known angle detection algorithm, the Teh-Chin 
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algorithm. If noise is not considered, the second method provides the best 

figure of merit, which, as we emphasize, are not good criteria for comparison. 
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TABLE 5.1 

Results of the CHROMOSOME curve 

Number of input Contour points n = 60 

Algorithm 
No. of 

dominant 
points 

Max. 
error 

Integral 
error 

CPU 
time 

( secs) 

Rosenfeld 
and 

Johnston 
8 1.54 21.94 4.19 

Rosenfeld 
and 

Wes zka 
12 

. 
1.58 22.61 6.04 

Freeman 
and 

Davis 
8 1.51 * 22.56 3.12 

Sankar 
and 

Sharma 
12 2.03 28.89 16.46 

Anderson 
and 

Bezdek 
9 2.03 26.50 5.31 

Teh-Chin 
by 

k-cosine 
15 0.74 7.20 4.47 

First 

Method 
16 2.00 20.25 2 

Second 

Method 
37 0 0 1 
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TABLE 5.2 

Results of the LEAF curve 

Number of input Contour points n = 120 

Algorithm 
No. of 

dominant 
points 

Max. 
error 

Integral 
error 

CPU 
time 

( secs) 

Rosenfeld 
and 

Johnston 
17 1.76 43.42 10.91 

Rosenfeld 
and 

Weszka 
18 1.53 

. 

30.57 17.40 

Freeman 
and 

Davis 
17 1.72 

e, 
45.27 8.16 

Sankar 
and 
Sharma 

20 3.48 71.15 44.63 

Anderson 
and 

Bezdek 
20 1.49 39.18 13.19 

Teh-Chin 
by 

k-cosine 
29 0.99 14.96 9.70 

First 

Method 
30 2.13 25.57 3 

Second 

Method 
57 0 0 1 
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TABLE :5.3 

Results of the EIGHT curve 

Number of input Contour points n = 45 

Algorithm 
No. of 

dominant 
points 

Max. 
error 

Integral 
error 

CPU 
time 

( secs) 

Rosenfeld 
and 

Johnston 
10 1.61 22.83 2.97 

Rosenfeld 
and 

Weszka 
16 1.59 

. 
12.67 3.74 

Freeman 
and 

Davis 
11 

.  
1.34 14.61 2.80 

Sankar 
and 

Sharma 
6 2.36 38.57 11.55 

Anderson 
and 

Bezdek 
9 1.11 8.97 4.49 

Teh-Chin 
by 

k-cosine 
13 1.00 5.93 3.99 

First 

Method 
14 1.00 5.06 2 

Second 

Method 
30 0 0 1 
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TABLE 5.4 

Results of the SEMICIR curve 

Number of input Contour points n = 102 

Algorithm 
No. of 

dominant 
points 

Max. 
error 

Integral 
error 

CPU 
time 

( secs) 

Rosenfeld 
and 

Johnston 
30 0.74 8.85 8.09 

Rosenfeld 
and 

Weszka 
34 1.00 15.40 10.13 

Freeman 
and 

Davis 
19 

a  
1.41 23.31 9.46 

Sankar 
and 
Sharma 

10 8.00 769.53 35.04 

Anderson 
and 

Bezdek 
29 1.18 6.43 12.04 

Teh-Chin 
by 

k-cosine 
22 1.00 20.61 9.66 

First 

Method 
28 1.26 17.83 2 

Second 

Method 
53 0 0 1 

61 
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Fig. 5.2 The LEAF Contour 



Fig. 5.3 The EIGHT Contour 
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Fig. 5.4 The SEMICIR Contour 



Fig. 5.5 Detected by Teh—Chin algorithm 



Fig. 5.6 Detected by Teh—Chin Algorithm 
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Fig. 5.7 Detected by Te=a—Chin Algorithm 



Fig. 5.8 Detected by Telit.—Chin Algorithm 



Fig. 5.9 Detected by Teh—Chin Algorithm (Rotation). 



Fig. 5.10 Detected by Teh—Chin Algorithm (Rotation). 



Fig. 5.11 Detected by Teh—Chin Algorithm (Rotation). 



Fig. 5.12 Detected by Teh—Chin Algorithm (Rotation). 



Fig. 5.13 Detected by Teh—Chin Algorithm (Scaling). 



Fig. 5.14 Detected by Teh—Ciqin Algorithm (Scaling). 



Fig. 5.15 Detected by Teh—Chin Algorithm (Scaling). 



Fig. 5.16 Detected by Teh—Chin Algorithm (Scaling). 



Fig. 5.17 Detected by First Method. 



Fig. 5.18 Detected by First Method. 



Fig. 5.19 Detected by First Method. 



Fig. 5.20 Detected by First Method. 



Fig. 5.21 Detected by First Method (Rotation). 



00 
CA:,  

Fig. 5.22 Detected by First Method (Rotation). 



Fig. 5.23 Detected by First Method (Rotation). 
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Fig. 5.24 Detected by First Method (Rotation). 



Fig. 5.25 Detected by First Method (Scaling). 



Fig. 5.26 Detected by First Method (Scaling). 
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Fig. 5.27 Detected by First Method (Scaling). 



Fig. 5.28 Detected by First Method (Scaling). 



Fig. 5.29 Detected by Second Method . 



Fig. 5.30 Detected by Second Method. 



'ig. 5.31 Detected by Second Method. 
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Fig. 5.32 Detected by Second Method. 



Fig. 5.33 Detected by Second Method (Rotation). 



Fig. 5.34 Detected by Second Method (Rotation). 
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Fig. 5.35 Detected by Second Method (Rotation). 



Fig. 5.36 Detected by Second Method (Rotation). 



Fig. 5.37 Dejected  by Second Method (Scaling). 
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Fig. 5.38 Detected by Second Method (Scaling). 



Fig. 5.39 Detected by Second Method (Scaling). 



Fig. 5.40 Detected by Second Method (Scaling). 



Fig. 41 The CROSS Contour. 
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Fig. 5.42 Detected by Teh—Chin Algorithm. 
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Fig. 5.43 Detected by First Method. 



Appendix A : Results detected by other Algorithms 

A-1 : The results of detecting CHROMOSOME contour by 

other algorithms. 
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A-2 : The results of detecting LEAF contour by other 

algorithnis. 
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A-3 : The results of detecting EIGHT contour by other 

algorithms. 
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A-4 : The results of detecting SEIVELCIR contour by other 

algorithms. 



APPENDIX B 
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