
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

5-31-1991 

Bad data identification in power systems Bad data identification in power systems 

Shichun Zou 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Zou, Shichun, "Bad data identification in power systems" (1991). Theses. 2713. 
https://digitalcommons.njit.edu/theses/2713 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2713?utm_source=digitalcommons.njit.edu%2Ftheses%2F2713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

Title of Thesis: BAD DATA IDENTIFICATION IN POWER SYSTEMS 

Shichun Zou, Master of Science in Electrical Engineering, May,1991 

Thesis directed by: Dr. W. Hubbi, Associate Professor 

Two classes of bad data (BD) identification methods in power system state 

estimation are studied. 

The first class is the perturbation method. In this method, the obtained mea-

surements are perturbed a few times. Each time a state is obtained from which 

measurement corrections are calculated. The statistics of the corrections corre-

sponding to a BD are different from those corresponding to a healthy data. The 

method uses those differences for identification purposes. 

The effectiveness of different indicators is studied. These include the normalized 

residual, the weighted residual, and residuals incorporating the statistics of the 

corrections. 

The success rate of using the different indicators is defined and calculated. The 

tests are done using the IEEE 14-bus and the 30-bus systems. Different measure-

ments configurations are used. The effects of other factors are also tested and results 

are presented. 

The presented results show that the new indicator 4, is the most effective 

indicator. Its success rate is a few percent higher than the widely accepted normal-

ized residuals. The indicator Rnp  is better than normalized residual indicator not 

only on an average bases, but also in every case individually. The computational 

requirements for this method is little higher than those of the normalized residual 

method. 

The second class includes three schemes. These are based on the independent 

equations method in that a sensitivity matrix is defined. The matrix relates the 

suspected BD to the healthy ones. Scheme I and III are tested using two systems 

respectively and single and multiple bad data cases are studied. They are successful 

in identifying bad data. 
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Chapter 1 

INTRODUCTION 

The objective of this thesis is to develop methods for bad data identification in 

power systems. Four methods are presented. 

In section 1.1, the problem of'power system state estimation(PSSE) is presented. 

The bad data detection and identification problem is introduced in section 1.2. The 
4 

existing methods of bad data (BD) identification are presented in section 1.3, 1.4 

and 1.5 respectively. In section 1.6, the rest of the thesis is outlined. 

1.1 Power System State Estimation 

This section is descriptive and is taken from [1 — 6] 

In power networks, control centers are equipped with a supervisory control and 

data acquisition (SCADA) system to monitor the network to insure a reliable and 

optimal operation. The central computer of the SCADA system collects real-time 

data from the system by the remote terminal units (RTUs). These data are pro-

cessed by the Power System State Estimation (PSSE) program to provide a best 

estimate of the state of the system to be used in various application programs. The 

information transmitted to the control center is inaccurate due to one or more of 
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the following: 

• Power transducer and instrument transformer errors, 

• A/D (Analog to Digital) conversion errors, 

• Analog or digital data transmission errors, 

• Delayed measurements that reflect a prior system state, 

• Damaged meters. 

The information transmitted to the control center are not form the complete 

data base of the system because ,of the following: 

• Meters and communication eequipment are expensive, so it is necessary to 

reduce the number of meters as much as possible, 

• Some variables, like voltage angles, are difficult and almost impossible to 

measure economically, 

• The unavailable measurements can be calculated using mathematical models. 

Because the available measurements contain errors and because the data are not 

complete, power system state estimation (PSSE) programs are used to process the 

available measurements to provide the control personnel with a complete, reliable 

and accurate data base of the system under control. The data transmitted from 

RTUs are processed based on a mathematical model which assumes the existence 

of random errors, bad data, modeling errors, and parameter errors. The system 

variables are calculated (or estimated) using that model. 
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PSSE then is a data processing algorithm for converting redundant meter read-

ings and other available information, such as the mathematical model of the system, 

past behavior (or values) of the system variables (known as pseudomeasurements), 

etc., into an estimate of the state variables. Pseudomeasurements is a term used to 

indicate values of system variable, obtained from past measurements or estimates 

of those variables. 

The state variables of an electric power system are usually defined as voltage 

magnitudes and phase angles at all  network buses. These are sufficient to define 

uniquely the state of the system. and, moreover, from which all  other values can 

be explicitly calculated. 

Normally PSSE includes the following basic operations: 

• Modelling of the system, 

• Prefiltering raw data, 

• State estimation, 

• Detection of bad data, 

• Identification of bad data, 

• Removal of bad data. 

The output of the PSSE program is not the true state of the system. Besides 

the measurement errors mentioned above, the reasons for the existence of this dis-

crepancy are the following: 

• Error in the mathematical model, 
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• Inaccuracy of system parameters, 

• Use of pesudomeasurements. 

Pseudomeasurements are old measurements or values of variables calculated 

using an old state, when these are used in place of measurements. The Weighted 

Least Squares Method is used to solve PSSE problem. In the WLS method [1 — 4], 

the static model of an electrical system (or network) is given by its admittance 

matrix. All measurements (and other information) are modeled in terms of 

z --= h(x) + v (1.1) 

where z is a vector of measurements, x is the state vector of the static structure 

model, and h(x) is a nonlinear function of x which is determined by the admittance 
b 

matrix and Kirchhoff's laws, relating the real-time measurements to the state vector 

of the system. The dimension of z is m, the number of measurements. To take 

into account the errors in the measurements, the error vector v is introduced in 

the above model. Note that unless otherwise stated, boldface uppercase symbols 

denote matrix quantities and boldface lowercase ones denote vectors. 

The estimated state of the system is defined as the value of x which minimizes 

the performance index 



where ui  is the standard deviation of noise on the ith measurement. 

In PSSE, standard deviation of a measurement is not the standard deviation 

stated in statistics because in the dynamic power system each measurement set 

represents a snapshot of the system that will never occur again. The characteristics 

of a meter determines the bounds of ERR and FERR, where, ERR and FERRi 

indicate the percentage error, and the fixed error of the ith measurement, respec-

tively. The sum of the absolute values of the errors due to ERRi and FERRi  is 

taken as the standard deviation of measurement i. 

From the above discussion, the weighting matrix usually used in the literature 

is a diagonal matrix R, where 

It should be noted that equation (1.4) is valid only when measurement errors are 

correlate. If measurement errors are not correlate, the weighting matrix is not a 

diagonal matrix, it is the inverse covariance matrix of the noise in the measurements 

[4]. In the study conducted in this thesis, it is assumed that the errors are correlate 

and thus the weighting matrices used are all diagonal matrices. 

It should also be noted that a weighting factor pertaining to a certain measure-

ment is given according to the accuracy of that measurement, but the importance 

of a measurement is determined not only by its accuracy but also by its location. 

Thus increasing the accuracy of sensor A , for example, may not have the same 

effect on the quality of the estimated state, as increasing the accuracy of sensor B. 

In order to estimate x, an initial value x0  is assumed and a Taylor expansion 
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1.2 Bad Data Detection And Identification 

This section is descriptive and is taken from [7,8,24,28,30] 

Occasionally bad data will occur. That is, a data point will be very erroneous 

rather than just sightly inaccurate. This can occur for a number of reasons. Perhaps 

there is a momentary failure of a communication link. Perhaps a meter has an 

intermittent fault. Perhaps, if pseudo-measurements are used, the state of the 

system has changed and the pseudo-measurements are very far off. Any number of 

events can occur which will cause a given reading to be very inaccurate[7]. 

As mentioned before, the presence of bad data has to be detected, which data 

are bad has to be identified, and finally the bad measurement has to be removed. 
. 

It is well known that the residual equation can be obtained by Weighted Least 

Squares Method of state estimation4in power system as follows: 





The methodology that has gained wide acceptance is based on a two step proce-

dure: the quadratic cost function J(x) test to detect whether bad data are present 

or not, and the weighted residuals rn, or normalized residuals rn  identification test 

to flag which measurements (if any) are affected by gross errors. After the detection 

of bad data, the usual procedure is to delete the measurement presenting the largest 

normalized residual and reestimation the system state[22]. 

The J(x) test is an indirect approach which detects bad data using a statistical 

test. When there is no bad data the index J(x) follows a Chi-square distribution. 

The computed value of J(x) is compared with a constant calculated from the Chi-

square distribution (detection threshold). If J(x) exceeds this value, bad data is 

assumed to be present and identification is required. The weighted or normalized 

residuals vector is then calculated with its elements arranged in descending order 
b 

of magnitude. Any element whose value exceeds that of a constant obtained from 

a normal distribution is suspected to be a bad measurement. Theoretically it is 

possible to remove all these suspected measurements simultaneously. However, ex-

perience has shown that it is safer to remove only the measurement corresponding 

to the largest residual [20]. The reduced measurement vector is subjectd to a further 

J(x) test. If it fails the test, the measurement corresponding to the the next largest 

residual is also removed. This process of detection and identification is repeated 

until all the suspected measurements are removed. 

The main advantage of this method is that it is easy to use and simple to im-

plement, since the only computation it needs besides estimation is that of residuals 

[24]. However, the method suffers from the following drawbacks. 

• The computational requirements are high, since it requires a series of reestimation-
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detection after each elimination; this may lead to computer time requirements 

which are too high for an implementation. 

• it may lead to a degradation of the measurement configuration and a sub-

sequent drop of the power of the detection test; this in turn may make it 

impossible to detect the remaining BD. 

1.4 Identification By NQC 

This section is descriptive and is taken from [7, 8, 20, 30] 

This method is based on the observation that the weighted least-squares estima-

tion is sensitive to bad data beca‘use it weights larger residue terms much heavier 

than small terms [7]. An estimator based on a cost function which somehow as-

signed less weight to large elements in the residuals would be less sensitive to bad 

data. One of such cost function is: 



residuals are "small" (no bad data), the BDS estimator is essentially identical to 

the least squares estimator, which is the optimum estimator under a wide variety 

of circumstances. 

The main advantage of the NQC method lies in its simplicity. Indeed, on one 

hand, it can be implemented through a simple transformation of the basic WLS 

algorithm; on the other hand , the estimation and identification steps are carried 

out in a single procedure, which avoids successive. 

However, the method suffers from the following serious drawbacks [24]. 

• Strong tendency to slow convergence or even to diverge: the NQC exhibit a 

slower convergence than the corresponding quadratic criterion. This can be 

explained as follow: 

— the shape of cost function is more intricate, 

— the rejection of many measurements may lead to numerically unobserv-

able situation, especially in cases of poor local redundancy and/or mul-

tiple interacting BD. 

• High risk of wrong identification: Schematically, the NQC rely on measure-

ment having small residuals (with respect to) and tend to reject the others. 

Now, since there is no one-to-one correspondence between large residual and 

large measurement errors, it may happen that valid measurements are rejected 

whereas erroneous ones are kept. In such case the estimation is much less reli-

able than that given by the quadratic estimation without any BD processing. 

• No recognition of topologically unidentifiable BD situation: in this case, re-

sults are unpredictable. Moreover, the rate of convergence is generally af- 
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fected, since the NQC tend to reject too many suspected measurements. 

1.5 Hypothesis Testing Identification 

This section is descriptive and is taken from [24,25, 30] 

The Hypothesis Testing Identification (HTI) is based on the computation of 

measurement error estimates, on the use of a hypothesis testing and on the definition 

of decision rules. The HTI method comprises the following steps [25]: 

After a standard detection test has shown presence of bad data and measurement 

residuals have been computed: 

• Select the suspected measurements on the basis of their normalized residuals, 

• Estimate the corresponding measurement errors using a linear estimation pro-

cedure and the knowledge of the residuals, 

• Decide whether each measurement is false or valid through a hypothesis testing 

applied to its estimated error, 

• Refine (if necessary) the hypothesis testing procedure, 

• Correct the state estimation. 

This method result in an one-shot procedure where all  erroneous measurements are 

identified altogether. 

The advantages of HTI are as follows: [24] 

• The HTI is method generally able to identify all  BD within a single step, 

• This method is able to identify strongly interacting BD, 
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• The method treats properly topologically unidentifiable BD. 

The disadvantages of this method are : 

• There is a risk of poor identification, corresponding to the case where one or 

several BD are not selected, 

• The method requires the computation of the W33  whereas other procedures 

merely need the diagonal of the W matrix. 

1.6 Thesis Outline 

The main goal of this thesis is to study bad data identification methods. In Chapter 
6 

2, three schemes for bad data identification are presented. Chapter 3 is devoted to 

studying the perturbation method for BD identification. 

13 



Chapter 2 

Bad Data Identification Methods 

The objective of this chapter is to study a method of bad data identification in 

power systems. Three new schemes for bad data identification are discussed. 

In section 2.1, The independ8nt equations method is introduced. In section 2.2, 

scheme I for bad data identification is presented, Also, a new sensitivity matrix is 

developed in this section. Scheme II and scheme III are presented in section 2.3 

and 2.4 respectively. 

2.1 The Independent Equations Method 

This section is descriptive and is taken from [5, 6,15,16]. 

The IEM is based on the node injections as input data. but utilizes independent 

line flows as redundant information for correction of erroneous or missing data. The 

method does not make use of nodal voltage measurements. The pertinent equations 





2.2 Scheme I for Bad Data Identification 

In this section, a scheme for bad data identification based on independent equations 

method is presented. Firstly, a new sensitivity matrix is developed. Its dimensions 

is based on the number of suspected bad data so that it is a comparatively small 

matrix, (since the number of suspected bad data is small in practice). Therefore, 

the difficulty of inverting the sensitivity matrix is grately reduced. Secondly, the 

existent normalized residuals technique is used to specify a set of suspected bad 

data. Thus all  the bad data can be identified in a single step. 
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case # BD True Value MFCLF Corrected value ERR-T 
1 PN2=20 PN2=40 PL12 PN2=40.83 0.21% 
1 PN3=25 PN2=45 PL34 PN2=45.87 1.91% 
2 QN2=5 QN2=25 QL12 Q N2=25.10 3.92% 
2 QN3=10 QN3=15 QL34 PN2=14.99 0.006% 
3 PN2=20 PN2=40 PL3.2 PN2=38.31 1.69% 

3 QN2=15 Q N2=30 QL12 Q N2=30.13 0.42% 
4 QN4.----0 Q N4=5 Q L43 QN4=5.337 6.74% 
4 Q N5=5 Q N5=10 Q L52 Q N5=10.32 3.22% 
5 PN2=20 PN2=40 PL12 PN2=37.38 6.56% 
5 PN3=0 PN3=45 PL34 PN3=44.53 1.04% 

Table 2.1: The second column is the simulated value of bad data, the third column 
gives the true values, the forth column is the measurements used for corrections, 
the fifth column is the corrected values and the last column is the percentage error 
of the corrected data with respect to its true value. 

The results obtained after one iteration only, are shown in Table 2.1. For case 1, 

two bad data are simulated and both are active injections at nodes 2 and 3. Their 

true values are 40 and 45 respectively. The measurements used for corrections are 

line flow P12  and P13. The considerations for selecting line flows are as follows: 

Firstly, in power system the relationship between active power and reactive is very 

weak, in other words, the changes of the active power are not sensitive to the changes 

of the reactive power. Secondly, variables in the lines directly connected to the bad 

data points are more sensitive to changes in those bad data. After the first iteration, 

the corrected values corresponding to bad data are found. The percentage errors of 

the corrected values with respect to their true values are 2.1 % and 1.91 %. In case 

2, two reactive bad data are tested. Case 3 tests one bad active injection and one 

bad reactive injection. Case 4 and 5 test the case of lost data. 

In general, the results are satisfactory and convergence is fast. 
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2.2.3 Conclusion 

The proposed new scheme first specify the set of suspected bad data based on a 

lower detection threshold. This scheme allows the identification of bad data in one 

single procedure. In contrast, the conventional IEM needs exhausted computation 

even for a single bad data. Let us take 100-bus system for example, the conventional 

IEM assumes the bad data is at node 1 first, once the convergence is obtained, a 

decision on node 1 can be made. If node 1 is not the bad data point, the next node 

is assumed, this process is repeated until the bad data is found. If the bad data is 

the last node, then the procedure must be repeated 100 times. For multiple bad 

data, it is even worse since various possible combinations have to be calculated. 

The conventional IEM needs'to invert a high order (2 xN, 2x N) matrix (where 

N is the number of nodes) and a low order (S, S) (where S is the number of the 
t 

suspected bad data, which is usually small) inversion. However, the new scheme 

only needs to calculate the low order inversion since the new sensitivity matrix M is 

constructed. Furthermore, difficulties may be encountered in finding the inversion 

of the high order (2 x N, 2 x N) matrix. 

2.3 The Second Scheme 

The methods presented in section 2.1 and 2.2 have a fatal drawback, i.e. the method 

can only be used to identify bad data in injections, also, the measurements used 

as correction information are limited to line flows. However, in practice, the mea-

surements can be any combinations of injections, line flows and magnitudes of bus 

voltages. Therefore, the bad data might be any possible combinations of those mea-

surements. All these factors limit the use of the above methods and render them 
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impractical. 

To solve this problem, the power system state estimation(PSSE) based on the 

weighted least square method is used for detection and identification in the proposed 

scheme II. 

2.3.1 The Scheme 

The measurements used in this new scheme are active injections PN, reactive in-

jections QN , active line flows PL, reactive line flows QE, and magnitude of voltages 

VN 

All the measurements are divided into two sets by a low normalized residu-

als detection threshold. The first set that has high residuals is the suspected set. 

The other set is called the correction set. As mentioned in [24] and will discussed 

in greater detail in the next chapter, the normalized residuals test is not reliable 

enough, particularly for multiple bad data cases. Therefore, a low detection thresh-

old used here can ensure that all bad data are included in the suspected set. 

Assume that the number of the suspected bad data is s. The pertinent equations 

are: 







The IBE which "has received wide acceptance is based on a two step procedure: 

the J(x) test to detect whether bad data are present or not, and the weighted 

or normalized residuals identification test to flag which measurements -(if any) are 

affected by gross errors," [22]. However, "3(x) test conventionally used in power 

system static state estimation has poor reliability for detecting the presence of 

measurement errors in the range 3 to 20 standard deviations," [22]. "r,„. test is not 

reliable enough either, ... since there is no one to one correspondence between larger 

residual magnitudes and larger measurement errors, since each residual is a linear 

combination of the various errors and the detection is taken on a global basis, and 

is able to give a rough indication," [25]. This new scheme first specify the scope 

of bad data based on a low detection threshold. The value of detection threshold 

in this scheme can be taken much lower than usual since the iterative correction 

procedure used in this scheme can re-identify all the suspected bad data, therefore 

the probability of bad data to be detected is expected to be higher than the method 

of identification by elimination (IBE). 

The new scheme can identify bad data in one single procedure, i.e. all the 

bad data will be identified at the same time. However, the conventional IEM needs 

exhaustive computation even for a single bad data. The computational requirement 
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of this scheme is much lower than that of Identification by elimination (IBE) for 

multiple bad data. 

The new scheme is simple and an existent state estimation program can readily 

be converted to the this scheme. 

2.4 Further Improvement (The third scheme) 

One might think that if the measurements with the largest 10 or 20 residuals are 

eliminated (since the number of the bad data is usually very small, all  the bad data 

will be included ), then PSSE is performed to obtain a good state of the system. 

After that all the variables are calculated based on the good state and the bad data 

are identified by comparing the Measurements with their calculated values. It seems 

a good scheme if it does not cause the system to be unobservable. Unfortunately, 

this may happen. 

Although the new scheme in section 2.3 has some advantages over other meth-

ods, it suffers a drawback as IBE and IEM do, i.e. it might cause configuration 

degradation since only a set of measurements is used as correction information. In 

other words, it may cause the system to be unobservable. 



• Perform state estimation (PSSE). 

• Calculate performance index 3(X) to determine if BD exist. 

• If BD exist, calculate normalized residuals and divide all the measurements 

into two sets based on a low detection threshold. 

2.4.1 Tests and results 

The scheme have been tested on IEEE 14 bus test system. The overall measurement 

redundancy is about 2.3. The standard deviation of the error are set equal to 0.02 

p.u. ( on a 100 MVA base) for real and reactive power measurements and 0.002 
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p.u. for voltage magnitude measurements. The bad data is simulated by injecting 

20 standard deviation to the true values[22]. The cases selected to report include 

single and multiple bad data. To test this scheme, a program is developed which is 

based on a PSSE program. The flowchart of the program is presented in Fig.2.1. 

More details about measurements' simulations, considerations of redundancy, the 

size of bad data, and the program itself, will be discussed in the next chapter. 
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BD ID ERR T TMOIT 
1 Y 46.2% 6 
2 Y 6.6% 3 
3 Y 2.3% 7 
4 Y 1.4% 3 
5 Y 2.8% 2 
6 Y 2.5% 2 
7 Y 20.4% 19 
8 Y 1.3% 3 
9 Y 3.1% 24 

10 Y 2.17% 18 
11 Y 1.13% 3 
12 Y 1.14% 2 
13 Y 3.3% 20 
14 Y 1.71% 3 
15 Y 1.19% 2 
16 Y 1.73% 12 
17 Ye 5.58% 4 
18 Y 112.1% 23 
19 Y 3.4% 5 
20 Y 2.12% 1 
21 Y 0.75% 8 
22 Y 26.4% 7 
23 Y 2.2% 2 
24 Y 21.04% 21 
25 N — 0 
26 Y 0.95% 5 
27 Y 1.34% 4 
28 Y 45.4% 6 
29 Y 6.19% 2 
30 Y 9.04% 3 

Table 3.1: The results obtained by using IEEE-14 bus system configuration B. The 
first column is the bad data locations. The second column tells whether the bad 
data is identified. the third column is the percentage error of the corrected values 
with respect to ture values, the last column is the number of the iterations. 
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BD ID ERR T TMOIT 
31 Y 8.23% 6 
32 Y 1.18% 2 
33 Y 1.9% 9 
34 Y 4.89% 4 
35 Y 15.38% 1 
36 Y 15.26% 2 
37 Y 5.44% 3 
38 Y 12.42% 1 
39 Y 42.28% 1 
40 Y 33.56% 2 
41 Y 1.47% 2 
42 Y 9.25% 3 
43 Y 11.04% 4 
44 . Y 38.71% 1 
45 Y 11.26% 7 
46 Y 13.67% 13 
47 Y4  1.06% 1 
48 Y 19.33% 6 
49 N 156.59% 0 
50 Y 4.05% 11 
51 Y 1.28% 2 
52 Y 21.42% 3 
53 Y 0.42% 2 
54 Y 12.28% 7 
55 Y 19.89% 5 
56 Y 7.58% 2 
57 Y 0.29% 2 
58 Y 0.58% 2 
59 Y 0.207% 2 
60 Y 4.48% 2 

Table 3.2: The results obtained by using IEEE-14 bus system configuration B. The 
first column is the bad data locations. The second column tells whether the bad 
data is identified. the third column is the percentage error of the corrected values 
with respect to tore values, the last column is the number of the iterations. 
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MULTBD ID ERR T TMOIT 

PN6 Y 6.1% 5 

QNio Y 7.8% 5 
PL93 Y 1.7% 5 

QL134 Y 7.1% 5 

V3 Y 0.2% 5 

Table 3.3: The results obtained by using IEEE-14 bus system configuration B. The 
first column is the multiple bad data locations. The second column tells whether 
the bad data is identified. the third column is the percentage error of the corrected 
values with respect to ture values, the last column is the number of the iterations. 

MULTBD ID I ERR T TMOIT 
PNio  Y 7.3% 4 

Q N6 Y 4.4% 4 

PL113 Y 9.2% 4 
QL164 Y 2.7% 4 

V6 Y 0.15% 4 

Table 3.4: The results obtained by using IEEE-14 bus system configuration B. The 
first column is the multiple bad data locations. The second column tells whether 
the bad data is identified. the third column is the percentage error of the corrected 
values with respect to ture values, the last column is the number of the iterations. 
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The above results show that this scheme can identify bad data with a success rate 

of 97%. However, the success rate when the normalized residuals are used is 87%. 

The normalized residuals will be discussed in greater details in the next chapter. For 

a single bad data case, the computational requirement is higher than the normalized 

residuals method. The examples show that 5 bad data can be identified in 4 and 5 

iterations respectively. However, the IBE needs at least 5 times as many iterations. 
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degradation. The advantages of scheme II mentioned in section 2.3.2 are enhanced. 

The IEEE 14-bus system was used to test the scheme using single and multiple BD. 

It should be mentioned here, however, that an apparently similar scheme was 

referred to in [24]. 

34 



Chapter 3 

The Study of Perturbation 
Method for Bad Data 
Identification 

This chapter is devoted to the study of the Perturbation Method (PM) for bad data 

identification. 

Section 3.1 is taken form [16] as a summary of the previous work done on the 

PM for bad data identification. In section 3.2, the PM in PSSE is generalized to 

overcome the restrictions imposed in the first introduction of the method in [16]. 

Also, the main program is introduced in this section. In section 3.3, test conditions 

are discussed, the normalized residuals method is studied in this section. In section 

3.4, several indicators are defined and studied; testing results are presented and 

analysed. In section 3.5, effects of varying some factors on the results are studied. 

Conclusions appear in the last section. 

3.1 Perturbation Method For Bad Data Identifi-
cation 

This section is a summary of the method and is taken from [16]. 
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The tests for this method are conducted on the IEEE 14-bus system. The 

method can identify single and multiple bad P injections, with a success rate ex-

ceeding 90%. It is not as successful in identifying bad Q injections; this may be due 

to a programing error. 

3.2 Generalizing the Perturbation Method 

The original PM method is based on the IEM (see section 2.1). Due to the IEM 

model used, the method can only identify bad injections. Also, [16] has not ex-

plained why it can identify bad data and the comparison between the method with 

other existent methods has not been done. 

It is hoped to extend the applicability of the method to identify not only bad 

data among injections, but also the bad data among line flows and voltages. Also, 

the extended method should be more thoroughly tested. 

The following sections try to answer the following questions: 

• Can the restrictions on the measurements topology be removed? 
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• How better or how worse does it work compared to other existing methods? 

3.2.1 The Extended Perturbation Method for Bad Data 
Identification in PSSE 

As mentioned in the last section, in order to test the method more extensively and to 

enhance the function of the method, all tests should be conducted in PSSE environ-

ment. PSSE environment means that no restrictions are placed on the measurement 

set beyond what is found in practice. 

The algorithm of the perturbation method based on a PSSE model is as follows: 

(1): Specify the number of perturbations, N, 

(2): Simulate injection, line flow and voltage measurements, 

(3): Simulate bad data, 

(4): Generate the weighting matrix, 

(5): Perform state estimation (PSSE), 





3.2.2 Explanation of the Program Flowchart 

Figure 2.1 shows the flow chart of the program used. The following explanatory 

notes are numbered to correspond with the block numbers in the flow chart they 

pertain to: 

(2): Subroutine `SYSDATA' is used to read system parameters along with other 

data. The input data files for the IEEE 14-bus test system and the IEEE 30-bus 

test system are given in [62], 

(3): In this block, subroutine 'FRANK' is called to perform Load flow calculation 

in order to establish the true values of the state variables; subroutines `13QCAL', 

`PQLCAL' and 'CLF' are used to calculate true values of all the system variables 

including: real and reactive power injections, flows, and nodal voltages; subroutine 

`MOB' is called to simulate measurements and bad data, • 

(5): Subroutine `PSSE' is called to estimate system states, 

(6): Call Subroutine `RESLFAT' to calculate the various residuals, 

(9): Subroutine `MGBP' is called to perturb measurements, 

(10): Subroutine `PSSEP' is called to estimate system states, 

(11): Call subroutine `RESLIDC' to calculate the various indicators for identi-

fication. 

The developed program also includes the following subroutines: 

MGB, MGBP, WMGP, RESFCT, RESLC, SORTGREAT, PSSE, PSSEP, SYS-

DATA, PQLCAL, EDELTA, TEST, SIAM, PQCAL, CLF, DELTA, IRAN, XRR, 

INVERM, FACTO, MG, WMG, UTION, FRANK and RANDOM. The first 8 sub-

routines, together with the main program, are presented in Appendix A. The rest 

of the subroutines are not listed because they can be found in [17]. 
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3.3 Test Conditions 

To test the perturbation method and for the purpose of measurement generation 

and result comparison, all true values are assumed to be known. The well known 

IEEE 14-bus test system and the IEEE 30-bus test system are used. Most tests 

are conducted on the IEEE 14-bus test system and some of them are made on the 

IEEE 30-bus test system. 

Before presenting the tests results, the following will be discussed : 

• How to evaluate the method? 

• How to generate simulated bad measurements? 

• How does the normalized residual method perform? 



In this study, these three indicators along with other possible indicators are 

discussed and tested. 

The evaluation of any of the identification indicators is based mainly on its 

success rate. In order to clarify the sucess rate concept, the normalized residuals 

are used to illustrate how tests are conducted in this chapter. • 

For an instrumentation configuration, an overall redundancy is assumed and 

each time an error is introduced to a measurement (for single bad data case) to 

form the bad data, then perform PSSE and calculate normalized residuals of all the 

measurements after convergence is attained. All the residuals then are rearranged 

in a descending order. The largest normalized residual is hoped to correspond to the 

bad data location. If measurement with largest normalized residual is indeed a bad 

datum, the identification indication success in this case. Otherwise, it fails. Then, 
8 

next a measurement error is injected to form the next bad datum. This process is 

repeated until all the measurements have been identified. 



The comparison is made comparing SR of an identification indication with that 

of either normalized residuals or other residuals. The former is used mainly in this 

studies. The reason will be given in the section 3.3.3. 

3.3.2 Simulated Measurements Generation 

The procedure is the same as that in [17] and most of this subsection is taken from 

[17]. 

In the perturbation tests, the true values of all system variables are assumed; 

measurements are simulated by introducing random errors to these true values. 

The instrumentation configuration of the IEEE 14-bus test system is defined as 

follows: 

e Instrumentation configuration set A: 



"0" occupies its corresponding position. For example, the "1" in the first position 

of P1_14 string indicates that the real power nodal injection at nodal 1 is measured. 

Later on, when it is necessary to use meters of different accuracies, the accuracy of 

the measurement can be indicated in a string similar to the above. 

Meters are classified into four categories according to their accuracies. Therefore, 

if a measurement is used and it is of category 2, then a "2" would appear on its 

corresponding position in the above measurements' strings. When "5" appears in 

the above measurements' strings, it means that the corresponding measurement 

is simulated as bad data with the meter type of 5-4="1", i.e. meter type is 1. 

Similarly, when "6","7"or "8" appear in the above measurements' strings, it means 

that the corresponding measurements are simulated as bad data with a meter type 

of 2, 3 or 4 respectively. 
a 

Simulated measurements are generated according to 



reason the normalized residuals will be studied in this section in detail. Many tests 

have been conducted in this investigation. A few of them are presented in the 

following. 

It is concluded in [7, 22, 24] that the normalized residuals are better indicators 

than the weighted residuals in most cases. Therefore, the normalized residuals 

rather than the weighted residuals are focused on in this thesis. The tests we 

conducted agree with the above conclusion, therefore, the weighted residual will 

not be discussed further. 

The ability of an indicator to identify BD is affected by the size of the bad 

measurement, its location, the data base, the instrumentation configuration, the 

overall redundancy, the local redundancy, etc. In fact, our studies shows that the 

success rate (SR) can vary from lower than 50% to higher than 95% depending on 
• 

these factors. The effects of these factors will be discussed individually as follows: 

Effects of Local Redundancy on the Normalized Residuals 

Local redundancy at a bus is defined in [7] as the number of measurements divided 

by the number of unknowns counting only measurements and unknowns at that bus 

plus at all  buses up to two switch-yards away. 

The first example will show how important the local redundancy is. 

Instrumentation configuration 14-Al is used with a overall redundancy 2.2, The 

local redundancy for measurement Q12  is 1.67. 

The results have shown that measurement Q12  is misidentified as bad data in 

25 cases. However, after the two measurements, qra  and QL3, are added in the 

configuration, the local redundancy increases up to 1.9, and the misidentified cases 
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decreases from 25 to 0. 

The Effects of Overall Redundancy 

The following table shows the variations of the success rate (SR) when using the 

normalized residuals with the overall redundancy: 

REDUNDANCY SR using R.!, 
1.5 40% 
2.2 87% 
3.0 90% 
4.0 93% 

Table 3.1: Effects of measurement redundancy. 

The results show that the success rate of normalized residuals increases with the 

overall redundancy varying from 40% to 93%. The improvement is 53%. However, 

the improvement in SR when overall redundancy increased from 2.2 to 4.0 is not 

as sharp as that when the overall redundancy increased from 1.5 to 2.2. Therefore, 

considering economical reasons, an overall redundancy in the range of 2.2 to 3.0 

can be considered reasonable. An overall redundancy of 2.2 is used throughout this 

chapter unless otherwise stated. 

The reason why the success rate of the R,, indicator is so low when the overall 

redundancy is 1.5 is that QL2  and PLio  are mis-identified as bad data 10 and 14 times 

respectively. The low overall redundancy results in very poor local redundancy of 

Q L2  and Pm°  which leads to misidentifications. It is shown in the previous section 

that adding two extra measurements to increase the local redundancy of QL2  will 

reduce the number of misidentifications greatly. It can be concluded that when 
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the redundancy is low, the problem of measurement topology (meter placement) 

become more important. When the overall redundancy is high, the problem of poor 

local redundancy is less likely to arise. 

The Effects of Instrumentation Configuration 

The next test shows the effects of the instrumentation configuration on the success 

rate. Table 3.2 indicates that different instrumentation configuration has different 

INSCN SR using R, 
14A 85% 
14B 87% 
140 78% 
14D 73% 
14E 75% 
14F 80% 
14d 78% 
14H 78% 

Table 3.2: Effects of different instrumentation configurations on the success 'rate 
using the normalized residuals. Column 1 is the configuration code. 

success rate. Some of them are better than others. This means that the success 

rate is affected by measurements configuration. This is another indication of the 

importance of the problem of meter placement. This problem is beyond the scope 

of this thesis. . 

The measurements configurations mentioned in Table 3.2 are not completely 

randomly configured. Visual inspection was done in order to avoid very poor local 

redundancy. 

The reason why different configuration has different success rate is thought to 
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be that different locations have different responses to the same disturbance. In 

other words, some locations are more sensitive to the disturbance than others, this 

is determined by network topological and distribution of load and sources, etc. 

The Effects of Bad Data Size 

The next example shows the effect of the size of bad data on the identification 

process. 

SIZE OF BD SR using Rn  

45 58% 
20o-  85% 
40s 90% 
60o-  92% 

Table 3.3: Effects of the size of batl data. The first column shows the errors in-
troduced to simulate bad data, the second column is the success rate using the R,, 
indicator. 

In this study, the IEEE 14- bus system that has an overall redundancy of 2.2 is 

used. When the bad data size is 4 a, the success rate of the normalized residual is 

less than 58%. However, when the size of the bad data increases to 60 o, the success 

rate goes up to 92%. It seems that there is no significant change of the success rate 

when the size of bad data increases from 40o to 60 a. In our studies, the bad data 

size is set to 20 a. The results show that the larger the bad data size is, the easier 

it can be identified. 
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3.4 Definitions and Tests-of New Indicators 

In this section, four indicators related to the normalized residuals will be defined 

and studied. A similar four will be defined for the weighted residuals and similarly 

for the plain residuals (a total of 12 indicators). The testing conditions are: Overall 

redundancy is set to 2.2 with local redundancy kept uniform by visual inspection. 

The size of bad data is set to 20c. A measurement is perturbed by introducing a 

random error with a maximum value of 0.5%. However, the effect of the size of the 

perturbation is studied later. The number of the perturbations is set to 5. 



INS CN R„ cn/Rnp  R„, o-w/Rwp  RP  up/Rpp  
14A 85% 13% 70% 22% 52% 33% 
14B 87% 27% 77% 38% 40% 32% 
14C 78% 17% 72% 25% 53% 33% 
14D 73% 25% 67% 25% 45% 33% 
14E 75% 33% 62% 43% 40% 32% 
14F 80% 37% 75% 45% 27% 37% 
14G 78% 32% 65% 40% 50% 47% 
1411 78% 18% 70% 33% 47% 32% 

Table 3.4: Success rates of indicators. The first column gives the code of the different 
instrumentation configuration. 

worsen the results. 

3.4.2 Results Using the Three Indicators: o-,,, o-„, and Grp  

Since o-n, o-,,, and o-p  are part of above indicators, the behavior of those an, cw  and 

o-p  will directly affect the results. Therefore, studying the behavior of those o-n, ow 

. and o-p  is essential. 

INS CAT an  cw  cp  
14A 88% 68% 48% 
14B 83% 78% 38% 
14C 85% 72% 25% 
14D 77% 67% 25% 
14E 73% 62% 43% 
14F 82% 75% 45% 
14G 80% 65% 40% 
1411 78% 70% 33% 

Table 3.5: Success rates of indicators. The first column gives the code of the 
instrumentation configurations; column 2 ,3 and 4 are the success rates of an, aw 
and op  respectively. 
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INS C.117  R,, crn  R, cr„ I RI, 1 o-p  
14A 85% 88% 70% 68% 52% 48% 
14B 87% 83% 78% 67% 40% 47% 
14C 78% 85% 72% 57% 53% 53% 
14D 73% 77% 67% 58% 45% 37% 
14E 75% 73% 62% 63% 40% 47% 
14F 80% 82% 75% 70% 27% 20% 
14G 78% 80% 65% 70% 50% 48% 
14H 78% 78% 70% 67% 47% 37% 

Table 3.6: The comparison of success rates of indications an, up  and op  with their 
own residuals. 

The average success rate of the normalized residual is 79.25%, but that of an  is 

80.75%. For the normalized cases, the o indicator is 1.5% better than the normalized 

residuals. For the weighted case, the o- indicator is 12.38% worse than the weighted 

residual. For plain residuals case, the o indicator is 3% better than the plain 
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INS CN .17, R7i  R, R,p  Rp Rpp 

14A 85% 90% 70% 72% 52% 55% 
14B 87% 92% 78% 77% 40% 53% 
14C 78% 82% 72% 67% 53% 57% 
14D 73% 75% 67% 68% 45% 45% 
14E 75% 80% 62% 73% 40% 53% 
14F 80% 85% 75% 75% 27% 33% 
14G 78% 85% 65% 75% 50% 55% 
1411 78% 83% 70% 70% 47% 45% 

The above results show that, on the average, the perturbed normalized residu-

als as indicators of bad data are 4% better than the normalized residuals without 

perturbation. The average success rates of perturbed normalized residual and nor-

malized residual are 84% and 80% respectively. It must be pointed out that in each 

configuration studied, the perturbed normalized residuals as indicators of bad data 

are better than the normalized residuals. The improvement varies from 2% to 7%. 

It is clear that the normalized residuals are more effective than the weighted or 

the plain residuals. Therefore, discussion will be focused on the normalized residuals 

performance. 

The above results clearly show that the perturbed residuals as indicators of bad 
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INS CN Rp an x R, Ripp  o-,,x Rwp  Rp  up  X Rpp 

14A 85% 90% 70% 72% 52% 55% 
14B 87% 88% 78% 72% 40% 52% 
14C 78% 80% 72% 63% 53% 55% 
14D 73% 75% 67% 60% 45% 43% 
14E 75% 80% 62% 73% 40% 52% 
14F 80% 85% 75% 72% 27% 27% 
14G 78% 85% 65% 72% 50% 55% 
14H 78% 80% 70% 70% 47% 42% 



3.4.5 An Overall Comparison of Indicators 

So far, four type of indicators have been tested. The indicators based on the nor-

malized residuals are clearly superior to those based on the weighted and the plain 

residuals. In this section, the indicators based on the normalized residuals will be 

compared. The results of using those indicators are shown in Table 3.9. 

INS CAT  R.n. Rnp a -, crn x Rnp  
14A 85% 90% 88% 90% 
14B 87% 92% 83% 88% 
14C 78% 82% 85% 80% 
14D 73% 75% 77% 75% 
14E 75% 80% 73% 80% 
14F 80% 85% 82% 85% 
14G 78% 85% 80% 85% 
14H 78% 83% 78% 80% 

Table 3.9: The success rates of different indicators obtained using different instru-
mentation configurations. 

The above results are plotted in Figs. 3.1 to 3.3. 
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R„ Rn,„ an  u n x R, 
80% 84% 81% 83% 









3.4.6 Studies on the IEEE 30-Bus System 

The IEEE 30 bus system is used to conduct more tests. The instrumentation 

configuration used can be found in the program listing in Appendix A. The system 

data can be found in [62]. The test conditions are the same as those used in the 

previous tests conducted on the IEEE 14 bus system. 

Rnp-Rn, un-R„ crn, x Rnp-R, 
7.5% 1.0% 4.6% 



IEEE-14 bus system instrumentation configuration 14-A is used to conduct the 

following tests unless otherwise stated. 

3.5.1 Effect of Redundancy of Measurement 

The following values of the overall redundancy are used: 1.5, 2.0, 3.0 and 4.0. 

RED CY R„ R.„p  a-, a-, x km, 
1.5 40% 46% 40% 41% 
2.2 85% 90% 88% 90% 
3.0 90% 96% 95% 96% 
4.0 93% 97% 94% 97% 







3.5.2 Effects of 

The size of bad data is 

Bad Data Size 

varied from 4 a to 60 a. 

SBD R„ Rnp  a, cr, x Rni, 
4a 58% 68% 60% 65% 
20a 85% 90% 88% 90% 
40a 90% 93% 92% 92% 
60a 92% 95% 95% 95% 

Table 3.13: Effects of size of the bad data. 





3.5.3 Effects of Measurement Accuracy 

Following tests are to study the effects of metering accuracy. The tests are conducted 

by changing the type of the meters, i.e. changing the sizes of the measurements 

errors. In order to compare the results easily, the type of all the measurement's 

meters used in a configuration will be the same each time and will vary from 1 to 

4. A type 1 meter is a better quality meter and therefore more expensive. 

.1=l7, Rnp an  o x .1?„, at, x R,,,p  
1 88% 95% 90% 95% 
2 82% 90% 83% 90% 
3 73% 85% 80% 83% 
4 70% 82% 72% 82% 

Table 3.14: Effects of measurements' accuracies (meter's quality). 

Table 3.15 gives the averages of the corresponding columns of Table 3.14. 

R, 1 Rnp  a-, an X  Rrip 
78% 88% 81% 88% 



When all the meters are type 1, the success rate of indicator Rnp  is 95%. 
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3.5.4 Effects of the Perturbation Size 

Tests are done to study the effects of perturbation size. To conduct this study, 

the size of the perturbation is selected to lie at random with the following absolute 

maximum values: 0.1%, 0.5%, 1% and 5% of the measured values. 

-PS Rn p an*Rnp an 

0.1% 85% 90% 88% 90% 
0.5% 85% 90% 88% 90% 
1.0% 85% 90% 88% 90% 
5.0% 85% 90% 83% 90% 





3.5.5 Effects of Number of Perturbations 

DP It, Ritp on an. X Rnp 

2 85% 82% 82% 82 % 
3 85% 92% 88% 90 % 
5 85% 90% 88% 90 % 

10 85% 92% 82% 92 % 

Table 3.17: Effects of the number of perturbations on the success rate. Column 1 
shows the number of perturbations (NP) used. 

Studies are conducted using different number of perturbations. The results are 

summarized in Table 3.17. Taking the number of perturbations greater than 3 does 

not appear to offer any advantages. 
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3.6 Conclusion 

In this chapter, the perturbation method for bad data identification in PSEE is 

studied. Four classes of possible indicators (total number of indicators is 12 ) are 

defined and many cases are studied. 

Results show that the perturbed normalized residuals Rnp  is a most effective 

indicator. It is superior to the widely accepted normalized residuals. The improve-

ment in the success rate can be as high as 12%. The indicator 14,4,, is better than 

the normalized residual indicator not only on an average bases, but also in every 

case. Therefore, it is more reliable than other indicators. 

The computational requirements for this method is little higher than those of 

the normalized residual method. 

The indicator an xRnp is second best. Indicator cr, follows. Although these two 

indicators are better than the normalized residual on the average, they are affected 

by the changes in the test conditions. 

The performance of indicator o-,1 Rnp  inferior to that of Rflp. 
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Appendix A 

The Main Program And Some 
Subroutins For Perturbation 
Method 
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