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ABSTRACT

Title of Thesis: BAD DATA IDENTIFICATION IN POWER SYSTEMS

Shichun Zou, Master of Science in Electrical Engineering, May,1991
Thesis directed by: Dr. W. Hubbi, Associate Professor

Two classes of bad data (BD) identification methods in power system state
estimation are studied. '

The first class is the perturbation method. In this method, the obtained mea-
surements are perturbed a few times. Each time a state is obtained from which
measurement corrections are calculated. The statistics of the corrections corre-
sponding to a BD are different from those corresponding to a healthy‘ data. The
method uses those differences for identification purposes.

The effectiveness of different indicators is studied. These include the normalized
residual, the weighted residual, and residuals incorporating the statistics of the
corrections.

The success rate of using the different indicators is defined and calculated. The
tests are done using the IEEE 14-bus and the 30-bus systems. Different measure-
ments configurations are used. The effects of other factors are also tested and results
are presented.

The presented results show that the new indicator R,, is the most effective
indicator. Its success rate is a few percent higher than the widely accepted normal-
ized residuals. The indicator R,, is better than normalized residual indicator not
only on an average bases, but also in every case individually. The computational
requirements for this method is little higher than those of the normalized residual
method.

The second class includes three schemes. These are based on the independent
equations method in that a sensitivity matrix is defined. The matrix relates the
suspected BD to the healthy ones. Scheme I and III are tested using two systems
respectively and single and multiple bad data cases are studied. They are successful

in identifying bad data.



1
)BAD DATA IDENTIFICATION IN POWER SYSTEMS

by

I) Shichun Zou

L

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology
in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering

1991



APPROVAL SHEET

Title of Thesis: BAD DATA IDENTIFICATION IN POWER SYSTEMS

Name of Candidate: Shichun Zou
Master of Science in Electrical Engineering, May,1991

Thesis and Abstract Approvecﬁ

&

T .
Dr. W. Hubbi Date
Associate Professor
ECE Department

Signatures of other members of

the thesis committee: —

’ v a

Dr. B. Friedland Date
Professor

ECE Department

Y. Bar-Ness ™ Date
Professor
ECE Department



VITA

Name: Shichun Zou

Permanent address:

Degree and date to be conferred: MSEE, May,1991

Date of birth:

Place of birth:

Secondary education: Wenha,l;l High School, Wahan, 1971-1975.
Collegiate institutions attended Dates Degree Date of Degree

Hauzhong University of 1978-1982 BSEE Febrary 1982
Science And Technology, Wuhan, PRC

New Jersey Institute of Technology 1989-1991 MSEE MAY 1991

Major: Electrical Engineering

Minor: Computer And Information Science



To My
Father, Mother
and
Sister

for all their support, faith and patience



A cknowledgement

I would like to express my sincere appreciation and gratitude to Dr. Walid
Hubbi, my thesis advisor, for his invaluable guidance. Without the advice and time
he provided, I would have had no chance to complete this thesis. Special thanks go
to Dr. B. Friedland and Dr. Y. Bar-Ness for being members of this thesis committee

reading and suggesting modifications to this thesis.



Contents

1 INTRODUCTION

1.1 Power System State Estimation . . . . . ... .. ... ... ... ..
1.2 Bad Data Detection And Identification . . . . .. ... .. ... ...
1.3 Identification By Elimination (IBE) .. .. ..............
1.4 Identification By NQC % . . . . . . . . . . . o .. . o oo
1.5 Identification By HTI . . .. . .. ... ... . ... . ... .
1.6 Thesis Outline . .. . . . .. . i ittt

BAD DATA IDENTIFICATION METHODS

2.1 The Independent Equations Method . . .. ... ... ... ... ..

2.2  Scheme I for Bad Data Identification . ... ... ... .......
221 TheScheme .. ......... ... . ... . ...,
222 Testsand Results. . . . ... .. .. ... ... ... ......
2.2.3 Conclusion . . . . .. i v vttt e e e

2.3 TheSchemell . .. . . .. .. . i i e
2.31 TheScheme. .. ... ... .. ... .. ...
2.3.2  SUummary . ... s e e e e e e e e e e e e e e e e

2.4 Further Improvement (The third scheme III) . . . ... .. ... ..
241 Tests AndResults . . ... ... ... ... .. ... . ...,

10
12
13



2.4.2Conclusion . . . v v v v v u e w e e e e e e e e e e e e e e e e

The Study of Perturbation Method for Bad Data Identification
3.1 Perturbation Method For Bad Data Identification. . . . . .. .. ..
3.2 Generalizing the Perturbation Method . . . . . ... ... ... ...
3.2.1 The Extended Perturbation Method for Bad Data Identifica-
tionin PSSE . . .. ... ..o oo oo e e e
3.2.2 Explanation Of The Program Flowchart ... .. ... ...

3.3 Test Conditions . . . . v - v ot v i v b i i e e e e e e e e
3.3.1 How To Evaluate the Perturbation Method . . . . ... ...
3.3.2 Simulated Measuyements Generation . .. ..........
3.3.3 The Normalized Residuals . . . . . ... .. ... .......

3.4 Definition and Tests of New Indicators . ... .. ... . ... ...

3.4.1  Results Using the Three Indicators:o,X Rpp, 0uwX Ry, and

OpXRpp o e
3.4.2 Results Using Indicators o, 0pand o, . . . . . o L . oL
3.4.3 Results Using Of Indicators Ry, Ryp and R, . 0 . . . . ..
3.4.4  Results Using Of Three Indicators o, XR,p, 0w XRyp and

T

3.4.5 An Overall Comparison of Indicators . ... ... ......
3.4.6 Studies on the IEEE 30-Bus System . . . ... ... ....
3.5 Effects Of Various Parameters on The Results . . . ... ... ...
3.5.1 Effects Of Redundancy Of measurement . .. .. ... ...

3.5.2 Effects Of Bad Data Size . ... .. ... ...

3.5.3 Effects Of Measurement Accuracy . . ... ... ... ....

1



3.5.4 Effects Of the Perturbation™Size . . . ... ... . ... ... 67

3.5.5 Effects Of The Number Of Perturbations . ... ... .. .. 69
3.6 Comnclusion . . . . . ¢ v i i it e e e e e e e e e e 71
A Listing of Main Program and Some of the Subroutines Used 72

SELECTED BIBLIOGRAPHY 125

11



List of Tables

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

Testing results obtained by new schemeI . ... ... .. e

The results (1) obtained by new scheme III suing IEEE 14-bus test

Effects of measurement redundancy. . . ... ... ... .. .....

Effects of different instrumentation configurations on the sucess rate

using normalized residual. . . . . . . ... L. L L oL
Effects of thesizeof bad data . . . ... .. ... ... ... .....

Success rates of indicators 0,/ Rnp, 0,/ Ry and 0,/ R, obtained us-

ing different IEEE 14 bus test system instrumentation configuration.

Success rates of indicators ¢,,, ¢, and o, obtained using different

IEEE 14 bus test system instrumentation configuration. . . . .. ..

iv

49

50



3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.16

3.17

The Comparison of success rates of indicators o,, o, and o, with

theirown residuals.. . . . . . . . . . . e e e e e e

Comparison of success rates of indicators R,,,, Ryp and R,, with their

ownresiduals. . . . . . . ..o e e e e e e e e e e e e e e

Success rates of indicators o, X Ryp, 0 X Rpp and 0, X Ry, obtained

using different instrumentation configuration. .. ... .......

Success rates of indicators R,, Ry, 0, and 0, X R, obtained using

different instrumentation configuration. . ... ... ... .. e

Comparison of the indicators on average.. . . . .. ... .......
L)

The effectiveness of various indicators relativeto B,. . . . . . .. ..

Success rates of indicators R,, R,,, 0, and 0, X R,, obtained using

different overall redundancy.. . . . . . . ... ... .. ... ...,

Effects of size of the bad data. . . ... .. ... ... ........
Effects of measurement accuracy. . . . . . . . . ... u e e

Success rates of indicators R,,, and R,, obtained using different types

of meters. . . . v i . e e e e e e e e

Effects of the perturbation size on the success rate of different indi-

Lo - o o~

Effects of the number of the perturbation on the success rates of

perturbationsused. . . . . . .. ... L L L,

64



List of Figures

2.1

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Flow chart of the main program for scheme III . ... .. e e e
Flow chart of the main program for perturbation method .. .. ..

Success rates of indicators R,,, and R,, obtained using different IEEE

14 bus test system instrumentation configuration.. . . . . . . .. ..

Success rates of indicators o, and R,, obtained using different IEEE

14 bus test system instrumentation configuration.. . . .. . ... ..

Success rates of indicators 0, X R,, and R, obtained using different

IEEE 14 bus test system instrumentation configuration. . . . .. . .

Success rates of indicators R,, and R, obtained using different overall

redundanciCes. . . . .. e e e e e e e e e e e e e

Success rates of indicators R,, and R, obtained using different size

of bad data. . . . . . . . ..

Success rates of indicators R, and R, obtained using different types

of meter. . . . . . . e

iv

57



3.7

3.8

Success rates of indicators R, and R,, obtained using different sizes

of perturbation.. . . . . . . . .. L

Success rates of indicators R,, and R, obtained using different num-

bers of perturbations. . . ... ... ... .. ... . . oL ...

"7



Chapter 1
INTRODUCTION

The objective of this thesis is to develop methods for bad data identification in
power systems. Four methods are presented.
In section 1.1, the problem of*power system state estimation(PSSE) is presented.
The bad data detection and identification problem is introduced in section 1.2. The
o

existing methods of bad data (BD) identification are presented in section 1.3, 1.4

and 1.5 respectively. In section 1.6, the rest of the thesis is outlined.

1.1 Power System State Estimation

This section is descriptive and is taken from [1 — 6]

In power networks, control centers are equipped with a supervisory control and
data acquisition (SCADA) system to monitor the network to insure a reliable and
optimal operation. The central computer of the SCADA system collects real-time
data from the system by the remote terminal units (RTUs). These data are pro-
cessed by the Power System State Estimation (PSSE) program to provide a best
estimate of the state of the system to be used in various application programs. The

information transmitted to the control center is inaccurate due to one or more of



the following:

e Power transducer and instrument transformer errors,

A/D (Analog to Digital) conversion errors,

Analog or digital data transmission errors,

Delayed measurements that reflect a prior system state,

Damaged meters.

The information transmitted to the control center are not form the complete

data base of the system because of the following:

s Meters and communication equipment are expensive, so it is necessary to

reduce the number of meters as much as possible,

e Some variables, like voltage angles, are difficult and almost impossible to

measure economically,

¢ The unavailable measurements can be calculated using mathematical models.

Because the available measurements contain errors and because the data are not
complete, power system state estimation (PSSE) programs are used to process the
available measurements to provide the control personnel with a complete, reliable
and accurate data base of the system under control. The data transmitted from
RTUs are processed based on a mathematical model which assumes the existence
of random errors, bad data, modeling errors, and parameter errors. The system

variables are calculated (or estimated) using that model.



PSSE then is a data processing algorithm for converting redundant meter read-
ings and other available information, such as the mathematical model of the system,
past behavior (or values) of the system variables (known as pseudomeasurements),
etc., into an estimate of the state variables. Pseudomeasurements is a term used to
indicate values of system variable, obtained from past measurements or estimates
of those variables.

The state variables of an electric power system are usually defined as voltage
magnitudes and phase angles at all network buses. These are sufficient to define
uniquely the state of the system. and, moreover, from which all other values can
be explicitly calculated.

Normally PSSE includes the following basic operations:

-

Modelling of the system,

Prefiltering raw data,

State estimation,

Detection of bad data,

Identification of bad data,

Removal of bad data.

The output of the PSSE program is not the true state of the system. Besides
the measurement errors mentioned above, the reasons for the existence of this dis-

crepancy are the following:

o Error in the mathematical model,



e Inaccuracy of system parameters,

o Use of pesudomeasurements.

Pseudomeasurements are old measurements or values of variables calculzétted
using an old state, when these are used in place of measurements. The Weighted
Least Squares Method is used to solve PSSE problem. In the WLS method [1 — 4],
the static model of an electrical system (or network) is given by its admittance

matrix. All measurements (and other information) are modeled in terms of

z=h(x)+v (1.1)

where 2 is a vector of measurements, x is the state vector of the static structure
model, and h(x) is a nonlinear func’&ion of x which is determined by the admittance
matrix and Kirchhoff’s laws, relating the real-time measurements to the state vector
of the system. The dimension of z is m, the number of measurements. To take
into account the errors in the measurements, the error vector v is introduced in
the above model. Note that unless otherwise stated, boldface uppercase symbols
denote matrix quantities and boldface lowercase ones denote vectors.

The estimated state of the system is defined as the value of x which minimizes

the performance index
7(x) = [z — h(x)]"R "z — h(x)) (1.2)

where the superscript (¥) indicates the transposition of a matrix. R™! is a diagonal
weighting matrix having

Rii = O'iz (13)



where o; is the standard deviation of noise 6n the ith measurement.

In PSSE, standard deviation of a measurement is not the standard deviation
stated in statistics because in the dynamic power system each measurement set
represents a snapshot of the system that will never occur again. The characteristics
of a meter determines the bounds of ERR and FERR, where, ERR; and FERR;
indicate the percentage error, and the fixed error of the ith measurement, respec-
tively. The sum of the absolute values of the errors due to ERE and FERR,; is
taken as the standard deviation of measurement 1.

From the above discussion, the weighting matrix usually used in the literature

is a diagonal matrix R, where

&

1
((ERR x M);| + |FERR;|)®

&
It should be noted that equation (1.4) is valid only when measurement errors are

R—l(i,i) — (14)

correlate. If measurement errors are not correlate, the weighting matrix is not a
diagonal matrix, it is the inverse covariance matrix of the noise in the measurements
[4]. In the study conducted in this thesis, it is assumed that the errors are correlate
and thus the weighting matrices used are all diagonal matrices.

It should also be noted that a weighting factor pertaining to a certain measure-
ment is given according to the accuracy of that measurement, but the importance
of a measurement is determined not only by its accuracy but also by its location.
Thus increasing the accuracy of sensor A , for example, may not have the same
effect on the quality of the estimated state, as increasing the accuracy of sensor B.

In order to estimate x, an initial value x, is assumed and a Taylor expansion



approximates it near this point:

Ax?
2

h(x) = h(xo) + hx(%0) AX + hyx(xo) 4.

Disregarding higher than linear terms, we have
h(x) = h(xo) + HAx

where H indicates the Jacobian (derivative with respective to x at point xp).
Substituting h(x) = h(x,)+HAx into equation (1.2) and letting Az = z—h(x,)

yields

J(x) = [Az—HAx]"R}[Az — HAX]

The estimate of the state vector x is obtained by minimizing the performance index
& ?_Z _
Ix
then we have
G(xp)Ax = HTR™ [z — h(x,)] (1.5)
G(x0) = HTR'H is the gain matrix and Az =z — h(x,), AX = X; — Xo. This
equation is derived in [1].
Equation (1.5) represents a set of linear equations, in which the solution is based
on the initial guess x,. To compute x to a certain accuracy, equation (1.4) can be

rewritten as
G(xx)Axkx = HTR™ [z — h(x})] (1.6)
AXy = Xpq1 — Xg (1.7)

In the above iterative equations, k = 0,1,2,... until the required convergence is

achieved.



1.2 Bad Data Detection And Identification

This section is descriptive and is taken from [7, 8,24, 28, 30]

Occasionally bad data will occur. That is, a data point will be very erroneous
rather than just sightly inaccurate. This can occur for a number of reasons. Perhaps
there is a momentary failure of a communication link. Perhaps a meter has an
intermittent fault. Perhaps, if pseudo-measurements are used, the state of the
system has changed and the pseudo-measurements are very far off. Any number of
events can occur which will cause a given reading to be very inaccurate[7].

As mentioned before, the presence of bad data has to be detected, which data
are bad has to be identified, and ﬁnally the bad measurement has to be removed.

It is well known that the residual equation can be obtained by Weighted Least

Squares Method of state estimationdn power system as follows:

r=Wyv (1.8)
and
W =I-HH'RH)HIR™ (1.9)
where r is an mx1 residual vector of dimension m, which is defined as r=2-%, where
z is the vector of the calculated values of the measured variables. R~ is a diagonal
weighting matrix. v is the error vector, H is the Jacobian matrix[28).

The presence of BD is currently detected through one of the variables below:[24]

¢ The quadratic cost function: J(Z)=r’R~r

¢ The normalized residual vector r,=vD™r where
D = diag[R — H(HTR™'H) 'HT] (1.10)

7



e The weighted residual vector r,=+vR~Ir

The detection of bad data is based on a hypotheses testing with the two hypothesis
Hy and H,. Where

Hy: no bad data are present;

H;: bad data are present.

Denoting by P. the probability of rejecting H, when Hy is actually true ( prob-
ability of false alarm ) and P; the probability of accepting H; when H; is true
(probability of detection), the hypothesis testing consists in comparing J(x), 7,,; or
Tni With a “detection threshold” A which depends on P.. For example, considering

the normalized residuals, one is led to :

a

o Accept Hy if r; < A, i=1,2,...,m,

L

e Reject Hy (and hence accept H;) otherwise.

The identification techniques available today are classified into three broad

classes[24].
o Identification by elimination (IBE),
¢ Non-quadratic criteria (NQC),
¢ Hypothesis testing identification (HTI).

The above methods will be introduced in the following sections.

1.3 Identification By Elimination (IBE)

This section is descriptive and is taken from (2,3, 7,8, 20,22, 24, 28]

8



The methodology that has gained wide acceptance is based on a two step proce-
dure: the quadratic cost function J(x) test to detect whether bad data are present
or not, and the weighted residuals r,, or normalized residuals r,, identification test
to flag which measurements (if any) are affected by gross errors. After the detection
of bad data, the usual procedure is to delete the measurement presenting the largest
normalized residual and reestimation the system state[22].

The J(x) test is an indirect approach which detects bad data using a statistical
test. When there is no bad data the index J(x) follows a Chi-square distribution.
The computed value of J(x) is compared with a constant calculated from the Chi-
square distribution (detection threshold). If J(x) exceeds this value, bad data is
assumed to be present and identification is required. The weighted or normalized
residuals vector is then calculated '\Yith its elements arranged in descending order
of magnitude. Any element whose value exceeds that of a constant obtained from
a normal distribution is suspected to be a bad measurement. Theoretically it is
possible to remove all these suspected measurements simultaneously. However, ex-
perience has shown that it is safer to remove only the measurement corresponding
to the largest residual [20]. The reduced measurement vector is subjectd to a further
J(x) test. If it fails the test, the measurement corresponding to the the next largest
residual is also removed. This process of detection and identification is repeated
until all the suspected measurements are removed.

The main advantage of this method is that it is easy to use and simple to im-
plement, since the only computation it needs besides estimation is that of residuals

[24]). However, the method suffers from the following drawbacks.

o The computational requirements are high, since it requires a series of reestimation-



detection after each elimination; this may lead to computer time requirements

which are too high for an implementation.

¢ it may lead to a degradation of the measurement configuration and a sub-
sequent drop of the power of the detection test; this in turn may make it

impossible to detect the remaining BD.

1.4 Identification By NQC

This section is descriptive and is taken from [7, 8,20, 30)

This method is based on the observation that the weighted least-squz;res estima-
tion is sensitive to bad data because it weights larger residue terms much heavier
than small terms [7]. An estimator based on a cost function which somehow as-
signed less weight to large elementsin the residuals would be less sensitive to bad

data. One of such cost function is:

n

Ie) =31

=1

where
i) if] 52| < 1
fZl': oF aoc; |—
a?(4y/[5E| - 3) ifju2)| 5 1

This function is a combination of a least-squares and minimum-square-root
weighting and is called the bad data suppression(BDS) cost function.

The details of this estimator can be found in [7, 8, 20].

The BDS estimator is very similar in form to the least squares estimator. Mod-
ification of existing programs is almost trivially easy. Complexity of the BDS and

least squares estimators is about the same [24]. It should be emphasized that if all

10



residuals are “small” (no bad data), the BDS estimator is essentially identic-al to
the least squares estimator, which is the optimum estimator under a wide variety
of circumstances.

The main advantage of the NQC method lies in its simplicity. Indeed, on one
hand, it can be implemented through a simple transformation of the basic WLS
algorithm; on the other hand , the estimation and identification steps are carried
out in a single procedure, which avoids successive. |

However, the method suffers from the following serious drawbacks [24].

s Strong tendency to slow convergence or even to diverge: the NQC exhibit a
slower convergence than the corresponding quadratic criterion. This can be

a

explained as follow:

L8 N
— the shape of cost function is more intricate,

— the rejection of many measurements may lead to numerically unobserv-
able situation, especially in cases of poor local redundancy and/or mul-

tiple interacting BD.

e High risk of wrong identification: Schematically, the NQC rely on measure-
ment having small residuals (with respect to) and tend to reject the others.
Now, since there is no one-to-one correspondence between large residual and
large measurement errors, it may happen that valid measurements are rejected
whereas erroneous ones are kept. In such case the estimation is much less reli-

able than that given by the quadratic estimation without any BD processing.

e No recognition of topologically unidentifiable BD situation: in this case, re-

sults are unpredictable. Moreover, the rate of convergence is generally af-

11



fected, since the NQC tend to reject too many suspected measurements.

1.5 Hypothesis Testing Identification

This section is descriptive and is taken from [24,25, 30]

The Hypothesis Testing Identification (HTI) is based on the computation of
measurement error estimates, on the use of a hypothesis testing and on the definition
of decision rules. The HTT method comprises the following steps [25]:

After a standard detection test has shown presence of bad data and measurement

residuals have been computed:
o Select the suspected measurements on the basis of their normalized residuals,

s Estimate the corresponding measurement errors using a linear estimation pro-

L]
cedure and the knowledge of the residuals,

o Decide whether each measurement is false or valid through a hypothesis testing

applied to its estimated error,
» Refine (if necessary) the hypothesis testing procedure,
o Correct the state estimation.

This method result in an one-shot procedure where all erroneous measurements are
identified altogether.
The advantages of HTI are as follows: [24]

o The HTI is method generally able to identify all BD within a single step,
o This method is able to identify strongly interacting BD,

12



e The method treats properly topologically unidentifiable BD.
The disadvantages of this method are :

o There is a risk of poor identification, corresponding to the case where one or

several BD are not selected,

o The method requires the computation of the W,, whereas other procedures

merely need the diagonal of the W matrix.

1.6 Thesis Outline

The main goal of this thesis is to study bad data identification methods. In Chapter
2, three schemes for bad data identification are presented. Chapter 3 is devoted to

studying the perturbation method fer BD identification.

13



Chapter 2
Bad Data Identification Methods

The objective of this chapter is to study a method of bad data identification in
power systems. Three new schemes for bad data identification are discussed.
In section 2.1, The independént equations method is introduced. In section 2.2,
scheme I for bad data identification is presented, Also, a new sensitivity matrix is
N

developed in this section. Scheme II and scheme III are presented in section 2.3

and 2.4 respectively.

2.1 The Independent Equations Method

This section is descriptive and is taken from [5,6,15,16].

The IEM is based on the node injections as input data. but utilizes independent
line flows as redundant information for correction of erroneous or missing data. The
method does not make use of nodal voltage measurements. The pertinent equations
are:

|8 |- [ ][ 2] e
where APpq is the vector of changes of the active line flows, AQpq is the vector

of changes of the reactive line flows. Ad; is the vector of changes of voltage angles,

14



A'V; is the vector of changes of voltage magnitudes. JKpq_; is a sensitivity ma-
trix relating incremental changes in line flows to incremental changes in the state
variables.

[ igii ] = [ IKy | [ ﬁ“s/éj } (2.2)
where JKj; is the Jacobian matrix, APy is the vector of changes of the active
injections, AQun is the vector of changes of the reactive injections.

The state variables vector is eliminated from (2.1) and (2.2) to get:

Spl-e(R] e

where [ Spg-i ] = [ JKpg-j ] [JK;j ]_ .

The above equation can be partitioned as:

a0 | = [soe ][40 [« (500 ] [A2] e

or

A% ] =[sean ] ([ 2200 ] - [s0es][ AR]) o

where ¢ # p and p is the index corresponding to the lost or bad nodal input data.
Subscript i, j in [JKj;) is to indicate that the Jacobian entries are derivatives of nodal
with respect to nodal variables, while the subscript pg-i is to indicate derivatives of
line flows with respect to nodal variables.

The algorithm of the method is as follows:

o Perform AC load flow (LF) analysis and calculate line flows.
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o By comparing the calculated line flows with the measured ones, determine if

BD exist.

e If BD exist, assume the nodal data pertaining to node p is bad; use dummy
values( zero or previously read values) for P, and @, to perform an LF and

to construct the sensitivity matrix; use (2.5) to solve for AP, and AQ,.

e Once the correction of the lost nodal points is obtained, the inputs are cor-

rected according to

Pl = Pk L AP, QF = QF + AQ,

to find improved values for P, and Q.. This step is iterative as indicated by the
iteration count k. Once convergence is attained, LF is performed and a decision is
made , based on the new value of J, whether node p is indeed the BD node or not;

If not, the process is repeated assuming a different .

2.2 Scheme I for Bad Data Identification

In this section, a scheme for bad data identification based on independent equations
method is presented. Firstly, a new sensitivity matrix is developed. Its dimensions
1s based on the number of suspected bad data so that it is a comparatively small
matrix, (since the number of suspected bad data is small in practice). Therefore,
the difficulty of inverting the sensitivity matrix is grately reduced. Secondly, the
existent normalized residuals technique is used to specify a set of suspected bad

data. Thus all the bad data can be identified in a single step.

16



2.2.1 The Scheme

Assume there are s suspected bad data, i.e. PQn1, PQn3, ... PQns.
where PQu; may stand for Py;(i-th active injection), @Qn; (i-th reactive injection)
or both.

From m-s reliable data, s power flows PQr;, PQra,...PQr, are chosen as re-
dundant information for corrections, where P@Q)r; may denote Pr; (,i-th active load
flow), Qr;: (i-th reactive load flow) or both.

All injections Py and Qu are used as inputs. For lost data, use 0 or previously
read values. The buses whose measurements are not avaliable can be treated as lost
data, the only drawback for this is that it may increase the dimension of sensitivity
matrix M which will be discussec{ in details later on. According to the above treat-
ment, load flow can be performed since the values of all necessary inputs are now
available.

The new sensitivity matrix M is formed as follows:

Perform load flow by using all the injections and find:

PQ%,,PQY,,..PQL..

Give Py: a small incremental change AP and keep Py2, Pyns ... Py, unchanged.

Then, use Py1+AP, Pyg, ... Py, as inputs to perform LF and find:

PQEMPQ}J%"-PQ}J.‘;'

Calculate the mismatch:
APQL1 = PQ}ZI _PQ%I
APQLz = PQ},z - PQ%z
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APQLs = PQ.:llZs _PQ%s

Calculate the 1st column of sensitivity matrix M.

_ APQL
M, = AP

_APQ3,
My = N

_APQ3,
Mo = AP

Similarly, give Py a small incremental change AP and keep Pyi, Pys ... Pno
unchanged. Then, use Py, PNZ‘—i-AP, Pns,... Py, as inputs to perform LF and
find: .

PQh, PQh,--PQj,.

Calculate the mismatch:

APQLl = PQ_%I “PQOL1

APQLz = PQ%z “Png

APQLS = PQ%& _PQ%S

Calculate the 2nd column of sensitivity matrix M.

APQ1,
M, =
12 AP
APQI,
My = AP
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where k is an iteration count.

The load flow is again solved and the new M is again constructed using the
corrected inputs. The process is repeated until the mismatches AP QY are less
than a predetermined tolerance. Then the corrected values of all the suspected bad
data are obtained. The nodal point identification concept is based on comparing the
corrected values with the corresponding measurements. If the difference between
the corrected values and the measurements exceeds a predetermihed tolerance 6,
the bad data points are identified. i.e. the measurements presenting the difference
exceeding § are bad data, but the others are not bad data.

It must be pointed out that the sensitivity matrix M can be repeatedly used
since the elements of M does not:change much from the iteration to the next.

The check can be made by using s corrected injections and other injections as
inputs, perform LF to find PQr 41, ‘PJDQL,S.,_Z, «.PQrL s+m. If the differences between
the calculated line flows, from s+1 to m, and their corresponding measured values
(PQr,s+1, PQL 12, -..PQL m are the m-s assumed reliable data, so that PQr;, PQrs,

...PQr, are not included.) are less than a §, then the above results are correct.

2.2.2 'Tests and Results

To test scheme I, the well known 5-bus system of [62] is used. The cases studied
here include single and multiple bad data. The simulation of measurements is done

by introducing a 2% error to the true values.
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APQ3,

M., =
s2 AP
The remaining columns of M can be obtained by the same way. Then we have:
My My, Mg -+ My,
My May Mz -+ My
Msl Ms2 M33 e MS-’

where [M] is sensitivity matrix which relates the changes of injections to the changes
of line flows.

From the definition of [M], the following equation can be established:

[M ]| APQy | = APGS | (2.6)
where M is an s xs square matrix, AP QY is the the vector [APQu1, APQs, ... APQp, )"
which are corrections for the susp;cted bad data, and APQf is the the vector
[APQ.,,APQ;,,..APQ;,]” which are redundant independent line flows for cor-
rections of bad data.

It must be noted that APQS=APQF- APQY, where APQP are the mea-
surements of the line flows, APQY are the calculated line flows without changing
any inputs.

(2.6) can be written as follows:

-1
[ aPay [ =M |7 [ APGE |
Once the corrections of the suspected bad data nodal points are obtained, the

inputs are corrected according to
PQE! = PQY + APQY

19



case # BD True Value | MFCLF | Corrected value | ERR-T
1 Pp2=20 Ppry=40 Pris Py,=40.83 | 0.21%
1 Pr3=25 Ppo=45 Prss Py,=45.87 | 1.91%
2 Qne=> Qna=25 Qriz Qn.=25.10 | 3.92%
2 Qns=10 Qnz=15 Q1s4 Py,=14.99 | 0.006%
3 Prp=20 Ppy=40 Pris Py,=38.31| 1.69%
3 Qno=15 Qn2=30 Qr12 Qn.=30.13 | 0.42%
4 Qns=0 Qns=5 Qras Qne=5.337 | 6.74%
4 Qus=5] Qns=10 Qrse Qns=10.32 | 3.22%
5 Ppno=20 Ppo=40 Priy Py,=37.38 | 6.56%
5 Pp3=0 Pr3=45 Prs, Pn3=44.53 | 1.04%

Table 2.1: The second column is the simulated value of bad data, the third column
gives the true values, the forth column is the measurements used for corrections,
the fifth column is the corrected values and the last column is the percentage error
of the corrected data with respect to its true value.

The results obtained after one iteration only, are shown in Table 2.1. For case 1,
two bad data are simulated and both are active injections at nodes 2 and 3. Their
true values are 40 and 45 respectively. The measurements used for corrections are
line flow P, and P;. The considerations for selecting line flows are as follows:
Firstly, in power system the relationship between active power and reactive is very
weak, in other words, the changes of the active power are not sensitive to the changes
of the reactive power. Secondly, variables in the lines directly connected to the bad
data points are more sensitive to changes in those bad data. After the first iteration,
the corrected values corresponding to bad data are found. The percentage errors of
the corrected values with respect to their true values are 2.1 % and 1.91 %. In case
2, two reactive bad data are tested. Case 3 tests one bad active injection and one
bad reactive injection. Case 4 and 5 test the case of lost data.

In general, the results are satisfactory and convergence is fast.
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2.2.3 Conclusion

The proposed new scheme first specify the set of suspected bad data based on a
lower detection threshold. This scheme allows the identification of bad data in one
single procedure. In contrast, the conventional IEM needs exhausted computation
even for a single bad data. Let us take 100-bus system for example, the conventional
IEM assumes the bad data is at node 1 first, once the convergence is obtained, a
decision on node 1 can be made. If node 1 is not the bad data point, the next node
is assumed, this process is repeated until the bad data is found. If the bad data is
the last node, then the procedure must be repeated 100 times. For multiple bad
data, it is even worse since various possible combinations have to be calculated.
The conventional IEM needs’to invert a high order (2xN, 2xN) matrix (where
N is the number of nodes) and a 1§)W order (S, S) (where S is the number of the
suspected bad data, which is usually small) inversion. However, the new scheme
only needs to calculate the low order inversion since the new sensitivity matrix M is
constructed. Furthermore, difficulties may be encountered in finding the inversion

of the high order (2xN, 2xN) matrix.

2.3 The Second Scheme

The methods presented in section 2.1 and 2.2 have a fatal drawback, i.e. the method
can only be used to identify bad data in injections, also, the measurements used
as correction information are limited to line flows. However, in practice, the mea-
surements can be any combinations of injections, line flows and magnitudes of bus
voltages. Therefore, the bad data might be any possible combinations of those mea-

surements. All these factors limit the use of the above methods and render them
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impractical.
To solve this problem, the power system state estimation(PSSE) based on the
weighted least square method is used for detection and identification in the proposed

scheme II.

2.3.1 The Scheme

The measurements used in this new scheme are active injections Py, reactive in-
jections @, active line flows Pr, reactive line flows @, and magnitude of voltages
V.

All the measurements are divided into two sets by a low normalized residu-
als detection threshold. The firgt set that has high residuals is the suspected set.
The other set is called the correction set. As mentioned in [24] and will discussed
in greater detail in the next chaptér, the normalized residuals test is not reliable
enough, particularly for multiple bad data cases. Therefore, a low detection thresh-
old used here can ensure that all bad data are included in the suspected set.

Assume that the number of the suspected bad data is s. The pertinent equations

are:

AP, Aé,
AQS A

APy | = [ JS ] Abgn-1 (2.8)
AQE AV,

AV?® AVan_1

where JS is the Jacobian matrix. AP%;, AQ, AP%, AQS, AV® are the changes
of active and reactive injections, active and reactive of line flows, and magnitudes of
voltages respectively. Superscript s indicates that they are temporarily suspected

to be bad data. Since bus 1 is chosen as slack bus, i.e. Af; is assumed to be 0.
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Therefore, the number of the state variables is 2N-1, here N is the number of nodes
of the system.

Equatién (2.8) can be written as follows:

[APQV: | =[Js ][ ax ] (2.9)

From m-s reliable data, the following equations can be established:

AP Ady

AQE Ads

APS | =[JC]| Abums (2.10)
AQS AV,

AV AVan_g

where JC is the Jacobian matrix. APg, AQ%, AP}, AQf, AVY are changes of

active and reactive injections, active and reactive of line flows, and magnitudes of
.2

voltages respectively. Superscript ¢ indicates that those measurements will be used
to corrected the suspected set.

Equation (2.10) can be written as follows:
[aPQVe | =[JC ][ ax] (2.11)

The state variables vector is eliminated from (2.9) and (2.11), similarly to what

is done in the IEM, to obtain:
[aPQv*]=[3s][3c|7 [ aPqV, ] (2.12)

| aPQV® | =[Jsc || aPQV© | (2.13)
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[3sc]=[3s][ac]™

The algorithm of the method is as follows:

o Perform state estimation (PSSE).
o Calculate performance index J(X) to determine if BD exist.

o If BD exist, calculate normalized residuals and divide all the measurements

into two parts based on a low detection threshold.

o Assume that the measurements with their normalized residuals values higher
than the detection threshold are suspected to be bad data, PQVS, and that
the measurements with their normalized residuals lower than the detection

threshold are used as correction information , PQVE,

o Perform PSSE and construct the sensitivity matrix JSC; use (2.13) to solve
for APQVS,

o Once the corrections of the suspected bad data points are obtained, the sus-

pected bad data PQV?® are corrected according to

PQV**! = pQVsk + APQV®

to find improved values for PQV*®. This step is iterative as indicated by the iteration
count k. Once convergence is obtained, a decision is made based on comparing the
measurements with the corresponding calculated values. Only the items of PQV*
which are larger than a predetermined tolerance are indeed the bad data, others

are not bad data.
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2.3.2 Summary

This scheme uses the idea of the independent equations method to construct a sen-
sitivity matrix relating the changes of suspected bad data APQV?® to the changes
of a set of reliable data APQV?® in PSSE. This scheme overcomes the limitations
of the IEM. This scheme also is thought to be more reliable than the identification
by elimination (IBE) method.

The IBE which “has received wide acceptance is based on a two step procedure:
the J(x) test to detect whether bad data are present or not, and the weighted
or normalized residuals identification test to flag which measurements (if any) are
affected by gross errors,” [22]. However, “J(x) test conventionally used in power
system static state estimation 1‘1as poor reliability for detecting the presence of
measurement errors in the range 3 to 20 standard deviations,” [22]. “r, test is not
reliable enough either, ... since there is no one to one correspondence between larger
residual magnitudes and larger measurement errors, since each residual is a linear
combination of the various errors and the detection is taken on a global basis,‘ and
is able to give a rough indication,” [25]. This new scheme first specify the scope
of bad data based on a low detection threshold. The value of detection threshold
in this scheme can be taken much lower than usual since the iterative correction
procedure used in this scheme can re-identify all the suspected bad data, therefore
the probability of bad data to be detected is expected to be higher than the method
of identification by elimination (IBE).

The new scheme can identify bad data in one single procedure, i.e. all the
bad data will be identified at the same time. However, the conventional IEM needs

exhaustive computation even for a single bad data. The computational requirement
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of this scheme is much lower than that of identification by elimination (IBE) for
multiple bad data.
The new scheme is simple and an existent state estimation program can readily

be converted to the this scheme.

2.4 Further Improvement (The third scheme)

One might think that if the measurements with the largest 10 or 20 residuals are
eliminated (since the number of the bad data is usually very small, all the bad data
will be included ), then PSSE is performed to obtain a good state of the system.
After that all the variables are calculated based on the good state and the bad data
are identified by comparing the measurements with their calculated values. It seems
a good scheme if it does not cause the system to be unobservable. Unfortunately,
this may happen.

Although the new scheme in section 2.3 has some advantages over other meth-
ods, it suffers a drawback as IBE and IEM do, i.e. it might cause configuration
degradation since only a set of measurements is used as correction information. In
other words, it may cause the system to be unobservable.

In order to avoid any possible configuration degradation, a further improvement
is made on scheme II. In scheme II, APQVF® is a vector with 2n-1 measurements
which is used to correct bad data. Here APQV® will be the vector of all the
available measurements. This means that there is no changes in the measurement
configuration during the identification procedure. Thus scheme III ensures that
. there is no configuration degradation.

The algorithm of the method then is as follows:
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Perform state estimation (PSSE).
Calculate performance index J(X) to determine if BD exist.

If BD exist, calculate normalized residuals and divide all the measurements

into two sets based on a low detection threshold.

Assume that the measurements with their normalized residual values higher
than the detection threshold are suspected to be bad data PQV?, and use all
the measurements (including the s suspected bad data) as correction informa-

tion PQVE€.

Perform a PSSE (this is not needed in the first iteration, since it has been

done in the first step above) to get APQVS.
1]

Once the corrections of the suspected bad data points are obtained, the sus-

pected bad data PQV® are corrected according to

PQVFH = PQV*E + APQV®

to find improved values for PQV*®. This step is iterative as indicated by the
iteration count k. Once convergence is obtained, a decision is made based on

comparing the measurements with their corresponding calculated values.

2.4.1 'Tests and results

The scheme have been tested on IEEE 14 bus test system. The overall measurement

redundancy is about 2.3. The standard deviation of the error are set equal to 0.02

p-u. ( on a 100 MVA base) for real and reactive power measurements and 0.002
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p.u. for voltage magnitude measurements. The bad data is simulated by injecting
20 standard deviation to the true values[22]. The cases selected to report include
single and multiple bad data. To test this scheme, a program is developed which is
based on a PSSE program. The flowchart of the program is presented in Fig.2.1.
More details about measurements’ simulations, considerations of redundancy, the

size of bad data, and the program itself, will be discussed in the next chapter.
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BD | ID| ERR T | TMOIT
T [ Y| 46.2% 6
2 | Y| 66% 3
3 1Y | 23% 7
4 Y| 14% 3
5 | Y| 2.8% 2
6 | Y| 25% 2
7| Y| 204% | 19
8 | Y| 1.3% 3
9 | Y| 31% 24
10 | Y| 217% | 18
11| Y | 1.18% 3
12 | Y| 1.14% 2
13| Y] 3.3% 20
14 .Y | 1.11% 3
15| Y | 1.19% 2
16 | Y| 1.713% | 12
17 | Ye| 5.58% 4
18 | Y | 1121% | 23
19 | Y| 34% 5
20 | Y| 2.12% 1
21 | Y| 0.75% 8
22 | Y| 26.4% 7
2 1Y | 2.2% 2
24 | Y |21.04% | 21
25 | N| - 0
2 | Y | 0.95% 5
27 | Y | 1.34% 4
28 | Y | 45.4% 6
29 | Y | 6.19% 2
30 | Y | 9.04% 3

Table 3.1: The results obtained by using IEEE-14 bus system configuration B. The
first column is the bad data locations. The second column tells whether the bad
data is identified. the third column is the percentage error of the corrected values
with respect to ture values, the last column is the number of the iterations.
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BD|ID]| ERR T | TMOIT
31 | Y| 823% 6
32 | Y| 118% 2
331 Y| 1.9% 9
34 | Y| 4.80% 4
35 | Y | 15.38% 1
36 | Y | 15.26% 2
37 | Y| 5.44% 3
38 | Y | 12.42% 1
39 | Y | 42.28% 1
40 | Y | 33.56% 2
41 | Y | 1.47% 2
42 | Y| 9.25% 3
43 | Y | 11.04% 4
44 |\ Y | 38.71% 1
45 | Y | 11.26% 7
46 | Y | 13.67% 13
47 | Y*| 1.06% 1
48 | Y | 19.33% 6
49 | N | 156.59% 0
50 | Y | 4.05% 11
51 | Y | 1.28% 2
52 | Y | 21.42% 3
53 | Y | 0.42% 2
54 | Y | 12.28% T
55 | Y | 19.89% 5
5 | Y | 7.58% 2
57 | Y | 0.29% 2
58 | Y | 0.58% 2
59 | Y | 0.207% 2
60 | Y | 4.48% 2

Table 3.2: The results obtained by using IEEE-14 bus system configuration B. The
first column is the bad data locations. The second column tells whether the bad
data is identified. the third column is the percentage error of the corrected values
with respect to ture values, the last column is the number of the iterations.

31



MULTBD | ID | ERR T| TMOIT
Pye Y| 61% 5
Qw10 Y| 7.8% 5
Pro3 Y| 1.7% 5
Qrisd Y| 7.1% 5
I7A Y | 0.2% 5

Table 3.3: The results obtained by using IEEE-14 bus system configuration B. The
first column is the multiple bad data locations. The second column tells whether
the bad data is identified. the third column is the percentage error of the corrected
values with respect to ture values, the last column is the number of the iterations.

MULTBD | ID | ERR T| TMOIT
Pripo Y 7.3% 4
Qne Y 4.4% 4
Pr1;3 Y 9.2% 4

Q1164 Y 2.7% 4
Vs Y | 0.15% 4

Table 3.4: The results obtained by using IEEE-14 bus system configuration B. The
first column is the multiple bad data locations. The second column tells whether
the bad data is identified. the third column is the percentage error of the corrected
values with respect to ture values, the last column is the number of the iterations.
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The above results show that this scheme can identify bad data with a success rate
of 97%. However, the success rate when the normalized residuals are used is 87%.
The normalized residuals will be discussed in greater details in the next chapter. For
a single bad data case, the computational requirement is higher than the normalized
residuals method. The examples show that 5 bad data can be identified in 4 and 5

iterations respectively. However, the IBE needs at least 5 times as many iterations.
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2.4.2 Conclusion

Scheme III is derived from scheme II. The sensitivity matrix in scheme III relates
the changes of suspected bad data APQV?® to the changes of all the available
measurements APQV® in PSSE. This scheme will not cause any configuration
degradation. The advantages of scheme Il mentioned in section 2.3.2 are enhanced.
The IEEE 14-bus system was used to test the scheme using single and multiple BD.

It should be mentioned here, however, that an apparently similar scheme was

referred to in [24].

34



Chapter 3

The Study of Perturbation
Method for Bad Data

Identification

This chapter is devoted to the study of the Perturbation Method (PM) for bad data
identification.

Section 3.1 is taken form [16] as a summary of the previous work done on the
PM for bad data identification. In section 3.2, the PM in PSSE is generalized to
overcome the restrictions imposed in the first introduction of the method in [16].
Also, the main program is introduced in this section. In section 3.3, test conditions
are discussed, the normalized residuals method is studied in this section. In section
3.4, several indicators are defined and studied; testing results are presented and
analysed. In section 3.5, eflects of varying some factors on the results are studied.

Conclusions appear in the last section.

3.1 Perturbation Method For Bad Data Identifi-
cation

This section is a summary of the method and is taken from [16].
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In 1989, a method for bad data (BD) identification in power system state es-
timation was proposed in [16]. This method is referred to in this thesis as the
Perturbation Method (PM). The data assumed available in this method are similar
to those assumed by the independent equations method which is introduced in sec-
tion 2.1. This data structure is too restrictive and not practical. The purpose of this
chapter is to find ways to remove these restrictions. This method is summarized as
follows:

Equation 2.1 is repeated here for convenience.

APy, 1] AP; }
= | Spg- 3.1
. . N -1
where [ Spg-i ] = [ JKpqg-j ] [ JKj; ] .
Decoupling is used, i.e., the stepg to be followed to identify bad P-injection data,

are paralleled in case the bad data are Q-injection . Therefore, the procedure will

be illustrated for the P case only.

| APpoae | = [ SENP | [ APy | (3.2)

where APpine is simply the difference between the measured line power flow at the
metered points and the corresponding calculated values. SENP is a sensitivity
matrix relating APpne and APpoqe; it is the inverse of a submatrix of (3.1).

The method of [16] is based on the following observation: if small random errors
are injected into the nodal measurements and AP, 440 calculated, then the entry
corresponding to a BD will not change as significantly as the entries corresponding to
the healthy data. The procedure then is to slightly perturb the nodal measurements

a few times (say five times) and each time calculate APpo4.. Thus, a set of five
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vectors of APpede is created. From this set, the following vectors are calculated:

o AVE is an average vector, averaging the five APyode,
e o is standard deviation vector, ;= the standard deviation of the five AP o4e,

e 0/AVE : the i-th entry of which is 0;/AV E;.

It is reported that, in almost all cases, if the measurement of the injected power
at node m is bad, then the absolute value of ¢,,/(4AV E),, is the smallest. This is
found to be true even for multiple BD.

The tests for this method are conducted on the IEEE 14-bus system. The
method can identify single and multiple bad P injections, with a success rate ex-
ceeding 90%. It is not as successful in identifying bad Q injections; this may be due

to a programing error.

3.2 Generalizing the Perturbation Method

The original PM method is based on the IEM (see section 2.1). Due to the IEM
model used, the method can only identify bad injections. Also, [16] has not ex-
plained why it can identify bad data and the comparison between the method with
other existent methods has not been done.

It is hoped to extend the applicability of the method to identify not only bad
data among injections, but also the bad data among line flows and voltages. Also,
the extended method should be more thoroughly tested.

The following sections try to answer the following questions:

e Can the restrictions on the measurements topology be removed?
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¢ How better or how worse does it work compared to other existing methods?

3.2.1 The Extended Perturbation Method for Bad Data
Identification in PSSE

As mentioned in the last section, in order to test the method more extensively and to
enhance the function of the method, all tests should be conducted in PSSE environ-
ment. PSSE environment means that no restrictions are placed on the measurement
set beyond what is found in practice.
The algorithm of the perturbation method based on a PSSE model is as follows:
(1): Specify the number of perturbations, N,
: Simulate injection, line 1’:10W and voltage measurements,

: Simulate bad data,

)

)

(4): Generate the weighting matrix,

): Perform state estimation (PSSE),

): Calculate the residuals (mismatches) APQV,

): If the count number K is equal to N go to (8), otherwise, perturb ali the
input measurements, i.e., inject small random increments in all the measurements
(say 0.5 % of the measurement value), then go to step 5,

(8): Calculate the average of the obtained set of APQV and its standard devi-
ation,

(9): Calculate o/AVE and other possible indicators to be discussed later on.

A program for this purpose is developed and will be explained as follows.
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3.2.2 Explanation of the Program Flowchart

Figure 2.1 shows the flow chart of the program used. The following explanatory
notes are numbered to correspond with the block numbers in the flow chart they
pertain to:

(2): Subroutine ‘SYSDATA is used to read system parameters along with other
data. The input data files for the IEEE 14-bus test system and the IEEE 30-bus
test system are given in [62],

(3): In this block, subroutine ‘FRANK is called to perform Load flow calculation
in order to establish the true values of the state variables; subroutines ‘PQCAL’,
‘PQLCAL’ and ‘CLF’ are used to calculate true values of all the system variables
including: real and reactive power injections, flows, and nodal voltages; subroutine
‘MGB’ is called to simulate measurements and bad data,

(5): Subroutine ‘PSSE’is called to estimate system states,

(6): Call Subroutine ‘RESLFAT” to calculate the various residuals,

(9): Subroutine ‘MGBP’ is called to perturb measurements,

(10): Subroutine ‘PSSEP’ is called to estimate system states,

(11): Call subroutine ‘RESLIDC’ to calculate the various indicators for identi-
fication.

The developed program also includes the following subroutines:

MGB, MGBP, WMGP, RESFCT, RESLC, SORTGREAT, PSSE, PSSEP, SYS-
DATA, PQLCAL, EDELTA, TEST, STAM, PQCAL, CLF, DELTA, TRAN, XRR,
INVERM, FACTO, MG, WMG, UTION, FRANK and RANDOM. The first 8 sub-
routines, together with the main program, are presented in Appendix A. The rest

of the subroutines are not listed because they can be found in [17].
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3.3 Test Conditions

To test the perturbation method and for the purpose of measurement generation
and result comparison, all true values are assumed to be known. The well known
IEEE 14-bus test system and the IEEE 30-bus test system are used. Most tests
are conducted on the IEEE 14-bus test system and some of them are made on the
IEEE 30-bus test system.

Before presenting the tests results, the following will be discussed :

e How to evaluate the method?

e How to generate simulated bad measurements?

Y

e How does the normalized residual method perform?
&

3.3.1 How to Evaluate the Perturbation Method

To judge a method, two methods can be used: The first is analytical; the second is
to use a Monte Carlo technique. In our studies, the latter is used mainly.
According to [16], the indication for bad data identification is o/AVE, where
AVE is an average vector, averaging the five AP ( assuming the number of pertur-
bation is five), where AP is the plain residual (mismatch between calculated values
and measurements and it is obtained after convergence is reached). In the literature,
three residuals are used: plain residual, weighted residual and normalized residual.
Therefore, three indicators can be constructed. These are: ¢/R,, 0/R,, and o/R,,.
For each indicator, a vector is constructed; the smallest entry in that vector is

hoped to indicate the bad data location.
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In this study, these three indicators along with other possible indicators are
discussed and tested.

The evaluation of any of the identification indicators is based mainly on its
success rate. In order to clarify the sucess rate concept, the normalized residuals
are used to illustrate how tests are conducted in this chapter.

For an instrumentation configuration, an overall redundancy is assumed and
each time an error is introduced to a measurement (for single bad data case) to
form the bad data, then perform PSSE and calculate normalized residuals of all the
measurements after convergence is attained. All the residuals then are rearranged
in a descending order. The largest normalized residual is hoped to correspond to the
bad data location. If measurement with largest normalized residual is indeed a bad
datum, the identification indication success in this case. Otherwise, it fails. Then,
next a measurement error is injectea to form the next bad datum. This process is
repeated until all the measurements have been identified.

For a IEEE 14 bus instrumentation configuration with an overall redundancy
of K=2, the state variables is 27, therefore the total number of measurements is
54. If 45 cases out of 54 cases are identified correctly, the success rate is 83 % i.e.
(45/54)=83%.

The sucess rate is an important indication which tells how the method used
works. It will be used throughout this studies.

Success rate (SR) is defined as:
SR=NSI/TNM

where NSI denotes the number of cases identified successfully, TNM stands for the

total number of measurements used.
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The comparison is made comparing SR of an identification indication with that
of either normalized residuals or other residuals. The former is used mainly in this

studies. The reason will be given in the section 3.3.3.

3.3.2 Simulated Measurements Generation

The procedure is the same as that in [17] and most of this subsection is taken from
[17].
In the perturbation tests, the true values of all system variables are assumed;
measurements are simulated by introducing random errors to these true values.
The instrumentation configuration of the IEEE 14-bus test system is defined as

follows:

¢ Instrumentation configuration set A:
L

P;_44:10105011000000

(Q1-14 : 10100011006000
PL,_40:1011011711010001011011000001011011011100
QL;_40:1011011011010001011011000001011011011100

Vi-14 : 10180011000000

where P is nodal real power, Q is nodal reactive power, PL is real power flow,

and QL is reactive power flow, V is nodal voltage.

Each position in the above strings corresponds to a possible measurement. If

the measurement is used, then a nonzero occupies that position; if it is not used a
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“0” occupies its corresponding position. For example, the “1” in the first position
of P,_14 string indicates that the real power nodal injection at nodal 1 is measured.
Later on, when it is necessary to use meters of different accuracies, the accuracy of
the measurement can be indicated in a string similar to the above.

Meters are classified into four categories according to their accuracies. Therefore,
if a measurement is used and it is of category 2, then a “2” would appear on its
corresponding position in the above measurements’ strings. When “5” appears in
the above measurements’ strings, it means that the corresponding measurement
is simulated as bad data with the meter type of 5-4=“1”, i.e. meter type is 1.
Similarly, when “6”,“7”or “8” appear in the above measurements’ strings, it means
that the corresponding measurements are simulated as bad data with a meter type
of 2, 3 or 4 respectively.

%
Simulated measurements are generated according to
M; = ERR; xT; £ FERR;

where M and T denote simulated measurements and true values, respectively. ERR;
is assumed to be normally distributed with a maximum of 3¢ ERR. FERR, is
assumed constant but its sign is chosen at random. The details about measurement

simulation and meter categories can be found in [17].

3.3.3 The Normalized Residuals

The normalized residuals are defined in section 1.2. Identification methods based on
the normalized residuals are widely accepted [22]. Therefore, these will be used for
comparison in this chapter. Although the normalized residuals are widely accepted

and used, the literature does not report on how powerful the method is. For this
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reason the normalized residuals will be studied in this section in detail. Many tests
have been conducted in this investigation. A few of them are presented in the
following.

It is concluded in [7, 22, 24] that the normalized residuals are better indicators
than the weighted residuals in most cases. Therefore, the normalized residuals
rather than the weighted residuals are focused on in this thesis. The tests we
conducted agree with the above conclusion, therefore, the weighted residual will
not be discussed further.

The ability of an indicator to identify BD is affected by the size of the bad
measurement, its location, the data base, the instrumentation configuration, the
overall redundancy, the local redundancy, etc. In fact, our studies shows that the
success rate (SR) can vary from lower than 50% to higher than 95% depending on

these factors. The effects of these f;ctors will be discussed individually as follows:

Effects of Local Redundancy on the Normalized Residuals

Local redundancy at a bus is defined in [7] as the number of measurements divided
by the number of unknowns counting only measurements and unknowns at that bus
plus at all buses up to two switch-yards away.

The first example will show how important the local redundancy is.

Instrumentation configuration 14-A1 is used with a overall redundancy 2.2, The
local redundancy for measurement @, is 1.67.

The results have shown that measurement @}, is mis-identified as bad data in
25 cases. However, after the two measurements, Qr; and Qrs, are added in the

configuration, the local redundancy increases up to 1.9, and the mis-identified cases
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decreases from 25 to 0.

The Effects of Overall Redundancy

The following table shows the variations of the success rate (SR) when using the

normalized residuals with the overall redundancy:

REDUNDANCY | SR using R,
1.5 40%
2.2 87%
3.0 90%
4.0 93%

Table 3.1: Effects of measurement redundancy.

s

The results show that the success rate of normalized residuals increases with the
overall redundancy varying from 40% to 93%. The improvement is 53%. However,
the improvement in SR when overall redundancy increased from 2.2 to 4.0 is not
as sharp as that when the overall redundancy increased from 1.5 to 2.2. Therefore,
considering economical reasons, an overall redundancy in the range of 2.2 to 3.0
can be considered reasonable. An overall redundancy of 2.2 is used throughout this
chapter unless otherwise stated.

The reason why the success rate of the R, indicator is so low when the overall
redundancy is 1.5 is that @z, and Pr,¢ are mis-identified as bad data 10 and 14 times
respectively. The low overall redundancy results in very poor local redundancy of
Q12 and Pryo which leads to mis-identifications. It is shown in the previous section
that adding two extra measurements to increase the local redundancy of Qr, will

reduce the number of mis-identifications greatly. It can be concluded that when
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the redundancy is low, the problem of measurement topology (meter placement)
become more important. When the overall redundancy is high, the problem of poor

local redundancy is less likely to arise.

The Effects of Instrumentation Configuration

The next test shows the effects of the instrumentation configuration on the success

rate. Table 3.2 indicates that different instrumentation configuration has different

INSCN | SR using R,
14A 85%
14B 87%
14C 78%
4D 73%
14E 75%
14F 80%
14G 78%
14H 78%

Table 3.2: Effects of different instrumentation configurations on the success'rate
using the normalized residuals. Column 1 is the configuration code.

success rate. Some of them are better than others. This means that the success
rate is affected by measurements configuration. This is another indication of the
importance of the problem of meter placement. This problem is beyond the scope
of this thesis.

The measurements configurations mentioned in Table 3.2 are not completely
randomly configured. Visual inspection was done in order to avoid very poor local
redundancy.

The reason why different configuration has different success rate is thought to
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be that different locations have different responses to the same disturbance. In
other words, some locations are more sensitive to the disturbance than others, this

is determined by network topological and distribution of load and sources, etc.

The Effects of Bad Data Size

The next example shows the effect of the size of bad data on the identification

process.

SIZE OF BD | SR using R,
4o 58%
200 85%
400 90%
600 92%

Table 3.3: Effects of the size of batl data. The first column shows the errors in-
troduced to simulate bad data, the second column is the success rate using the R,
indicator.

In this study, the IEEE 14- bus system that has an overall redundancy of 2.2 is
used. When the bad data size is 4 o, the success rate of the normalized residual is
less than 58%. However, when the size of the bad data increases to 60 o, the success
rate goes up to 92%. It seems that there is no significant change of the success rate
when the size of bad data increases from 40 o to 60 ¢. In our studies, the bad data
size is set to 20 . The results show that the larger the bad data size is, the easier

it can be identified.
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3.4 Definitions and Tests-of New Indicators

In this section, four indicators related to the normalized residuals will be defined
and studied. A similar four will be defined for the weighted residuals and similarly
for the plain residuals (a total of 12 indicators). The testing conditions are: Overall
redundancy is set to 2.2 with local redundancy kept uniform by visual inspection.
The size of bad data is set to 200. A measurement is perturbed by introducing a
random error with a maximum value of 0.5%. However, the effect of the size of the

perturbation is studied later. The number of the perturbations is set to 5.

3.4.1 Results Using the Three Indicators: o¢,/R,,, 04/Ryp
and o,/ R,,

Three indicators are defined: o0,/ R,,, 00/ Rup, 0/ Rnp. Ryp (called perturbed plain
residual, the first p means plain, thel*econd p means perturbed) is an average vector,
averaging the five R,s, R, is the plain residual, and o, is the standard deviation of
the five Rps. Similarly, R, (called perturbed weighted residuals, the first w means
weighted, the second p means perturbed) is an average vector, averaging the five
R,s, R, is the weighted residual, and o, is the standard deviation of the five R, s.
R, (called as perturbed normalized residuals, the first n means normalized, the
second p means perturbed ) is an average vector, averaging the five R,s , R, is
normalized residual, and ¢, is the standard deviation of the five R, s. For each test,
if the smallest value is of the indicator corresponding to a BD then that indicator
is successful in identifying it. The tests for these three indicators are presented in
table 3.4.

The above results clearly show that introducing o, as part of the indicator,
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INSCN| R, | 0,/Rup | Rw | 0w/Rup | Ry | 0p/Rup
14A | 85% 13% | 70% 22% | 52% 33%
14B | 87% 27% | 7% 38% | 40% 32%
14C | 8% 17% | 72% 25% | 53% 33%
14D | 73% 25% | 67% 25% | 45% 33%
14E | 75% 33% | 62% 43% | 40% 32%
14F | 80% 37% | 75% 45% | 27% 37%
14G | 78% 32% | 65% 40% | 50% 47%
14H | 78% 18% | 70% 33% | 47% 32%

Table 3.4: Success rates of indicators. The first column gives the code of the different

instrumentation configuration.

worsen the results.

3.4.2 Results Using the Three Indicators: o,, ¢, and Op

Since 0,, 0, and o, are part of above indicators, the behavior of those ¢,, o, and

op will directly affect the results. Therefore, studying the behavior of those o, o,

and o, is essential.

Table 3.5: Success rates of indicators. The first column gives the code of the
instrumentation configurations; column 2 ,3 and 4 are the success rates of o, 0,

and o, respectively.

INSCN | o, Cuw o,
14A | 88% | 68% | 48%
14B 83% | 8% | 38%
14C 85% | 2% | 25%
14D 7% | 67% | 25%
14E 73% | 62% | 43%
14F 82% | 75% | 45%
14G | 80% | 65% | 40%
14H 78% | 70% | 33%
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Table 3.5 clearly shows that ¢,/Rnp, 0w/Ryp and 0,/R,, fail as identification
indicators. It can be concluded that the perturbed corrections are more scattered if
they correspond to a bad datum than they are when they correspond to a healthy
one. This is contradictory to the findings of [16]. It should be mentioned however,
that differences exist between the algorithm used in this investigation and that of
[16].

In any case, since o, 0 and o, are reiatively large when they correspond to a
BD, and so also the correction itself, the following indicators are suggested: o, X R,,,,
0w X Ryp and o,X R,,. These indicators will be discussed later on.

The above results also suggest using o, 0., and o, as indicators by themselves.

Results of testing these are shown in table 3.6:

INSCN| R, | 0. | Rw | 0w | R, | oy
14A | 85% | 88% | 70% | 68% | 52% | 48%
14B | 87% | 83% | 78% | 67% | 40% | 47%
14C | 78% | 85% | 72% | 57% | 53% | 53%
14D | 73% | 77% | 67% | 58% | 45% | 37%
14E | 75% | 73% | 62% | 63% | 40% | 47%
14F | 80% | 82% | 75% | 70% | 27% | 20%
14G | 78% | 80% | 65% | 70% | 50% | 48%
14H | 78% | 78% | 70% | 67% | 47% | 37%

Table 3.6: The comparison of success rates of indications o, o, and o, with their
own residuals.

The average success rate of the normalized residual is 79.25%, but that of o, is
80.75%. For the normalized cases, the o indicator is 1.5% better than the normalized
residuals. For the weighted case, the o indicator is 12.38% worse than the weighted

residual. For plain residuals case, the ¢ indicator is 3% better than the plain
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residual.

3.4.3 Results Using the Three Indicators: R,;, R,, and R,

Similar tests were done using R,,,, R,, and R,, as indicators. The results are shown

in Table 3.7, which essentially gives the effect of perturbation on the success rate.

INSCN| Ry | Rup | Ro | Bup | By | Bop
14A | 85% | 90% | 70% | 72% | 52% | 55%
14B | 87% | 92% | 78% | T7% | 40% | 53%
14C | 78% | 82% | 72% | 67% | 53% | 57%
14D | 73% | 75% | 67% | 68% | 45% | 45%
14E | 75% | 80% | 62% | 73% | 40% | 53%
14F | 80% | 85% | 75% | 75% | 27% | 33%
14G | 78% | 85% | 65% | 75% | 50% | 55%
14H | 78% | 83% | 70% | 70% | 47% | 45%

Table 3.7: Comparison of success rates of indicators R.p, Rup and R,, with their
corresponding residuals R,,, R, and R, respectively.

The above results show that, on the average, the perturbed normalized residu-
als as indicators of bad data are 4% better than the normalized residuals without
perturbation. The average success rates of perturbed normalized residual and nor-
malized residual are 84% and 80% respectively. It must be pointed out that in each
configuration studied, the perturbed normalized residuals as indicators of bad data
are better than the normalized residuals. The improvement varies from 2% to 7%.

It is clear that the normalized residuals are more effective than the weighted or
the plain residuals. Therefore, discussion will be focused on the normalized residuals
performance.

The above results clearly show that the perturbed residuals as indicators of bad
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data are superior to their corresponding unperturbed residuals, particularly for the
normalized case.

Since the magnitudes of R,,, R,, and R,, for the bad data points are com-
paratively large, in fact, in most cases, they are largest, they should improve the
effectiveness of the indicators ¢,/R,p, 0/ Ruwp and o,/ Ryp. Those indicators were
presented in section 3.4.1.and found ineffective. Therefore, the reason why the in-
dicators 0,/ Rnp, 0w/ Rup and o,/R,, are not effective must be due to o, oy, and

0,. This suggests the indicators in the following sections.

3.4.4 Results Using the Three Indicators: o,xXR,,, 0yXRyp
and o, xXR,,

The logic behind choosing these jndicators should be apparent from the preceed-

ing sections.

INSCN | R, | 0,XRnp | Rup | 0wXRy, | R, | 0, xR,
14A | 85% | 90% | 70% | T72% |52%| 55%
14B | 87% | 88% |78% | 72% |40%| 52%
14C | 8% | 80% |72%| 63% |53%| 55%
14D | 3% 75% 67% 60% 45% | 43%
14E | 75% | 80% |62%| 73% |40%| 52%
14F | 80% | 85% |75%| 72% |27% | 27%
14G | 78% | 85% |65% | 2% |50% | 55%
14H | 78% ] 80% |70% | 70% |47%| 42%

Table 3.8: The success rates of indicators.

The results presented in table 3.8 show that, on the average, the indicator

onX Ry for bad data identification is 3% better than R,. The average success
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rates of perturbed normalized residual and normalized residual are 83% and 80%
respectively. Also, in every configuration, the indicator o, X R,, for bad data iden-
tification is better than R,, the improvement ranges from 1% to 5%.

Table 3.8 also shows that the indicator o, X R, is superior to other indicators.

3.4.5 An Overall Comparison of Indicators

So far, four type of indicators have been tested. The indicators based on the nor-
malized residuals are clearly superior to those based on the weighted and the plain
residuals. In this section, the indicators based on the normalized residuals will be

compared. The results of using those indicators are shown in Table 3.9.

INSCN | R, | Rop | On | 0nX Ry
T4A | 85% | 90% | 88% | 90%
14B | 87% | 92% | 83% | 88%
14C | 78% | 82% | 85% | 80%
14D | 73% | 75% | T7% | 75%
14E | 75% | 80% | 73% | 80%
14F | 80% | 85% | 82% | 85%
14G | 78% | 85% | 80% | 85%
14H | 78% | 83% | 78% | 80%

Table 3.9: The success rates of different indicators obtained using different instru-
mentation configurations.

The above results are plotted in Figs. 3.1 to 3.3.
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Fig. 3.1 clearly shows that R,, is more effective than R, in every cases. The
improvement ranges from 2% to 7%.

Fig. 3.2 clearly shows that, in general, the indicator ¢, is better than the
normalized residuals, but not in every case.

Fig. 3.3 clearly shows that like indicator R,,, the indicator o, X R, is better
than the normalized residual in every case. The improvement ranges from 2% to
%.

The following table is made by taking the average of each column of Table 3.9:

Ry | Roy | 0n | 0uXRop
80% | 84% | 81% | 83%

A

Table 3.10: Comparison of the indicators on average base.

The above results show that indicator R,, is the best indicator for bad data
identification; The indicators o, X Rp, and o, are less effective than R,,. All these
indicator are better than the widely accepted normalized residual indicator. Also,
R.p and 0, X R,, are better than R, not only on an average bases, but also in every
case (see table 3.8). Although indicator ¢, is superior to R, on an average bases,

it is not superior to R, in every case.
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Figure 3.1: Success rates of indicators R,, and R, obtained using different IEEE
14 bus test system instrumentation configurations.
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Figure 3.2: Success rates of indicators o,, and R, obtained using different IEEE 14
bus test system instrumentation configurations.
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Figure 3.3: Success rates of indicators ¢,xR,, and R, obtained using different
IEEE 14 bus test system instrumentation configurations.



3.4.6 Studies on the IEEE 30-Bus System

The IEEE 30 bus system is used to conduct more tests. The instrumentation
configuration used can be found in the program listing in Appendix A. The system
data can be found in [62]. The test conditions are the same as those used in the

previous tests conducted on the IEEE 14 bus system.

Rnp'Rn Un’Rn UnX-R»np'R»n
7.5% 1.0% 4.6%

Table 3.11: The effectiveness of various indicators relative to R,.

The results show that R,, as indicator for bad data identification is the best.
The results obtained using the IEEE 30 bus system agree with those obtained

using the IEEE-14 bus system.

3.5 Effects of Various Parameters on the Results

All the tests conducted are based on the test condition discussed in that section. As
mentioned in section 3.3.3, the overall and local redundancy of measurements and
bad data size, etc. will affect the effectiveness of the normalized residual. Do they
alter the above conclusions? Are indicators Ry, 0pn, 0y X R,,, remain more effective
than the normalized residuals when these factors vary? In addition to these factors,
do the number of perturbations and the size of the perturbation affect the obtained
conclusions?

The following studies are designed to answer these questions. In the following
studies, indicators R,, Rnp, On, OnpXR,, are selected to be tested since they are

obviously better than the others.
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IEEE-14 bus system instrumentation configuration 14-A is used to conduct the

following tests unless otherwise stated.

3.5.1 Effect of Redundancy of Measurement

The following values of the overall redundancy are used: 1.5, 2.0, 3.0 and 4.0.

REDCY | Rn | By | 0n | 0nX Ry
15 | 40% | 46% | 40% | 41%
2.2 | 85% | 90% | 88% |  90%
3.0 | 90% | 96% | 95% |  96%
40 | 93%|97% | 94% |  97%

Table 3.12: Success rates of the indicators obtained using different overall redun-
dancies.

The results show:

(1): The success rates of all indicators will increase with the increase of the
overall redundancy. The rate of improvement, however, is more pronounced when
the redundancy is low.

(2): The average success rate of indicator R, is 5.3% higher than that of the
normalized residual. The improvement ranges from 4% to 6%.

(3): The average success rate of indicator o, is 4% higher than that of the
normalized residual. The improvement ranges from 0% to 5%.

(4): The average success rate of indicator o, X R,, is 2.3% higher than that of

the normalized residual. The improvement ranges from 1% to 6%.
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Fig 3.4 clearly shows how the overall redundancy affects the effectiveness of
indicators R,, and R,.

It is clear that no matter how the overall redundancy changes, R,, is superior
to R,.

The reason why the success rate are very low when the overall redundancy is
reduced to 1.5 is that this configuration suffers from the poor local redundancy so

that @z, and Pr1o are mis-identified as bad data 10 and 14 times réspectively.
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Figure 3.4: Success rates of indicators R,, and R, obtained using different overall
redundancies.
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3.5.2 Effects of Bad Data Size-

The size of bad data is varied from 4 ¢ to 60 o.

SBD | Rn | Ry | On | Onx Ry
4o | 58% | 68% | 60% | 65%
200 | 85% | 90% | 88% | 90%
400 | 90% | 93% | 92% | 92%
600 | 92% | 95% | 95% | 95%

Table 3.13: Effects of size of the bad data.

The results show:

(1): The success rates of all indicators increase with the increase of bad data
size. A

(2): The success rates are much more sensitive to changes in bad data size when
the BD size is in the lower range (40 to 200).

(3): The average success rate of R,, is 5.3% higher than that of R,. The
improvement ranges from 3% to 10%. The 10% improvement is obtained when the
bad data size is 40. This means that the more difficult the case, the more powerful
the R,, indicator is comparison with the R, indicator.

(4): The average success rate of indicator o, is 2.5% higher than that of the
normalized residuals. The improvement ranges from 2% to 3%.

(5): The average success rate of indicator o, X R,y is 4.3% higher than that of

the normalized residual. The improvement ranges from 2% to 7%.

Fig 3.5 clearly shows how the size of bad data affects the performance of indi-
cators R,, and R,,.

It is clear that the R, is least effective no matter how bad data size changes.
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Figure 3.5: Success rates of indicators R,, and R, obtained using different size of
bad data.
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3.5.3 [Effects of Measurement Accuracy

Following tests are to study the effects of metering accuracy. The tests are conducted
by changing the type of the meters, i.e. changing the sizes of the measurements
errors. In order to compare the results easily, the type of all the measurement’s
meters used in a configuration will be the same each time and will vary from 1 to

4. A type 1 meter is a better quality meter and therefore more expensive.

Ry | Rop | 0n | OnXRy | X By
1 {88% | 95% 90% 95%
2 | 82% | 90% 83% 90%
3 | 73% | 85% 80% 83%
4 | 70% | 82% 72% 82%

Table 3.14: Effects of measurements’ accuracies (meter’s quality).
&

Table 3.15 gives the averages of the corresponding columns of Table 3.14.

Ry | RBop | on | onXERpp
78% | 88% | 81% 88%

Table 3.15: Success rates of indicators R,, and R,, obtained using different types of
meters.

The results show that indicator R,, is 10% superior to the normalized residual
on the average. The improvement ranges from 8% to 12%. It should be mentioned
that when the instrumentation are getting worse (all the meters are type 4, or 3),
the improvement reaches 12%. This demonstrates that the more difficult the case

is, the more powerful indicator R,, is.
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When all the meters are type 1, the success rate of indicator R,, is 95%.
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Figure 3.6: Success rates of indicators R,, and R,, obtained using different types of
meter.
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3.5.4 Effects of the Perturbatien Size

Tests are done to study the effects of perturbation size. To conduct this study,
the size of the perturbation is selected to lie at random with the following absolute

maximum values: 0.1%, 0.5%, 1% and 5% of the measured values.

PS5 | Ry | Rup | 0n"Rnp | 0n
0.1% | 85% | 90% | 88% | 90%
0.5% | 85% | 90% | 88% | 90%
1.0% | 85% | 90% | 88% | 90%
50% | 85% | 90% | 83% | 90%

Table 3.16: Effects of the perturbation size (PS) on the success rate of different
indicators.

The results show that the success rate of the indicators are not affected by the
&

perturbation size, except in one case where the success rate of o, X R,,;, is decreased

to 83%.
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Figure 3.7: Success rates of indicators R,, and R, obtained using different sizes of
perturbation.
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3.5.5 Effects of Number of Perturbations

DP| R, | Ry | 0 | onx Ry
2 | 85% | 82% | 82% | 82 %
3 | 85% | 92% | 88% | 90 %
5 | 85% | 90% | 88% | 90 %
10 | 85% | 92% | 82% | 92 %

Table 3.17: Effects of the number of perturbations on the success rate. Column 1
shows the number of perturbations (NP) used.

Studies are conducted using different number of perturbations. The results are
summarized in Table 3.17. Taking the number of perturbations greater than 3 does

not appear to offer any advantages.
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Figure 3.8: Success rates'of indicators R,, and R,, obtained using different numbers
of perturbations.
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3.6 Conclusion

In this chapter, the perturbation method for bad data identification in. PSEE is
studied. Four classes of possible indicators (total number of indicators is 12 ) are
defined and many cases are studied.

Results show that the perturbed normalized residuals R,, is a most effective
indicator. It is superior to the widely accepted normalized residuals. The improve-
ment in the success rate can be as high as 12%. The indicator R,, is better than
the normalized residual indicator not only on an average bases, but also in every
case. Therefore, it is more reliable than other indicators.

The computational requirements for this method is little higher than those of
the normalized residual method.

The indicator o, X R,, is second best. Indicator o, follows. Although these two
indicators are better than the normalized residual on the average, they are affected
by the changes in the test conditions.

The performance of indicator ¢,/Rn, inferior to that of R,,.



Appendix A

The Main Program And Some
Subroutins For Perturbation
Method
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QOO0

0O 0 o0 o0

MAIN PROGRAM

THIS PROGRAM IS USED TC TEST THE PERTURBATION METHOD OF BAD DATA
IDENTIFICATION. THE PROGRAM MAINLY CONSISTS OF THREE PARTS: PART
ONE IS TO SIMULATE MEASUREMENTS, PART TWO EXECUTES PSSE PROGRAM
AND PART THREE PERFORM THE BAD DATA IDENTIFICATION.

INTEGER FJM,WMN,IR,DFM,BUS

THIS STATEMENT IS FOR THE 14-BUS SYSTEM

PARAMETER (NB=14,NLINES=20,NT=40,NNBB=28 ,NM=60,NMM=122,
1NNBB1=27,NB1=13,NL=9,K1=10,K2=11,DFM=22,BUS=14,
1ERR1=0.002,ERR2=0.02,FERR1=0.003,FERR2=0.0035,N=5 ,nbb=20)

THIS STATEMENT IS FOR THE 30-BUS SYSTEM

PARAMETER (NB=30,NLINES=41,NT=82,NNBB=60,NM=132,NMM=254,
1NNBB1=59,NB1=29,NL=24 ,K1=25 ,K2=26 ,DFM¥=53,BUS=30,
1ERR1=0.002,ERR2=0.02,FERR1=0.003,FERR2=0,0035,N=5,nbb=20)

PARAMETER (CRIT=0.005,KMAX=100,NUDR=100,
1NCASE=10) ©

NUDR is the number of uniformely distributed random numbers
used to generate one normally distributed number.

COMPLEX YC(NLINES),ZLINE(NLINES),ST(NT),SP,E(NB)
DIMENSION MTOBO(NT,4),FM(DFM,DFM),VSP(NB),CONN(NNBB)
REAL PSP(NB),QSP(¥B),V(NB),D(HB),P(NB),Q(NB),
1PNM(NB) ,GNM(NB) ,VT(NB) ,DT(NB)

REAL PLM(NT),QLM(NT),PLT(NT),QLT(NT)

REAL JK11(NB,¥B),JXK12(NB,NB),JK21(NB,NB),
1JK22(XB,NB) ,G(¥B,NB) ,B(NB,NB)

REAL JK31(NT,NB),JK32(NT,NB)

REAL JK41(NT,NB),JK42(NT,NB)

REAL JK51(NB,NB),JK52(NB,NB)

REAL JKEM(NMM,NNBB),IM(NNBB1,NNBB1),NY(NLINES)

REAL CONM(NMM),CONMM(NMM),CON1(NNBB1),CON2(NNBB1)

REAL ESTIM(NNBB1,NNBB1)

REAL PLC(NT),QLC(NT),PNC(NB),QNC(NB)

REAL VM(NB),ZM(NMM) ,WMM(NMM,NMM) , CONMMM (NMM)

REAL NDR,bm

REAL A(K),C(N),AVE(NM), SIG(NM), SIGOAVE(NM), CONNN1(NM,N)
REAL CONNN2(NM,N),CONNN3(NM,N),WGH(NM) ,AVED(NM,2) ,ATNP (M)
REAL SMALL
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REAL CONNN1O(NM,2),CONNN20(NM,2),CONNN30O(NM,2),CONNNI(NM)
REAL SIGO(NM,2),SIGOAVEO(NM,2),SIGTAVED(NM,2)

REAL SIGtAVE(NM), sigsave(nm)

REAL JCT(NCASE),JMT{(NCASE),JCM(NCASE)

REAL AJCT(NCASE),AJMT(NCASE) ,AJCM(NCASE)

REAL SUT(NCASE) ,SUM(NCASE),SUC(NCASE)

INTEGER AM(NMM),CTI(NCASE),MTI(NCASE),CMI(NCASE)

¢ DFM: DIMENSION OF FM MATRIX, EQUAL TO THE NUMBER OF UNKNOWNS IN
c THE LCOAD FLOW PROGRAM, DFM = NB + NL -1

REAL CON(NM),JKE(NM,NNBB1i),JKET(NNBB1,NM)

REAL AESTIM(NNBB1,NM),WM(NM,NM)

REAL JKED(NNBB,NNBB),COND(NNBB),JKEI(5,NNBB),CONI(E)
REAL SENW(5,NNBB),CONIP(5),JKEDI(NNBB,NNBB)

REAL JI(NM,NNBB1),JIJ(NM,NM),SB(NM),NOMLC(NM)

DATA WMN/3/

DATA VT(1),DT(1)/1.06,0.0/

a

Cokkskok ok skokok skokok ok skofeokokokokokskokok 144 ke sk sk ok ok ok sk ke ke o o ek e ok e ek ek e sk o e e kol koK ks ok
c THIS IS INSTRUMENTATION CONFIGURATION 14-4 FOR 14-BUS SYSTEM.

C FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

C AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

c MEASUREMENTS.

€ 3 3k 3k 3k ok ok ok ok ok ok ok ok ok 3k 3k 3k ke ke 3k 3 3k ok ke oK oK 9k oK 3K oK ok ok o ok 3k 2k ok 3k ok ok ke b ke ok ok 3k 3k 3k 3k k 3k 2k ok ok o ok ke 3 ok ok ke ke 3k ok 3k ok ok ok

DATA (4M(I),I=1,14)/0,1,0,0,0,2,0,0,0,0,1,0,0,1/
DATA (AM(I),I=15,28)/0,1,0,0,0,2,0,0,0,0,1,0,0,1/
DATA (AM(I),I=29,68)/1,1,0,1,2,1,1,0,3,0,1,0,2,1,0,0,1,2,0,1,
10,1,0,0,2,1,1,0,2,0,1,2,0,1,0,1,0,1,2,2/
DATA (AM(I),I=69,108)/1,1,0,1,2,1,1,0,3,0,1,0,2,1,0,0,1,2,0,1,
10,1,0,0,2,1,1,0,2,0,1,2,0,1,0,1,0,1,2,2/
DATA (AM(I),I=109,122)/0,1,0,0,0,2,0,0,0,0,0,0,0,0/
(0 %k 3k 3k 3k 3k 3k 3k 3 3k 3k 3k 3k 3k 3¢ 3k 3k 3k 3k 3K 3k ok 3k 2k ok 3K 3k ok 3k 3 K ok 3k 3k 3k Sk 3k ok 3k 3K e 3k e ok ok 3k 3k k6 e ok ok Sk Sk 3k S o 3k 3k 3k ok 3k ok ok ok K ok %k

Cokeok ok skak ke sk sk skok sk ok sk skok ok ok kokokokok: 14-B ke ok ke ke o sk ok o o o sk ok sk ok sk ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok o o ok ok
C THIS IS INSTRUMENTATION CONFIGURATION 14-B FOR 14-BUS SYSTEM.

c FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

C AVALTABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

C MEASUREMENTS.

G ke ke ke ke o ok ok ok sk ok ok sk sk ok 3k ok ok 3k sk sk ok 3k ok 3K 3k ok ke ke f ok sk ok ke 3 e ke ok e ke ke ke ok sk ke sk a3k sk ok ok ok oK ok ok ok 3k 3k ok ok sk ke ok sk ok ok ke e
c
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c THESE DATA STATEMENTS ARE FOR 14-BUS SYSTEM

c DATA (AM(I),I=1,14)/0,0,1,0,0,4,0,0,1,2,0,0,0,0/

c DATA (AM(I),I=15,28)/0,0,1,0,0,4,0,0,1,2,0,0,0,0/

c DATA (AM(I),I=29,68)/1,1,3,1,1,2,1,0,1,0,4,0,1,0,0,3,3,0,0,1,

c 10,1,0,2,0,1,1,0,1,2,1,0,0,0,2,1,0,0,1,4/

c DATA (AM(I),I=69,108)/1,1,3,1,1,2,1, ,0,0,1,0,1,1,0,3,3,0,0,1,
c 10,1,0,2,0,1,1,0,1,2,1,0,0,0,2,1,0,0,1,4/

c DATA (AM(I),I=109,122)/0,0,1,0,0,4,0,0,1,1,0,0,0,0/

Ckokakakk sk sk ok kak skokokskskokokskokdkokokok ok 14-C ke ek o ok o ok ok ok o ok ke ok ok o skl ok ok ok ook o ok sk stk ok ke ok ook ok
c THIS IS INSTRUMENTATION CONFIGURATION 14-C FOR 14-BUS SYSTEM.

c FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

c AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

c MEASUREMENTS.

(C 2% ok 5k 3k 3k 5k 3k 3k 3k 3 3k 3k 3 3k 3k ok 5k 3K 3k 3k ok 3k k¢ 3k 3k 3k o ok 3k 9k 2K 3k 3k a2k o 3 2k 3k ke ke 3k 2k ok ok ok 3k 3k 3k 3k dk ok 3 ok e 3k ke ok ke ok ok 3k 3k ok ok ok ok sk ok

THESE DATA STATEMENTS ARE FOR 14-BUS SYSTEM

DATA (AM(I),I=1,14)/0,1,0,0,4,1,0,1,2,0,0,0,1,0/
DATA (AM(I),I=15,28)/0,1,0,0,4,1,0,1,2,0,0,0,1,0/

DATA (AM(I),I=29,68)/i,1,1,1,1,0,1 0,0,0,4,0,1,0,1,0,0,0,3,
11,0,0,0,1,3,0,1,0,1,0,1,0,0,4,1,0,2,0,1/

DATA (AM(I),I=69,108)/0,3,1,1,1,1,2,1,0,0,0,4,0,1,0,1,0,0,0,3,
11,0,0,0,1,3,0,1,0,1,0,1,0,0,4,1,0,2,0,1/

DATA (AM(I),I=109,122)/1,0,0,0,4,1,0,1,2,0,0,0,1,0/

(ke o sk 3k ke ok o 3Kk 6 ko ke o ok ook 6 ko o sk sk ok sk sk ok o ok sk ok ook sk sk ke ok sk sk sk sk 3 o sk o ok ok ook o ok o sk sk sk sk ke ok o s ook

1
1

O 0 0000 0 Qa0

(G 2k %k ok 3k 3k 3k ok 3k 3k 2k 3k 3k ok 2k ok 2k 3k ok 3k 2k ok Ak ok 3k 14-D % 3k 3k 2k 3k 3k 3k 3k 3k 3k K 3k 3k o 3k 3k 2k 3k 3k 3k S Ak ok 2k 3k A ke sk K sk ok sk ok sk ok
c THIS IS INSTRUMENTATION CONFIGURATION 14-D FOR 14-BUS SYSTEM.

c FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

c AVALTABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

c MEASUREMENTS .
C*********************************************************************
c

c THESE DATA STATEMENTS ARE FOR 14-BUS SYSTEM

c DATA (AM(I),I=1,14)/0,0,1,0,0,1,0,0,0,1,0,0,0,1/

c DATA (AM(I),I=15,28)/0,0,1,0,0,1,0,0,0,2,0,0,0,1/

c DATA (AM(I),I=29,68)/4,1,2,1,1,2,0,0,1,1,0,3,0,0,2,4,1,0,0,0,
c 12,0,1,0,2,1,3,0,0,1,1,0,1,0,3,0,2,0,4,1/

c DATA (AM(I),I=69,108)/4,0,2,1,1,2,0,1,1,1,0,3,0,0,2,4,1,0,0,0,
c 12,0,1,0,2,0,3,1,0,1,1,0,1,0,3,0,2,0,4,1/

c DATA (AM(I),I=109,122)/0,0,0,1,0,0,3,0,0,0,2,0,0,1/

(C 2k 3k 2 3k ok 2k ok 3k ok k ok 3k 2k ok 3k ok ok 9k 3k 3k 3k ok 2k akake sk ok ok 3k 3k ke 3k 2k ok 2k e ok 3k ok ok ok o 2k Sk 3k ok e 3k 3k 2k ok ok 3k ke ok Ak 2k ko e 3k e ok ok ok ok ok kK

Cokoskokskokskokokok ok akok sk ok okskokskok sk ok ok kok 14~F ok ok sk o oo sk ok o ok ko ak ok o e o oe ok ok ke ok o o o sk sk ok sk sk o ke ok ok
C THIS IS INSTRUMENTATION CONFIGURATION 14-E FOR 14-BUS SYSTEM.

¢ FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

C AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

c MEASUREMENTS.
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€3k sk ke ke 3k e 3k e 3 3k ok 2k 3k ok e ok o sk o e ok ke sk o ke ke 3k ok ok o ke s ok sk sk ke ke o e o ok g ke 3k Sk ok ok 3k e o ke ok 3K ok 3 3k o ok ok ok o ke ok o ok sk o

THESE DATA STATEMENTS ARE FOR 14-BUS SYSTEM

DATA (AM(I),I=1,14)/0,1,2,0,3,0,0,4,0,0,0,2,0,1/

DATA (AM(I),I=15,28)/0,1,2,0,3,0,0,4,0,0,0,2,0,1/

DATA (AM(I),I=29,68)/0,2,1,1,4,1,0,2,0,0,1,3,0,1,2,0,4,0,3,0,
11,1,0,0,2,2,3,0,0,4,0,0,0,0,3,0,0,2,1,0/

DATA (AM(I),I=68,108)/0,2,1,1,4,1,0,2,0,0,1,3,0,1,2,0,4,0,3,0,
11,1,0,0,2,2,3,0,0,4,0,0,0,0,3,0,0,2,1,0/

DATA (AM(I),I=109,122)/1,0,2,0,3,0,0,4,0,0,0,2,0,1/

(C 2k 3k 3k ok ok ok 3k 3K 9k 3k 3k 3 3¢ 3k 3K 3k 3 3k 3K ok 3 3k 3k ok sk 24 3¢ o ok 3k e 3k 3k 3k sk ke 3k k¢ 3 3K 3k 3k 3k 3k 3k 3k K o 3 3K e S e ok o Ak 3 3k 3k k¢ 3¢ ok ok ok ok 3k ok 3k 3k

O o0 000 00 00

Cokokakakokskokok ok koo ok skok ook sk sk sk kk ok ok 14—F e sk sk ok ok ok sk ok ke o ok sk ok sk ok ke ok o ook sk ok ok s e o ok ok ke ok ok 3K oK
C THIS IS INSTRUMENTATION CONFIGURATION 14-A FOR 14-BUS SYSTEM.

c FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

c AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

c MEASUREMENTS.

3k sk ke 2k 3k ke ok o ke ok ek 3k 3 3k ko o o ok 2ok o sk ok e o sk ok ok ke sk ok 3k ok 3 3 ok 3 ok ok 9 3k 3k 3K 3 3k 3k 3 3 3 3k 3K 3 ok ke ok o o o ok ok ok ke o ok ok o

DATA (AM(I),I=1,14)/3,0,0,2,3,1,0,1,0,4,0,0,0,1/

DATA (AM(I),I=15,28)/3,0,0,2,3,1,0,1,0,4,0,0,0,1/

DATA (aM(I),I=29,68)/0,0,2,1,0,1,3,0,1,1,0,1,0,4,0,1,1,0,0,0,
10,3,0,2,2,0,0,1,0,4,0,3,1,0,0,2,1,0,1,0/

DATA (AM(I),I=69,108)/0,0,2,9,0,1,3,0,1,1,0,1,0,4,0,0,1,0,0,0,
10,3,0,2,2,0,0,1,0,4,0,3,1,0,0,2,0,0,1,0/

DATA (4M(I),I=109,122)/3,0,0,2,3,1,1,1,0,4,0,2,0,1/
C***********************************************************************

O 0 0 00 o000

Cokskokskokkokokdkok ok okkkokokokokkkkk ok 14~G ke 3k kb o ok ok ok ok o ok ko ok ok ook s sk k ok s sk ok Kok ok K ok ok ok oK oK
c THIS IS INSTRUMENTATION CONFIGURATION 14-G FOR 14-BUS SYSTEM.

c FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

c AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

C MEASUREMENTS.

3k 3k 3k ok ok e 3 o o o ok ke ke sk e ok oK 3k 3k 3k ak ke ok ke sk ok o ok ok 3k 3 ok 3k 3k sk 3k 3k o ke ke ke 3 3 5K 3K 3k 3k 3 o ok o ok oKk ok ke ke ke sk ok oK 3K 3k 3K 3k ok

THESE DATA STATEMENTS ARE FOR 14-BUS SYSTEM

DATA (AM(I),I=1,14)/0,0,2,0,3,0,0,4,0,0,1,1,0,2/

DATA (AM(I),I=15,28)/0,0,2,0,3,0,0,4,0,1,0,1,0,2/

DATA (AM(I),I=29,68)/0,1,1,0,3,2,1,1,0,4,1,1,0,2,1,0,3,2,0,0,
12,0,3,0,0,4,0,0,2,1,0,1,1,1,0,4,0,1,1,0/

DATA (AM(I),I=69,108)/0,1,1,0,3,2,0,0,0,4,1,0,0,2,1,0,3,2,0,0,
12,0,3,0,0,4,0,0,2,0,0,1,0,1,0,4,0,0,1,0/

DATA (AM(T),I=109,122)/0,0,2,0,3,0,0,4,0,1,1,0,0,2/
C**********************************************************************

aO 0o o0 0000 a0

Cokakokokakskskskskskkokdokskokskokkokokkkk 14-G 3 ke e o 3k kK ok sk sk o o ok sk ke sk sk ok ok ok ok ok o o o ko o sk ok o
C THIS IS INSTRUMENTATION CONFIGURATION 14-G FOR 14-BUS SYSTEM.
C FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE
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c AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE
c MEASUREMENTS.
(C ks ok e ok o o ok ok ok o o s o i ok ok k ko o o ook ok ok ok oo s ook s sk sk ok ok o ok ke o ke o o ok sk o o o o ke sk sk o o ok sk ok Sk o ok 3k

C
c DATA (AM(I),I=1,14)/0,1,0,0,0,1,0,0,0,0,0,0,0,0/

c DATA (AM(I),I=15,28)/0,1,0,0,0,1,0,0,0,0,0,0,0,0/
c DATA (AM(I),I=29,68)/1,2,0,1,2,1,1,0,2,0,1,2,2,1,0,0,1,2,1,1,
c 10,1,0,0,2,1,1,0,2,0,1,2,0,1,0,1,0,1,2,2/

c DATA (AM(I),I=69,108)/1,2,0,1,2,1,1,0,2,0,1,2,2,1,0,0,1,2,1,1,
c 10,1,0,0,2,1,1,0,2,0,1,2,0,1,0,1,0,1,2,2/

c DATA (AM(T),I=109,122)/0,1,0,0,0,1,0,0,0,0,0,0,0,0/

Cokskakak sk skokok ko skokok ki ok skokkkkokk  30—4 s ek e e e ook sk ok ook ok ko ke sk ke ek ek
c THIS IS INSTRUMENTATION CONFIGURATION 30-A FOR 14-BUS SYSTEM.

C FOLLOWING DATA STATEMENTS SPECIFY WHICH MEASUREMENTS ARE

c AVALIABLE AND SPECIFY THE ACCURACY CATEGORY OF EACH AVALIABLE

C MEASUREMENTS.

(C 3k ok ok 2k ok 3 ok 2k sk 2k ok b 2k sk ke dkeak ok ok 2k ok ok ok 2k ok ke ke 3k 2k ok ke ke 3 3 ak ok 3 ke ok ke ok ok ok ak ak ok ok k¢ sk sk ok 3k o ke ok 3 ke 3k o ek ok 3k ok ok e 3k ok %k

DATA (AM(I),I=1,30)/0,2,0,0,3,0,0,0,1,2,0,4,1,2,0,0,2,1,0,0,
10,4,1,0,0,0,1,0,3,1/ R

DATA (AM(I),I=31,60)/0,2,0,0,3,0,0,0,1,2,0,4,1,2,0,0,2,1,0,0,
10,4,1,0,0,0,1,0,3,1/

DATA (AM(I),I=61,101)/0,0,1,},2,1,0, ,1,2,0,1,0,0,2,1,4,0,3,0,
10,2,0,3,1,1,1,0,3,1,2,1,0,4,0,1,1,1,3,1,0/

DATA (AM(I),I=102,142)/0,0,0,1,1 ,1, ,1,2,0,1,0,2,0,4,0,0,2,0,1,
10,0,0,3,2,1,0,1,1,0,3,1,2,0,1,1,1,1,0,0,0/

DATA (AM(I),I=143,183)/1,0,1,1,2,0,0,0,1,2,0,0,0,0,0,1,4,0,3,0,
10,2,0,3,1,1,1,0,3,0,2,1,0,4,0,0,1,0,3,1,0/

DATA (AM(I),I=184,224)/1,4,0,0,1,1,0,0,2,0,1,0,2,0,4,0,1,2,0,1,
10,0,0,3,2,1,0,1,0,0,3,0,2,0,0,1,0,1,0,0,0/

DATA (AM(I),I=225,254)/1,2,0,0,3,1,0,0,1,2,0,4,1,2,1,0,2,0,1,0,
10,4,1,0,0,2,0,0,3,1/

(C 3k 5k 5k 2k 3k 3 3K 2k 3K 3K 3 3K 3 3k %k 3 3K 3 A %k %k 3k 3% 3k ok 2k ok 3k 3k 2k 2k 3k 3 2k 3k ke ok 2k 3k 2k 3k 2k 2k 2k ok sk 3k 3k 3k 3k 3k 3k 3k sk ok e ok 3k Ak A vk 3k ke 3k o 3k ok ok Aok ok 3
DATA NR,FJM,MFJIM/1,0,0/

22,
1

O 0 0 0 00000000000

DOUBLE PRECISION RAN
OPEN(15,FILE=’W14B.DAT’ ,STATUS=’0LD?)

c OPEN(15,FILE=’"W30c.DAT’ ,STATUS=’0LD?)
OPEN(50,FILE=>5.DAT’ ,STATUS=>NEW’)

C THIS READS IN THE SYSTEM DATA FROM DATA FILE



CALL SYSDATA(NB,NLINES,G,B,NT,K1i,MTOBO+PSP,QSP,VSP,SP,
1YC,ZLINE,K2)

10 CONTINUE

Po 20 I = 1,NB

VI(I) = VT(1)

DT(I) = DT(1)
20 CONTINTE

IF(K1.EQ.NB)GO TO 40
DO 30 I=K2,NB
VT(I) = VSP(I)

30 CONTINUE

40 CONTINUE

C LOAD FLOW CALCULATION TO ESTABLISH THE TRUE VALUES OF STATE
c VARIABLES.
CALL FRANK(NB,NL,NNBB,K1,KMAX,CRIT,P,PSP,Q,QSP,VT,
iDT,CONN,G,B,JK11,JK12,JK21 »JK22,FM,DFM,FIM,MFIM,NR,1)

C IR IS A SEED TO GENERATE RANDOM NUMBERS.
IR=2043

c BAD DATA POINTS SELECTION
INN=0
IN=0
TINN=0
444  TINN=IINN+1
IF(AM(TINN).EQ.0)GD TO 444
IIN=AM(IINN)
AM(TINN)=4+AM(IINN)
IN=IN+i
PRINT OUT THE INFORMATION OF WHICH MEASUREMENTS ARE
AVALTABLE AND WHAT ARE THE ACCURACY CATEGORY OF
THE AVAILABLE MEASUREMENTS.
PRINT OUT THE INFORMATION OF WHICH MEASUREMENTS ARE
AVALTABLE AND WHAT ARE THE ACCURACY CATEGORY OF
THE AVAILABLE MEASUREMENTS.

QOO0

c WRITE(50,960) (AM(I) ,I=1,NB)
c 960 FORMAT(® P(I):?,1411)
c WRITE(50,961) (AM(TI+NB),I=1,NB)
¢ 961 FORMAT(® Q(I):7,1411)

WRITE(50,965) (AM(I+NNBB),I=1,NT)

(g}
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c 965 FORMAT(® PL(I):?,40I1) .
c WRITE(50,966) (AM(I+NNBB+NT),I=1,NT)
c 966 FORMAT(® QL(I):?,40I1)
c WRITE(50,967) (AM(I+NNBB+NT+NT),I=1,NB)
c 967 FORMAT(® V(I):?,1411)
¢ 998 CONTINUE
¢ THIS GENERATES SIMULATED MEASUREMENTS OF A SYSTEM
CALL MGB(AM,NUDR,VM,VT,DT,E,MTOBO,NT,NB,ST,
1ZLINE,YC,NLINES,PLM,QLM,PLT,QLT,PNM,QNM,P,qQ,NDR, NMM, NNBB,
1ERR1,ERR2,FERR1,FERR2, IR,nbb)
C THIS CALCULATE THE WEIGHTING MATRIX WMM
CALL WMGP(AM,WMM,NMM,PNM,QNM,PLM,QLM, VM, B, NNBB,NT,
c 1ERR1,ERR2,FERR1,FERR2, WMN)
KK=0.0
IF(KK.ER.0.0) GO TO 555
c THIS GENERATES PERTURBED MEASUREMENTS OF A SYSTEM

666 CALL MGBP(4M,NUDR,VM,VT,DT,E,MTOBO,NT,NB,ST,
1ZLINE,YC,NLINES,PLM,QLM,PLT,QLT,PNM,QNM,P,Q,NDR,NMM,NNBB,
1ERR1,ERR2,FERR1,FERR2, IR ,nbb)

C THIS IS CALCULATION OF PSSEP
CALL PSSEP(V,D,NLINES,NY,YC,AM,WMM,NMM,PNM,QNM,PLM,QLY,
1VM,NB,NNBB,NT,ERR1,ERR2,FERR1 ,FERR2,WMN ,PNC,QNC,PLC,QLC,B,G,
iMTOBO,E,ST,ZLINE,JK11,JK12,JK21,JK22,JK31,JK32, JK41,
1JK42,JK51,JK52, JKEM, JKE, CON ,CONM, WM, JKET,NNBB1,
1AESTIM,ESTIM,CON1,IM,CON2,ITEST,CRIT,NM,KMAX,NB1)
THIS IS THE END OF THE PSEEP

555 CONTINUE
IF(XKK.GT.0.0) GO TO 556

c THIS IS CALCULATION OF PSSE
CALL PSSE(V,D,NLINES,NY,YC,AM,WMM,NMM,PNM,QNM,PLY,QLM,
iVM,NB,NNBB,NT,ERR1,ERR2,FERR1 ,FERR2,WMN,PNC,QNC,PLC,QLC,B,G,
iMTOBO,E,ST,ZLINE,JXK11,JK12,JK21,JK22,JK31,JK32,JK41,
1JK42,JK51,JK52, JKEM, JKE, CON, CONM , WM, JKET,NNBB1,
1AESTIM,ESTIM,CON1,IM,CON2,ITEST,CRIT,NM,KMAX,NB1)
c THIS IS THE END OF THE PSEE
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556 CONTINUE

C CALCULATING THE FACTORS OF NORMALIZED AND WEIGHTED RESIDUALS
CALL RESDFCT(JKE,NM,IM,NNBBi,JI,JKET,JIJ,WM,SB,NOMLC,WGH)

c CALCULATING THE PLAIN, WEIGHTED AND NORMLIZED RESIDUARLS AND
STORING PERTURBED THE PLAIN, WEIGHTED AND NORMLIZED RESIDUARL
c VECTORS

KK=KK+1

DO 667 I=1,WM

CONNN1 (I,KK)=CON(TI)

CONNN2(I,KK)=WGH(I)*CON(I)

CONNN3(I,KK)=NOMLC(I)*CON(I)

Q

667 CONTINUE

c WHEN FOLLOWING STATEMTNT IS USED, ONLY THE ORDERS OF PLAIN, WEIGHTED
C AND NORMALIZED RESIDUALS WILL BE GIVEN IN FORROWING THREE CALL STATEMENT
IF(KK.GT.1)GOD TO 999

c MAKING THE ORDERS OF THE PLAIN, WEIGHTED
C AND NORMALIZED RESIDUALS
CALL SORTGREAT(CONNN1,CONNN10,NM)
CALL SORTGREAT (CONNN2,CONNN20,NM)
CALL SORTGREAT(CONNN3,CONNN3D,NM)

c WHEN PSSEPF IS USED
998 IF(XKK.LT.N) GO TO 666

CALCULATING THE AVERAGES OF PLAIN RESIDUALS

CALCULATING THE STANDARD DEVIATION OF THE PLAIN RESIDUALS
CALCULATING THE SIGMA OVER THE AVERAGE OF THE PLAIN RESIDUALS
CALCULATING THE SIGMA TIMES THE AVERAGE OF THE PLAIN RESIDUALS
CALL INDCAL(CONNN1,NM,N,A,AVEI,SIGI,AVE,SIG,SIGOAVE,SIGtAVE)

aaoaan

MAKING THE ORDERS OF PLAIN RESIDUALS, THE AVERAGES OF PLAIN
RESIDUALS, THE STANDARD DEVIATION OF THE PLAIN RESIDUALS
THE SIGMA OVER THE AVERAGE OF THE PLAIN RESIDUALS

THE SIGMA TIMES THE AVERAGE OF THE PLAIN RESIDUALS

CALL SORTGREAT(AVE,AVED,NM)

CALL SORTGREAT(SIG,SIGO,NM)

CALL SORT(SIGOAVE,SIGOAVED,NM)

Qa0
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CALL SORTGREAT(SIGtAVE,SIGtAVEOD,NM) -

PRINTING PLAIN RESIDUALS, THE AVERAGES OF PLAIN
RESIDUALS, THE STANDARD DEVIATION OF THE PLAIN RESIDUALS
THE SIGMA OVER THE AVERAGE OF THE PLAIN RESIDUALS
THE SIGMA TIMES THE AVERAGE OF THE PLAIN RESIDUALS
WRITE(50,981) (I,CONNN10(I,1),CONNN1O(I,2),AVED(I,1),AVED(I,2),
1S160(I,1),SI160(I,2),SIGOAVED(I,1),SIGOAVED(I,2),
1SIGtAVED(I,1),SIGtAVED(I,2),I=1,10)

0O 0 0 O0O0O0a0n

PRINTING THE LARGEST OR SMALLEST PLAIN RESIDUALS,

THE AVERAGES OF PLAIN RESIDUALS, THE STANDARD

DEVIATION OF THE PLAIN RESIDUALS

THE SIGMA OVER THE AVERAGE OF THE PLAIN RESIDUALS

THE SIGMA TIMES THE AVERAGE OF THE PLAIN RESIDUALS

WRITE(50,981) (IN,CONNN10(1,1),CONNN10(1,2),AVED(1,1),AVED(1,2),
1s160(1,1),5160(1,2) ,SIGOAVED(L,1),SIGDAVED(1,2),
1SIGtAVED(1,1),SIGHAVED(1,2))

a

O 0 0 OO0

981  FORMAT(4X,I3,1X,F4.0,1x,F8.4,1X,F4.0,1x,F8.4,1X,F4.0,1x,F8.4,
11X,F4.0,1x,F8.4,1X,F4.0,1x,F8.4)

CALCULATING THE AVERAGES OF WEIGHTD RESIDUALS

CALCULATING THE STANDARD DEVIATION OF THE WEIGHTED RESIDUALS
CALCULATING THE SIGMA OVER THE AVERAGE THE WEIGHTED RESIDUALS
CALCULATING THE SIGMA TIME THE AVERAGE THE WEIGHTED RESIDUALS
CALL INDCAL(CONNN2,NM,N,A,AVEI,SIGI,AVE,SIG,SIGOAVE,SIGtAVE)

Q00

MAKING THE ORDERS OF WEIGHTED RESIDUALS, THE AVERAGES OF WEIGHTED
RESIDUALS, THE STANDARD DEVIATION OF THE WEIGHTED RESIDUALS

THE SIGMA OVER THE AVERAGE OF THE WEIGHTED RESIDUALS

THE SIGMA TIMES THE AVERAGE OF THE WEIGHTED RESIDUALS

CALL SORTGREAT(Ave,AVED,NM)

CALL SORTGREAT(SIG,SIGO,NM)

CALL SORT(SIGOAVE,SIGDAVED,NM)

CALL SORTGREAT(SIGtAVE,SIGtAVED,NM)

QOO0

PRINTING WEIGHTED RESIDUALS, THE AVERAGES OF WEIGHTED
RESIDUALS, THE STANDARD DEVIATION OF THE WEIGHTED RESIDUALS
THE SIGMA OVER THE AVERAGE OF THE WEIGHTED RESIDUALS

THE SIGMA TIMES THE AVERAGE OF THE WEIGHTED RESIDUALS
WRITE(50,981) (I,CONNN26G(I,1),CONNN20(I,2),AVED(I,1),AVED(T,2),

OO0
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1s8160(1,1),S160(I,2),SIGDAVEC(I,1),SIGBAVED(T,2),
1SIGtAVEO(I,1),SIGtAVED(T,2),I=1,10)

PRINTING THE LARGEST OR SMALLEST WEIGHTED RESIDUALS,
THE AVERAGES OF WEIGHTED RESIDUALS, THE STANDARD
DEVIATION OF THE WEIGHTED RESIDUALS
THE SIGMA OVER THE AVERAGE OF THE WEIGHTED RESIDUALS
THE SIGMA TIMES THE AVERAGE OF THE WEIGHTED RESIDUALS
WRITE(50,981) (IN,CONNN20(1,1),CONNN20(1,2),AVEOD(1,1),AVED(1,2),
15160(1,1),SI6G0(1,2),SIGOAVED(1,1),SIGOAVED(1,2),
1SIGtAVEO(1,1),SIGLAVED(1,2))

QOO0

CALCULATING THE AVERAGES OF THE NORMLIZED RESIDUALS
CALCULATING THE STANDARD DEVIATION OF THE NORMLIZED RESIDUALS
CALCULATING THE SIGMA OVER THE AVERAGE THE NORMLIZED RESIDUALS
CALCULATING THE SIGMA TIME THE AVERAGE THE NORMLIZED RESIDUALS
CALL INDCAL(CONNN3,NM,N,A,AVEI,SIGI,AVE,SIG,SIGOAVE,SIGtAVE)

QOO

a

MAKING THE ORDERS OF NORMALIZED RESIDUALS, THE AVERAGES OF
THE AVERAGES OF NORMALIZED RESIDUALS, THE STANDARD DEVIATION
OF THE NORMALIZED RESIDUALS, THE SIGMA OVER THE AVERAGE
OF THE NORMALIZED RESIDUALS,
THE SIGMA TIMES THE AVERAGE OF THE NORMALIZED RESIDUALS
CALL SORTGREAT(Ave,AVED,NM)

CALL SORTGREAT(SIG,SIGOD,NM)

CALL SORT(SIGOAVE,SIGDAVED,NM)

CALL SORTGREAT(SIGtAVE,SIGtAVED,NM)

OO0

PRINTING NORMALIZED RESIDUALS, THE AVERAGES OF

THE AVERAGES OF NORMALIZED RESIDUALS, THE STANDARD DEVIATION

OF THE NORMALIZED RESIDUALS, THE SIGMA OVER THE AVERAGE

OF THE NORMALIZED RESIDUALS,

THE SIGHMA TIMES THE AVERAGE OF THE NORMALIZED RESIDUALS

WRITE(50,981) (I,CONNN30(I,1),CONNN30(I,2),AVED(I,1),
1AVEO(I,2),SI60(I,1),SIG0(I,2),SIGOAVEO(I,1),SIGOAVED(TI,2),
1SIGtAVEO(I,1),SIGtAVED(I,2),I=1,nm)

QOO0

PRINTING THE LARGEST OR SMALLEST NORMALIZED RESIDUALS, THE AVERAGES OF
THE AVERAGES OF NORMALIZED RESIDUALS, THE STANDARD DEVIATION

OF THE NORMALIZED RESIDUALS, THE SIGMA OVER THE AVERAGE

OF THE NORMALIZED RESIDUALS,

THE SIGMA TIMES THE AVFRAGE OF THE NORMALIZED RESIDUALS

WRITE(50,981) (IN,CONNN30(1,1) ,CONNN30(1,2) ,AVED(1,1),AVED(1,2),

QOO0
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c

1s160(1,1),S160(1,2) ,SIGDAVED(1,1),SIGOAVED(1,2),
1SIGtAVEO(1,1) ,SIGtAVED(1,2))

BAD DATA POINTS SELECTION
AM(IINN)=IIN
IF(IINN.LT.122) GO TO 444

888 STOP
END
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SUBROUTINE WMGP (AM,WMM,NMM,PNM,QNM,PLM,QLM,VM,NB,NNBB,NT,

1ERR1,ERR2,FERR1,FERR2,WHN)
Cakeskeokote e ek o ook ko ok sk sk ok ok ok ok sk ok o o ke o sk sk e s sk ok sk o sk e ofe o sk ok o o o o o ok ok sl o sk ok sk o s s sk o e sk e e e ke sk ke o ke ok

THIS SUBROUTINE IS USED TO PRODUCE THE WEIGHTING MATRIX.
THE SUBROUTINE SHOwmgWN HERE IS TO CREAT WEIGHTING MATRIX ${\bf WU}$.

PARAMETERS PASSED:
AM = ARRAY OF INDICES SPECIFYING WHETHER CORRESPONDING MEASUREMENTS
ARE AVALIABLE OR NOT AND SPECIFY THEIR ACCURACY CATEGORIES

NMM = NUMBER OF SYSTEM VARIABLES (= NNBB + 2 X NT + NB)
PNM = ARRAY OF SIMULATED NODAL REAL POWER INJECTIONS
QNM = ARRAY OF SIMULATED NODAL REACTIVE POWER INJECTIONS
PLM = ARRAY OF SIMULATED REAL POWER POWER FLOWS

QLM = ARRAY OF SIMULATED REACTIVE POWER FLOWS

VM = ARRAY OF SIMULATED MAGNITUDES OF NODAL VOLTAGES
NB = KNUMBER OF BUSES

NNBB = 2 X NB

NT = 2 X NLINES s

ERR1 = ERROR PROPORTIONAL TO MEASUREMENTS FOR VOLTAGE MEASUREMENTS
ERR2 = ERROR PROPORTIONAL TO MEASUREMENTS FOR OTHER MEASUREMENTS

FERR1 = FIXED ERROR FOR VQLTAGE MEASUREMENTS
FERR2 = FIXED ERROR OTHER MEASUREMENTS

PARAMETERS RETURNED:
WMG = WEIGHTING MATRIX USED IN PSSE

CALLED BY:
MAIN PROGRAM

CALLS:
NONE

oo a0a00a0a00a000a0 a0 nan

C ok % 3k sk 3 ok ke ok 3k o 3k ok ok sk ok o ok 9k s sk ok ok ok Sk ok sk ok ok o 3k ok 3k ok o ke ke ke ke ok ok ke ke 3k ok o o ok 3k ok ke sk o ok ke 3k ok 3 ke ok o 3k oK oK

REAL WHM(NMM,NMM) ,PNM(NB) ,QNM(NB) ,PLM(NT),QLM(NT) ,VHM(NB)
INTEGER AM(NMM) ,WMN

DD 800 I=1,NMM
DO 800 J=1,NMM
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WMM(I,J)=0.0
800 CONTINUE

IF (WMN.EQ.1) GO TO 100
IF (WMN.EQ.12) GO TO 500

DO 32 I=1,NB
IF (AM(I).EQ.0) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.1) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.2) THEN
ERR=2%ERR2

FERR=2%FERR2

ELSE IF (AM(I).EQ.3) THEN
ERR=3*ERR2

FERR=3%FERR2

ELSE IF (AM(I).EQ.4) THEN .
ERR=4*ERR2

FERR=4*FERR2

ELSE IF (AM(I).EQ.5) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.6) THEN
SIG=2%ERR2

FERR=2%FERR2

ELSE IF (AM(I).EQ.7) THEN
SIG=3*ERR2

FERR=3%FERR2

ELSE

SIG=4%ERR2

FERR=4*FERR2

ENDIF

C=(1/(ABS(PNM(I))*ERR+FERR))
CC=(ABS(PNM(I)))

IF (WMN.EQ.2) THEN
WMM(I,I)=C

ELSE IF (WMN.EQ.3) THEN
WMM(I,I)=CxC

ELSE IF (WMN.EQ.4) THEN
WMM(I,I)=C*C*CC



ELSE IF (WMN.EQ.5) THEN
WMM(I,I)=C*C*CC*CC
ELSE IF (WMN.EQ.6) THEN
WMM(I,I)=C*CC

ELSE IF (WMN.EQ.7) THEN
WMM(I,I)=C*CC*CC

ELSE IF (WMN.EQ.8) THEN
WMM(I,I)=C/(CC*CC)

ELSE IF (WMN.EQ.9) THEN
WMM(I,I)=C*C/(CC*CC)
ELSE IF (WMN.EQ.10) THEN
WMM(I,I)=Cc/CC

ELSE

WMHM(I,I)=C*C/CC

ENDIF

IF (AM(I+NB).EQ.0) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I+NB).EQ.1) THEN
ERR=ERR2 s
FERR=FERR2

ELSE IF (AM(I+NB).EQ.2) THEN
ERR=2%ERR2

FERR=2*FERR2

ELSE IF (AM(I+NB).EQ.3) THEN
ERR=3%ERR2

FERR=3*FERR2

ELSE IF (AM(I+NB).EQR.4) THEN
ERR=4%ERR2

FERR=4*FERR2

ELSE IF (AM(I+NB).EQ.5) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NB).EQ.6) THEN
SIG=2*ERR2

FERR=2*FERR2

ELSE IF (AM(I+NB).EQ.7) THEN
SIG=3*ERR2

FERR=3*FERR2

ELSE

SIG=4*ERR2

FERR=4*FERR2

ENDIF

D=(1/(ABS(QNM(I))*ERR+FERR))
DD=(ABS(QNM(I)))
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32

IF (WMN.EQ.2) THEN
WMM(I+NB,I+NB)=D

ELSE IF (WMN.EQR.3) THEN
WMM(I+NB,I+NB)=D*D

ELSE IF (WMN.EG.4) THEN
WMM (I+X¥B, I+NB)=D*D*DD
ELSE IF (WMN.EG.5) THEN
WHMM(I+NB, I+NB)=D*D*DD*DD
ELSE IF (WMN.EQ.6) THEN
WMM(I+NB,I+NB)=D*DD

ELSE IF (WMN.EQ.7) THEN
WMM(I+NB, I+NB)=D*DD*DD
ELSE IF (WMN.EQ.8) THEN
WMM(I+NB,I+NB)=D/(DD*DD)
ELSE IF (WMN.EQ.S) THEN
WMM(I+NB,I+NB)=D*D/(DD*DD)
ELSE IF (WMN.EQ.10) THEN
WMM(I+NB,I+NB)=D/DD

ELSE
WMM(I+NB,I+NB)=D*D/DD
ENDIF

CONTINUE
DO 34 I=1,NT

IF (AM(I+NNBB).EQ.0) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB).EQ.1) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB).EQ.2) THEN
ERR=2*ERR2

FERR=2*FERR2

ELSE IF (AM(I+NNBB).EQ.3) THEN
ERR=3%*ERR2

FERR=3*FERR2

ELSE IF (AM(I+NNBB).EQ.4) THEN
ERR=4*ERR2

FERR=4*FERR2

ELSE IF (AM(I+NNBB).EQ.5) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+N¥BB).EQ.6) THEN
SIG=2*ERR2

FERR=2*FERR2
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ELSE IF (AM(I+NNBB).EQ.7) THEN
SIG=3*ERR2

FERR=3*FERR2

ELSE

SIG=4*ERR2

FERR=4*FERR2

ENDIF

E=(1/(ABS(PLM(I))*ERR+FERR))
EE=(ABS(PLM(I)))

IF (WMN.EQ.2) THEHN
WMM(I+NNBB,I+NNBB)=E

ELSE IF (WHMN.EQ.3) THEN

WMM (I+NNBB,I+NNBB)=E*E

ELSE IF (WMN.EQ.4) THEN
WMM(I+NNBB,I+NNBB)=E+E*EE
ELSE IF (WMN.EQ.5) THEN .
WHMM(I+NNBB,I+NNBB)=E*E*EE*EE
ELSE IF (WMH.EQ.6) THEN

WMM (I+NNBB,I+NNBB)=EEE
ELSE IF (WMN.EQ.7) THEN

WHMM (I+NNBB,I+NNBB)=E*EE*EE
ELSE IF (WMN.EQ.8) THEN
WMM(I+NNBB,I+NNBB)=E/(EE*EE)
ELSE IF (WMN.EQ.9) THEHN

WMM (I+NNBB,I+NNBB)=E*E/(EE*EE)
ELSE IF (WMN.EQ.10) THEN
WMM(I+NNBB,I+NNBB)=E/EE
ELSE
WHMM(I+NNBB,I+NNBB)=E*E/EE
ENDIF

IF (AM(I+NNBB+NT).EG.0) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB+NT).EQ.1) THEN
ERR=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB+NT).EQ.2) THEN
ERR=2+ERR2

FERR=2*FERR2

ELSE IF (AM(I+NNBB+NT).EQ.3) THEN
ERR=3*ERR2

FERR=3*FERR2



ELSE IF (AM(I+NNBB+NT).EQ.4) THEN
ERR=4*ERR2

FERR=4*FERR2

ELSE IF (AM(I+NNBB+NT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB+NT).EQ.6) THEN
SIG=2*ERR2

FERR=2*FERR2

ELSE IF (AM(I+NNBB+NT).EQ.7) THEN
SIG=3*ERR2

FERR=3*FERR2

ELSE

SIG=4*ERR2

FERR=4*FERR2

ENDIF

A=(1/(ABS(QLM(I))*ERR+FERR))
AA=(ABS(QLM(I)))

IF (WMN.EQ.2) THEN

WMM (I+NNBB+NT, I+NNBB+NT)=A

ELSE IF (WMN.EQ.3) THEW

WMM (I+NNBB+NT , T+NNBB+NT) =A*A

ELSE IF (WMN.EQ.4) THEN

WMM (T+NNBB+NT, I+NNBB4+NT) =A*A*AL
ELSE IF (WMN.EQ.5) THEN

WHM (IT+NNBB+NT, I+NNBB+NT) =A% A%AA*AA
ELSE IF (WMN.EQ.6) THEN

WHM (I+NNBB+NT , I+NNBB+NT)=A%AA
ELSE IF (WMN.EQ.7) THEN
WMM(I+NNBB+NT, T+NNBB+NT)=A%*AA*AA
ELSE IF (WMN.EQ.8) THEN

WMM (I+NNBB+NT, I+NNBB+NT)=A/ (AA%AA)
ELSE IF (WMN.EQ.9) THEN

WMM (I+NNBB+NT , I+NNBB+NT)=A%A/ (AA*AA)
ELSE IF (WMN.EQ.10) THEN

WMM (I+NNBB+NT, I+NNBB+NT)=A/AA
ELSE

WMM(I+NNBB+NT, I+NNBB+NT) =A%A/AA
ENDIF

34 CONTINUE
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DO 36 I=1,NB

IF (AM(I+NNBB+NT+NT).EQ.0) THEN
ERR=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.1) THEN
ERR=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.2) THEN
ERR=2*ERR1

FERR=2%FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.3) THEN
ERR=3*ERR1

FERR=3*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.4) THEN
ERR=4*ERR1

FERR=4*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SIG=2%ERR1

FERR=2*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG=3*ERR1

FERR=3*FERR1

ELSE

SIG=4*ERR1

FERR=4*FERR1

ENDIF

B=(1/(ABS(VM(I))*ERR+FERR))
BB=(ABS(VM(I)))

IF (WMN.EQ.2) THEW
WMM(I+NNBB+NT+NT,I+NNBB+NT+NT)=B

ELSE IF (WMN.EQ.3) THEN
WMM(I+NNBB+NT+NT,I+NNBB+NT+NT)=B*B

ELSE IF (WMN.EQ.4) THEN
WHM(I+NNBB+NT+NT,I+NNBB+NT+NT)=B*B*BB
ELSE IF (WMN.EQ.5) THEN

WMM (I+NNBB+NT+NT, I+NNBB+NT+NT)=B*B*BB*BB
ELSE IF (WMN.EQ.6) THEN
WHM(I+NNBB+NT+NT,I+NNBB+NT+NT)=B*BB
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ELSE IF (WMN.EGQ.7) THEN

WHMM (I+NNBB+NT+NT, I+NNBB+NT+NT)=B*BB*EB
ELSE IF (WMN.EQ.8) THEN
WMM(I+NNBB+NT+NT,I+NNBB+NT+NT)=B/ (BB*BB)
ELSE IF (WMN.EQ.9) THEN

WMM (I+NNBB+NT+NT, I+NNBB+NT+NT)=B*B/(BB*BB)
ELSE IF (WMN.EQ.10) THEN
WMM(I+NNBB+NT+NT,I+NNBB+NT+NT)=B/BB
ELSE

WMHM (T+NNBB+NT+NT, I+NNBB+NT+NT)=B*B/BB
ENDIF

36 CONTINUE

DO 210 I=1,NMM

WMM(I,I)=WMM(I,I)*0.001
210 CONTINUE

GO TO 999

500 DD 560 I =1,NMM
IF (4M(I).EQ.0) GD TO 550 *
IF (4M(I).EQ.1) THEN
WMM(I,I)=2
ELSE
WMM(I,I)=1
ENDIF
GO TO 560
550 WMM(I,I)=1
560 CONTINUE

GO TO 999

100 DO 209 I=1,NMM
WMM(I,I)=1.
209 CONTINUE

999 RETURN
END
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SUBROUTINE MGBP(AM,NUDR,VM,VT,DT,E,MTOBO,NT,NB,ST,ZLINE,YC,NLINES,
iPLM,QLM,PLT,QLT,PNM,QNM,P,Q,NDR,NMM,NNBB,ERR1,ERR2,FERR1 ,FERR2, IR,
inbb)
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C

C THIS SUBROUTINE IS USED TO GENERATE ALL THE SIMULATED SYSTEM

C VARIABLES WHICH ARE SIMULATED MEASUREMENTS.
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PARAMETERS PASSED:

AM = ARRAY OF INDICES SPECIFY WHETHER CORRESPONDING MEASUREMENTS
ARE AVALTIABLE OR NOT AND SPECIFY THEIR ACCURACY CATEGORIES

NUDR = NUMBER OF UNIFORMALY DISTRIBUTED RANDOM NUMBERS USED TO

GENERATE NORMALLY DISTRIBUTED RANDOM NUMBERS

VT = ARRAY OF TRUE MAGNITUDES OF NODAL VOLTAGES

DT = ARRAY OF TRUE ANGLES OF NODAL VOLTAGES

E = ARRAY OF NODAL VOLTAGES

MTOBO = ARRAY OF: #, FROM_BUS, TO_BUS, LINE #

NT = 2 X NLINES

NB = NUMBER OF BUSES

ST = ARRAY OF COMPLEX LINE FLOWS

ZLINE = ARRAY OF LINE IMPEDANCES

YC = ARRAY OF LINE ADMITTANCES

NLINES = NUMBER DF LINES

PLT = ARRAY OF TRUE REAL POWER FLOWS

QLT = ARRAY OF TRUE REACTIVE POVWER FLOWS

P = ARRAY OF TRUE NODAL REAL POWER INJECTIONS

Q = ARRAY OF TRUE NODAL REACTIVE POWER INJECTIORNS

NMM = NUMBER OF SYSTEM «VARIABLES (= NNBB + 2 X NT + NB)

NNBB = 2 X NB

ERR1 = ERROR PROPORTIONAL TO MEASUREMENTS FOR VOLTAGE MEASUREMENTS
ERR2 = ERROR PROPORTIONAL ,TO MEASUREMENTS FOR OTHER MEASUREMENTS

FERR1 = FIXED ERROR FOR VOLTAGE MEASUREMENTS
FERR2 = FIXED ERROR OTHER MEASUREMENTS
IR = A SEED USED TO GENERATE RANDOM NUMBERS

PARAMETERS RETURNED:
PNM = ARRAY OF SIMULATED NODAL REAL POWER INJECTIONS

QNM = ARRAY OF SIMULATED NODAL REACTIVE POWER INJECTIONS
PLM = ARRAY OF SIMULATED REAL POWER POWER FLOWS
QLM = ARRAY OF SIMULATED REACTIVE POWER FLOUWS

VM = ARRAY OF SIMULATED MAGNITUDES OF NODAL VOLTAGES

CALLED BY:
MAIN PROGRAM

CALLS:
SUBROUTINE NRAN
SUBROUTINE RANDOM
SUBROUTINE CLF

QOO OO OO0 0000000000000 aaa0n
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REAL VM(NB),VT(NB),DT(NB),PLM(NB),QLM(NB),PNM(NB),qQNM(NB),
1PLT(NLINES),QLT{(NLINES),P(NB),Q(NB),NDR
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COMPLEX E(NB),ST(NT),ZLINE(NLINES),YC(NLINES)
INTEGER MTOBO(NT,4),AM(NMM),IR
DO 201 I =1, NB

IF (AM(I+NNBB+NT+NT).EQ.O) THEN
SIG=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.1) THEN
SIG=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.2) THEN
SIG=2*ERR1

FERR=2*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.3) THEN
SIG=3*ERR1

FERR=3*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.4) THEN
SIG=4*ERR1

FERR=4*FERR1 .

ELSE IF (AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR1

FERR=FERR1 R

GO TO 191

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SI1G=2*ERR1

FERR=2*FERR1

GO TO 191

ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG=3%ERR1

FERR=3*FERR1

GO TO 191

ELSE

SIG=4*ERR1

FERR=4*FERR1

GO TO 191

ENDIF

CALL NRAN(NUDR,NDR,SIG,IR)
IF(NDR.GT. (3*SIG))THEN NDR=3*SIG
IF(NDR.LT. (-3*5IG))THEN NDR=-3%SIG
VM(I) = VT(I)*(1 + NDR)

CALL RANDOM(IR,RAN)

IF(RAN.GT.(0.0)) THEN

VM(I) =( VM(I) + FERR)*(1+0.005%RAN)
ELSE
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YM(I) =( VM(I) - FERR)*(1~0.005*RAN) -
ENDIF
go to 201

¢ 191 VM(I)=1*VT(I)

¢ 191 VM(I)=0.0
191 CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
VM(I)=(VT(I)+nbb*SIG*VT(I)+FERR)*(1+0.005%RAN)
ELSE
VM(I)=(VT(I)-nbb*SIG*VT(I)-FERR)*(1~0.005*RAN)
ENDIF

201 CONTINUE

D0 8 I = 1,NB
AA = VT(I)*COS(DT(I))
BB = VT(I)*SIN(DT(I))
E(I) = CMPLX(AA,BB)

8 CONTINUE

L]

CALL CLF(MTOBO,NT,E,NB,ST,ZLINE,YC,NLINES)
C LINE FLOW MEASUREMENTS GENERATJON
DD 20 I =1, NT

IF (AM(I+NNBB).EQ.0) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB).EQ.1) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB).EQ.2) THEN
SIG=2+ERR2

FERR=2%FERR2

ELSE IF (AM(I+NNBB).EQ.3) THEN
SIG=3*ERR2

FERR=3%FERR2

ELSE IF (AM(I+NNBB).EQ.4) THEN
SIG=4*ERR2

FERR=4*FERR2

ELSE IF (AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

GO TO 192

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
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SIG=2*ERR2
FERR=2*FERR2
GO TO 192
ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG=3*ERR2
FERR=3*FERR2
GO TO 192
ELSE
SIG=4*ERR2
FERR=4*FERR2
GO TO 192
ENDIF

CALL NRAN(NUDR,NDR,SIG,IR)

IF (NDR.GT.(3%SIG)) THEN NDR=3*SIG
IF (NDR.LT.(-3%SIG)) THEN NDR=-3*SIG
PLT(I)=REAL(ST(I))

PLM(I) = REAL(ST(I))*(1 + NDR)

CALL RANDOM(IR,RAN)

IF(RAN.GT.(0.0)) THEN :

PLM(I) =( PLM(I) + FERR)*(1+0.005%RAN)
ELSE

PLM(I) =( PLM(I) - FERR)*(1-04005%RAN)
ENDIF

go to 292

¢ 192 PLM(I)=1*REAL(ST(I))

¢ 192 PLM(I)=0.0

192 CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
PLM(I)=(REAL(ST(I))+nbb*SIG*REAL(ST(I))+FERR)*(1+0.005%RAN)
ELSE
PLM(I)=(REAL(ST(I))~-nbb*SIG*REAL(ST(I))-FERR)*(1-0,005*RAN)
ENDIF
PLT(I)=REAL(ST(I))

292 IF (AM(I+NNBB+NT).EQ.0) THEN
SIG=ERR2
FERR=FERR2
ELSE IF (AM(I+NNBB+NT).EQ.1) THEN
SIG=ERR2
FERR=FERR2
ELSE IF (AM(I+NNBB+NT).EQ.2) THEN
SIG=2*ERR2
FERR=2*FERR2
ELSE IF (AM(I+NNBB+NT).EQ.3) THEN
SIG=3*ERR2
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FERR=3*FERR2

ELSE IF (AM(I+NNBB+NT).EQ.4) THEN
SIG=4*ERR2

FERR=4*FERR2

ELSE IF (AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

GO TO 183

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
S1G=2*ERR2

FERR=2*FERR2

GO TO 183

ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG=3*ERR2

FERR=3*FERR2

GO TO 193

ELSE

SIG=4*ERR2

FERR=4*FERR2

GO TO 193

ENDIF

CALL NRAN(NUDR,NDR,SIG,IR)

IF (NDR.GT.(3*SIG)) THEN NDR=3%SIG
IF (NDR.LT.(-3%SIG))THEN NDR=-3*SIG
QLT(I) = AIMAG(ST(I))

QLM(I) = AIMAG(ST(I))*(1 + NDR)

CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
QLM(I) =( QLM(I) + FERR)*(1+0.005%RAN)
ELSE
QLM(I) =( QLM(I) - FERR)*(1-0.005%RAN)
ENDIF
go to 20
¢ 193 QLM(I)=1*AIMAG(ST(I))

c 1983 QLM(I)=0.0
193 CALL RANDOM(IR,RAN)

IF(RAN.GT.(0.0)) THEN
QLM(I)=(ATMAG(ST(I))+nbb*SIG*ATIMAG (ST(I))+FERR)* (1+0.005%RAN)
ELSE
QLM(I)=(ATIMAG(ST(I))-nbb*SIG*AIMAG(ST(I))-FERR)*(1-0.005%RAN)
ENDIF
QLT(I) = AIMAG(ST(I))
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20 CONTINUE
NODAL MEASUREMENTS GENERATION
D022 I =1, NB

IF (AM(I).EQ.0) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.1) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.2) THEN
SIG=2+ERR2

FERR=2%FERR2

ELSE IF (AM(I).EQ.3) THEN
SIG=3+ERR2

FERR=3*FERR2

ELSE IF (AM(I).EQ.4) THEN
SIG=4*ERR2 .
FERR=4*FERR2

ELSE IF(AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

GO TO 194

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SIG=2*ERR2

FERR=2*FERR2

GO TO 194

ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG6=3*ERR2

FERR=3*FERR2

GO TO 194

ELSE

SIG=4*ERR2

FERR=4%FERR2

GO TO 194

ENDIF

CALL NRAN(NUDR,NDR,SIG,IR)

IF (NDR.GT.(3*SIG)) THEN NDR=3*SIG

IF (NDR.LT.(~-3%SIG)) THEN NDR=-3%SIG
PNM(I) = P(I)*(1 + NDR)
PNM(I) = P(I)

CALL RANDOM(IR,RAN)

IF(RAN.GT.(0.0)) THEN

PNM{(I) =( PNM(I) + FERR)*(1+0.005%RAN)
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ELSE -
PNM(I) =( PNM(I) - FERR)*(1-0.005%RAN)
ENDIF
GO to 294

¢ 194 PNM(I)=1%P(I)

194 CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
PNM(I)=(P(I)+nbb*SIG*P (I)+FERR)*(1+0.005%RAN)
ELSE
PNM(I)=(P(I)-nbb*SIG*P(I)-FERR)*(1~0.005*RAN)
ENDIF

294 IF (AM(I+NB).EQ.O) THEN
SIG=ERR2
FERR=FERR2
ELSE IF (AM(I+NB).EQ.1) THEN
SIG=ERR2
FERR=FERR2
ELSE IF (AM(I+NB).EQ.2) THEN
SIG=2+*ERR2 .
FERR=2*FERR2
ELSE IF (AM(I+NB).EQ.3) THEN
SIG=3*ERR2 R
FERR=3*FERR2
ELSE IF (AM(I+NB).EQ.4) THEN
SIG=4*ERR2 '
FERR=4*FERR2
ELSE IF(AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2
FERR=FERR2
GO TO 195
ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SIG=2%ERR2
FERR=2+FERR2
GO TO 195
ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG=3%ERR2
FERR=3*FERR2
GO TD 195
ELSE
SIG=4*ERR2
FERR=4*FERR2
GO TO 195
ENDIF

CALL NRAN(NUDR,NDR,SIG,IR)
IF (NDR.GT.(3*SIG)) THEN NDR=3*SIG
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IF (NDR.LT.(-3%SIG))THEN NDR=-3#*SIG
QEM(I) = Q(I)*(1i + NDR)

QNM(I) = Q(D)
CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
QNM(I) =( QNM(I) + FERR)*(1+0.005*RAN)
ELSE
QNM(I) =( QNM(I) - FERR)*(1+0.005%RAN)
ENDIF
go to 22

¢ 195 QNM(I)=1*Q(I)

195 CALL RANDOM(IR,RAN)

22

IF(RAN.GT.(0.0}) THEN
QUM(I)=(Q(I)+nbb*SIG*Q(I)+FERR)*(1+0.005%RAN)
ELSE

QUM(I)=(Q(I)-nbb20*SIG*Q(I)~FERR)* (1~0.005*RAN)
ENDIF

CONTINUE

RETURN
END
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SUBROUTINE MGB(4M,NUDR,VM,VT,DT,E,MTOBO,NT,NB,ST,ZLINE,YC,NLINES,

1PLM,QLM,PLT, QLT ,PNM,QNM,P,Q,NDR,NMM,NNBB,ERR1,ERR2 ,FERR1 ,FERR2, IR,
1inbb)
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THIS SUBROUTINE IS USED TO GENERATE ALL THE SIMULATED SYSTEM
VARIABLES WHICH ARE SIMULATED MEASUREMENTS.

PARAMETERS PASSED:

AM = ARRAY OF INDICES SPECIFY WHETHER CORRESPONDING MEASUREMENTS
ARE AVALIABLE OR NOT AND SPECIFY THEIR ACCURACY CATEGORIES

NUDR = NUMBER OF UNIFORMALY DISTRIBUTED RANDOM NUMBERS USED TO

GENERATE NORMALLY DISTRIBUTED RANDOM NUMBERS

VT = ARRAY OF TRUE MAGNITUDES OF NODAL VOLTAGES

DT = ARRAY OF TRUE ANGLES OF NODAL VOLTAGES

E = ARRAY OF NODAL VOLTAGES

MTOBO = ARRAY OF: #, FROM_BUS, TO_BUS, LINE #

NT = 2 X NLINES

NB = NUMBER OF BUSES

ST = ARRAY OF COMPLEX LINE FLOWS

ZLINE = ARRAY OF LINE IMPEDANCES

YC = ARRAY OF LINE ADMITTANCES

NLINES = NUMBER OF LINES

PLT = ARRAY OF TRUE REAL POWER FLOWS
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= ARRAY OF TRUE REACTIVE POWER™ FLOWS

ARRAY OF TRUE NODAL REAL POWER INJECTIONS

Q = ARRAY OF TRUE NODAL REACTIVE POWER INJECTIONS

NMM = NUMBER OF SYSTEM VARIABLES (= NNBB + 2 X NT + NB)

QLT
P =

NNBB = 2 X NB
ERR1 = ERROR PROPORTIONAL TO MEASUREMENTS FOR VOLTAGE MEASUREMENTS
ERR2 = ERROR PROPORTIONAL TO MEASUREMENTS FOR OTHER MEASUREMENTS

FERR1 = FIXED ERROR FOR VOLTAGE MEASUREMENTS
FERR2 = FIXED ERROR OTHER MEASUREMENTS
IR = A SEED USED TO GENERATE RANDOM NUMBERS

PARAMETERS RETURNED:

PNM = ARRAY OF SIMULATED NODAL REAL POWER INJECTIONS
QNM = ARRAY OF SIMULATED NODAL REACTIVE POWER INJECTIONS
PLM = ARRAY OF SIMULATED REAL POWER POWER FLOUS

QLM = ARRAY OF SIMULATED REACTIVE POWER FLOVWS

VM = ARRAY OF SIMULATED MAGNITUDES OF NODAL VOLTAGES

CALLED BY:
MAIN PROGRAM

CALLS:
SUBROUTINE NRANW
SUBROUTINE RANDOM
SUBROUTINE CLF

QO QOO0 OO0 000000000
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REAL VM(NB),VT(NB),DT(NB),PLM(NB),QLM(NB),PNM(NB),QNM(NB),
1PLT(NLINES),QLT(NLINES),P(NB),Q(NB),NDR

COMPLEX E(NB),ST(NT),ZLINE(NLINES),YC(NLINES)
INTEGER MTOBO(NT,4),AM(¥MM),IR
DD 201 I =1, NB

IF (AM(I+NNBB+NT+NT).EQ.0) THEN
SIG=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.1) THEN
SIG=ERR1

FERR=FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.2) THEN
SIG=2*ERR1

FERR=2*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.3) THEN
SIG=3*ERR1
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FERR=3*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.4) THEN
SIG=4*ERR1

FERR=4*FERR1

ELSE IF (AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR1

FERR=FERR1

GO TO 191

ELSE IF (AM{I+NNBB+NT+NT).EQ.6) THEN
SIG=2*ERR1

FERR=2*FERR1

GO TD 191

ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEYN
SIG=3*ERR1

FERR=3*FERR1

GO TO 181

ELSE

SIG=4*ERR1

FERR=4*FERR1

GO TO 191

ENDIF

CALL NRAN(NUDR,NDR,SIG,IR)
IF(NDR.GT.(3*SIG))THEN NDR=3%$IG
IF{NDR.LT.(-3%SIG))THEN NDR=-3%*SIG
VM{I) = VT(I)*(1 + NDR)

CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
vM{I) =( VM(I) + FERR)
ELSE

VM(I) =( VM(I) - FERR)
ENDIF

go to 201

¢ 191 VM(I)=1%V¥T(I)

¢ 191 ¥M(1)=0.0

191

201

CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
VE(I)=(VT(I)+nbb*SIG*VT(I)+FERR)
ELSE
VH(I)=(VT(I)~-nbb*SIG*VT(I}-FERR)
ENDIF

CONTINUE

= 1,NB

D08 I
A = VT(I)*COS(DT(I))
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BB = VT(I)*SIN(DT{I))
E(I) = CMPLX(AA,BB)
CONTINUE

CALL CLF(MTOBO,NT,E,NB,ST,ZLINE,YC,NLINES)
LINE FLOW MEASUREMENTS GENERATION
DO 20 I =1, NT

IF (AM(I+NNBB).EQ.0) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB).EQ.1) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NNBB).EQ.2) THEN
SIG=2%ERR2

FERR=2*FERR2

ELSE IF (AM(I+NNBB).EQ.3) THEN
SIG=3*ERR2 ;
FERR=3*FERR2

ELSE IF (AM(I+NNBB).EQ.4) THEXN
SIG=4*ERR2

FERR=4*FERR2

ELSE IF (AM(I+NNBB+NT+HNT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

GO TO 182

ELSE IF (AM(I+NNEB+NT+NT).EQ.6) THEN
SIG=2*ERR2

FERR=2*FERR2

GO TO 192

ELSE IF (AM(I+NKBB+NT+NT).EQ.7) THEN
8IG=3*ERR2

FERR=3*FERR2

GO TO 192

ELSE

8IG=4%ERR2

FERR=4*FERR2

GO TO 192

EXNDIF

CALL NRAN(NUDR,NDR,SIG,IR)

IF (NDR.GT.(3*SIG)) THEN NDR=3*SIG
IF (NDR.LT.(-3%SIG)) THEN NDR=-3*SIG
PLT(I)=REAL(ST(I))
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PLM(I) = REAL(ST(I))*(1 + NDR)

CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
PLM(I) =( PLM(I) + FERR)

ELSE

PLM(I) =( PLM(I) - FERR)
ENDIF

go to 292

¢ 192 PLM(I)=1+REAL(ST(I))

¢ 192 PLM(I)=0.0

192 CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
PLM(I)=(REAL(ST(I))+nbb*SIG*REAL(ST(I))+FERR)
ELSE
PLM(I)=(REAL(ST(I))-nbb*SIG*REAL(ST(I))-FERR)
ENDIF
PLT(I)=REAL(ST(I))

292 IF (AM(I+NNBB+NT).EQ.0) THEN
SIG=ERR2
FERR=FERR2
ELSE IF (AM(I+NNBB+NT).EQ.1) THEN
SIG=ERR2
FERR=FERR2
ELSE IF (AM(I+KNBB+NT).EQ.2) THEN
SIG=2%ERR2
FERR=2*FERR2
ELSE IF (AM(I+NNBB+XNT).EQ.3) THEN
SIG=3*ERR2
FERR=3*FERR2
ELSE IF (AM(I+NNBB+NT).EQ.4) THEN
S5IG=4*ERR2
FERR=4*FERR2
ELSE IF {AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2
FERR=FERR2
GO TO 193
ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SIG=2*ERR2
FERR=2*FERR2
GO TO 193
ELSE IF (AM(I+NNBB+NT+NT).EQ.7) THEN
SIG=3*ERR2
FERR=3*FERR2
GO TO 1983
ELSE
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SIG=4*ERR2
FERR=4*FERR2
GO TO 193
ENDIF

CALL NRAN(NUDR,MNDR,SIG,IR)

IF (NDR.GT.(3*SIG)) THEN NDR=3%SIG
IF (NDR.LT.(~-3%SIG))THEN NDR=-3%SIG
QLT(I) = AIMAG(ST(I))

QLM(I) = AIMAG(ST(I))*(1 + NDR)

1

CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
QLM(I) =( QLM(I) + FERR)
ELSE

QLM(I) =( QLM(I) - FERR)
ENDIF

go to 20

¢ 193 QLM(I)=1%AIMAG(ST(I))

¢ 183 QLM(I)=0.0

183

20

CALL RANDOM(IR,RAN)

IF(RAN.GT.(0.0)) THEW
QLM({I)=(AIMAG(ST(I))+nbb*SIG*ATMAG(ST(I))+FERR)
ELSE
QLM(I)=(AIMAG(ST(I))-nbb*SIG*AIMAG(ST(I))-FERR)
ENDIF

QLT(I) = AIMAG(ST(I))

CONTINUE
NODAL MEASUREMENTS GENERATION
DO 22 I =1, KB

IF (aM(I).EQ.O) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.1) THEX
SIG=ERR2

FERR=FERR2

ELSE IF (AM(I).EQ.2) THEN
SIG=2*ERR2

FERR=2*FERR2

ELSE IF (AM(I).EQ.3) THEN
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c

SIG=3*ERR2

FERR=3*FERR2

ELSE IF (4M(I).EQ.4) THEN
SIG=4*ERR2

FERR=4%FERR2

ELSE IF(AM{I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

GO TO 194

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SIG=2%ERR2

FERR=2*FERR2

G0 TO 194

ELSE IF (AM{I+NNBB+NT+NT).EQ.7) THEN
SIG=3*ERR2

FERR=3%FERR2

GO TO 194

ELSE

S51G=4%ERR2

FERR=4*FERR2

GO TO 194

ENDIF

CALL NRAXK(XUDR,NDR,SIG,IR) N

IF (NDR.GT.(3*SIG)) THEN NDR=3*SIG
IF (NDR.LT.(-3%5IG)) THEN NDR=-3%SIG
PEM(I) = P(I)*(1 + NDR)

PNM(I) = P(I)

CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
PNM(I) =( PNM(I) + FERR)

ELSE

PNM{I) =( PNM(I) - FERR)
ENDIF

GO to 294

¢ 194 PEM(I)=1%P(I)

194

294

CALL RANDOM{IR,RAN)
IF(RAN.GT.(0.0)) THEN
PNM(I)=(P(I)+nbb*SIG*P(I)+FERR)
ELSE
PNM(I)=(P(I)-nbb*SIG*P(I)~-FERR)
ENDIF

IF (AM(I+NB).EQ.0) THEN
SIG=ERR2

FERR=FERR2

ELSE IF (AM{I+NB).EQ.1) THEW
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SIG=ERR2

FERR=FERR2

ELSE IF (AM(I+NB).EQ.2) THEW
SIG=2*ERR2

FERR=2*FERR2

ELSE IF (AM(I+NB).EQ.3) THEN
SIG=3*ERR2

FERR=3*FERR2

ELSE IF (AM(I+NB).EQ.4) THEW
SIG=4*ERR2

FERR=4*FERR2

ELSE IF(AM(I+NNBB+NT+NT).EQ.5) THEN
SIG=ERR2

FERR=FERR2

GO TO 195

ELSE IF (AM(I+NNBB+NT+NT).EQ.6) THEN
SIG=2%ERR2

FERR=2*FERR2

GO TC 195

ELSE IF (AM(I+NNBB+NT+KNT).EQ.7) THEN
SIG=3*ERR2 ¢
FERR=3*FERR2

GO TO 1985

ELSE

SIG=4*ERR2

FERRE=4*FERR2

GO TO 195

ENDIF

CALL NRAN{NUDR,NDR,SIG,IR)
IF (NDR.GT.(3%SIG)) THEN NDR=3*SIG
IF (NDR.LT.(-3%*SIG))THEN NDR=-3*SIG
QNM(I) = Q(I)*(1 + NDR)
c QEM(I) = Q(I)
CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
QuM(I) =( QNM(I) + FERR)
ELSE
QNM{I) =( QNM(I) - FERR)
ENDIF
go to 22
c 195 QEM(I)=1*Q(I)

195 CALL RANDOM(IR,RAN)
IF(RAN.GT.(0.0)) THEN
QNM(I)=(Q(I)+nbb*SIG*{(I)+FERR)
ELSE
QEM(I)=(Q(I)-nbb*SIG*Q(I)~FERR)
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ENDIF
22 CONTINUE

RETURK
END

SUBROUTINE RESDFCT(JKE,NM,IM,NNBB1,JI,JKET,J1J,WM,SB,NOMLC,WGH)
REAL JKE(NM,NNBBi),JKET(NNBB1,NM),IM(NNBB1,NNBB1),JI(NM,NEBB1)
REAL JIJ(NM,NM),WM(NM,NM),SB(NM) ,NOMLC(NM),WGH(NM)

C CALCULATING THE RESULT OF JKF*IM
CALL XRR(JKE,NM,KNBB1,IM,NNBB1,JI)

c CALCULATING THE RESULT OF JKF*IM
CALL XRR(JI,NM,NNBB1,JKET,NM,JIJ)

c CALCULATING THE FACTORS OF NORMALIZED AND WEIGHTED RESIDUALS
DO 777 I=1, NM
SB(I)=(1/WM(1,I))-JIJ3(I,1I) -

777 CONTINUE
DO 780 I=1, NM
IF(4BS(SB(I)).LT.0.00001)GO TG 778
NOMLC(I)=sgrt (ABS{1/SB(I)))
go to 780
778 NOMLC(I)=1.0
780 CONTINUE
DO 779 I=1, EM
WGH(I)=sqrt (ABS(WM(I,I)))
779 CONTINUE

RETURN
END
C CALCULATING THE AVERAGES OF PLAIN RESIDUALS
C CALCULATING THE STANDARD DEVIATION OF THE PLAIN RESIDUALS
c CALCULATING THE SIGMA OVER THE AVERAGE OF THE PLAIN RESIDUALS
c CALCULATIEG THE SIGMA TIMES THE AVERAGE OF THE PLAIN RESIDUALS

SUBROUTINE INDCAL{CONNNI,NM,N,A,AVEI,SIGI,AVE,SIG,SIGOAVE,SIGtAVE)
REAL CONENI(NM,Y),A(NM),AVEI,AVE(NM),SIGI,SIG(NM),SIGOAVE(NM)
REAL SIGtAVE(NM)

DO 165 I = 1,R¥
DO 155 J = 1,X
4(3) = CONNNI(I,D)



155 CONTINUE
CALL STAN{(4,N,AVEI,SIGI)
AVE(I) = AVEI
SIG(I) = SIGI
IF(ABS(AVEI).LT.0.00001)GD TO 160
SIGOAVE(I) = SIGI/AVEI
SIGLAVE(I) = SIGI*AVEI
Go to 165
160 sigoave(i)=99.99

165 CONTINUE
RETURN
END
(C 2k ok ek ok o 3k 3k ok k ok 2k ok 9k ak 9k 2k 9k a3 2 3K 3 3K ok 3k 3 3 3k 3 3k 3k o 3k 30k 90 K 2K 3K ok 3 2k ki K 3k 3k 3K 3k 3k 2k i alk ko ok 3k 5 ok 3k 3k ok
SUBROUTINE PSSE{(V,D,NLINES,NY,YC,AM,WMM,NMN,PNM,QNN,PLY,QLY,
1VM,NB,NNBB,NT,ERR1,ERR2,FERR1,FERR2,WMN,PNC,QKC,PLC,QLC,B,G,
1MTOBO,E,ST,ZLINE, JK11,JK12,JK21,JK22,JK31,JK32,JK41,
1JK42,JK51,JK52, JKEY, JKE, CON,CONM, WM, JKET ,NNBB1,
1AESTIM,ESTIN,CON1,IM,C0K2,ITEST,CRIT, NN ,KMAX ,NB1)
€ % 30k K 3k 3k M 3k o o 3 ok ok ok 3k 3k 3k ok 2k 3K 3 Sk ok 3k 3 3K 3k 3k sk ok i ok ok 2k o 3K ok 3k 3k 3 2k e ke ok 3k 3k e 3k e 3k 3k 3k 3k ok e ok sk ke ok ke ok ok kK
REAL JK11(¥B,¥B),JK12(WB,NB),JK21(NB,NB),JK22(NB,NB)
REAL JK31(NT,NB),JK32(NT,NB),JK41(NT,¥B),JK42(NT,NB),
1JXK51(¥B,NB),JK52(NB,NB), JKET(KNBB1,FM), JKE(NM,NNBB1)
REAL JKEM{NMM,NNBEB) N
REAL V(WB),D(NB),NY(NLINES),B(¥B,NB),G(NB,NB)
REAL CONM(NMM) ,WMM(NMM,HNMM) ,WM(NM,NM)
REAL AESTIM(WNBB1,NM),ESTIM(NNBB1,NNBB1),CON(¥M),CON1(NNBB1),
1CON2(NNBB1),IM(NNBB1,NNBB1)
INTEGER MTOBO(NT,4),AM(NMM) ,KMAX

REAL PNM(NB),QNM(EB) ,PLM{NT),QLM(NT),VM(NB)
REAL PNC(NB),QNC(NB) ,PLC(NT),QLC(NT)

COMPLEX E{¥B),ST(NT),2LINE(NLINES),YC(NLINES)
c THIS GIVES INITIAL VALUES FOR PSSE
340 DO 60 I = 1,NB
V(I) = 1.0
60 D(I) = 0.0
70 CONTINUE
DO 85 I = 1, NLINES
NY(I)=AIMAG(YC(I))
85 CONTINUE
K=0
90 CONTINUE
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3333

212

200

-

THIS CALCULATE THE WEIGHTING MATRIX WMM
CALL WMGP(AM,WMM,NMM,PNM,QNM,PLM,QLM,VH,NB,NNBB,NT,
1ERR1,ERR2,FERR1,FERR2,WNN)

THIS CALCULATES PNC AND QNC FROM CURRENT VALUES OF V AND D
CALL PQCAL(PKC,QNC,V,D,B,G,NB)

THIS CALCULATES PLC AND QLC FROM CURRENT VALUES OF V AND D
CALL PQLCAL(PLC,QLC,V,D,B,G,NB,MTOBO,E,ST,ZLINE,YC ,NLINES,NT)

THIS CALCULATES THE DIFFERENCES BETWEEN MEASUREMENTS AND
CALCULATED VALUES

CALL EDELTA(PNM,QNM,PLM,QLM,VM,PNC,QNC,PLC,QLC,V,CONN,
1MM,NB,NT)

WHEN FIXED JACOBIAN METHOD IS USED, THE FOLLOWING STATEMENT
SHOULD BE USED.
IF (X.GT.0.0) GO TOD 3333

CALCULATING THE JACOBIAN MATRIX FOR STATE ESTIMATION (JKE)
CALL EJACOB(JK11,JK12,JK21,JK22,JK31,JK32,JK41,JK42, JK51,JK52,
1JKEK,PNC,QRC,V,D,NB,NT,B,G,NNBB, NMM,MTOBO,NY ,NLINES ,PRM,QNN,
1PLM,QLM,V¥)

CONTINUE

I1I=1
DO 200 I=1,NMM

IF (am(I).EQ.0) GO TO 200
DO 212 J=2,NNBB
JKE(III,J-1)=JKEN(I,])
CONTIRUE

CON(III)=CONM(I)
WHM(III,III)=wMM{I,I)
TII=III+1

CONTINUE

WHEN FIXED JACOBIAN METHOD IS USED, THE FOLLOWING STATEMENT
SHOULD BE USED.
IF (X.GT.0) GO TO 3334

FINDING THE TRANSPOSE MATRIX OF JKE--JKET
CALL TRAN(JKET,NNBB1,NM,JKE)

3334 COETINUE
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CALCULATING THE RESULT OF JKET*WM
CALL XRR(JKET,NNBB1,NM,WM,NM,AESTIN)

CALCULATING THE RESULT OF AESTIM*JKE
CALL XRR(AESTIM,NNBB1,NM, JKE,nnbbl,ESTIM)

CALCULATING THE RESULT OF AESTIM*CON
CALL XRR(AESTIM,NNBB1,NM,CON,1,CON1)

CALCULATING THE INVERSE MATRIX OF ESTIM
CALL INVERM(IM,ESTIM,NNBB1)

CALCULATING THE RESULT OF IM*CON1
CALL XRR(IM,NNBB1,NNBB1,CON1,1,CON2)

DO 100 I=2,NB
D(I)=D(I)+CON2(I-1)

100 CONTINUE
DO 105 I=1,NB
V(I)=V{(I)+V(I)*CON2(I+NB1)

105 CONTINUE

THIS TEST THE PROGRAM IS CONVERGED OR DIVERGED OR
¥OT BOTH

CALL TEST(CON2,ITEST,NB,CRIT)
IF(ITEST.EQ.1.0R.ITEST.EQ.2)G0 TO 110

K=K+1

IF (X.LT.XMAX) GO TO 90

WRITE(6,*) ’K=KMAX®

110 CONTINUE
WRITE(6,*)*ITEST=>,ITEST

RETURKN
END
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SUBROUTINE PSSEP(V,D,NLINES,NY,YC,AM,WMM,NMM,PNM,QNM,PLY,QLN,
1VM,N¥B,NNBB,NT,ERR1,ERR2,FERR1 ,FERR2,WMN,PNC,QNC,PLC,QLC,B,G,
i1MTOBD,E,ST,Z2LINE,JK11,JK12,JK21,JK22,JK31,JK32,JK41,
1JK42,JK51,JK52, JKEM, JKE,CON, CONM, WM, JKET ,NNBB1,
1AESTIM,ESTIM,CON1,IM,CON2,ITEST,CRIT, NM,KMAX ,NB1)

(€ o 3 3 ok o 3 ke ok ok e ok o sk ok ok 3k 3K o ok o e ok K K ok 3K 3 ok ok o K 0 K o 3k 3o ok 36 o o o o 3k 3 K o ok o o ok ok o ok ok ok ok
REAL JK11(NB,NB),JK12(NB,NB),JK21(NB,NB),JK22(NB,NB)
REAL JK31(XNT,NB),JK32(NT,NB),JK41(NT,NB),JIK42(NT,NB),
1JX51(NB,NB),JKS2(NB,NB) ,JKET (KNBB1,NM) , JKE(N¥,NNBB1)
REAL JKEM(NMM,NNBB)
REAL V(NB),D(NB),NY(NLINES),B(NB,NB),G(NB,NB)
REAL CONM(NMM) ,WMM(NMM,NMM) ,WM{NM, NM)
REAL AESTIM(NNBB1,NM),ESTIM(NNBB1,NNBB1),CON{NM),CON1(NNBB1),
1CON2(NNBB1),IM(NNBB1,NNBB1)
INTEGER MTOBO(NT,4),AM(NMM) ,KMAX

REAL PNM(NWB),QNM{NB),PLM(NT),QLM(NT),VM(NB)
REAL PNC(NB),QNC(¥B),PLC(NT),QLC(NT)

COMPLEX E(¥B),ST(NT),ZLINE{NLINES),YC(NLINES)
C THIS GIVES INITIAL VALUES FOR PSSE

340 DO 60 I = 1,NB
V(I) = 1.0

€0 D(I) = 0.0

70 CONTINUE

D0 85 I = 1, NLIKES
NY(I)=AIMAG(YC(I))
85 CONTINUE

K=0
90 CONTINUE

THIS CALCULATE THE WEIGHTING MATRIX WMM
< CALL WMGP(AM,WMM,NMM,PNM,QNM,PLM,QLM, VN, NB,NNBB,NT,
1ERR1,ERR2,FERR1,FERR2,WMN)

¢ THIS CALCULATES PNC AND QNC FROM CURRENT VALUES OF V AND D
CALL PQCAL(PNC,QNC,V,D,R,G,NB)

C THIS CALCULATES PLC AND QLC FROM CURRENT VALUES OF V AND D
CALL pQLCAL(PLC,QLC,V,D,B,G,NB,MTOBO,E,ST,ZLINE,YC,NLINES,NT)

C THIS CALCULATES THE DIFFERENCES BETWEEN MEASUREMENTS AND
¢ CALCULATED VALUES
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CALL EDELTA(PNM,QNM,PLM,QLM,VM,PNC,QNC+PLC,QLC,V,CONN,

1NMM,NB,NT)
C WHEN FIXED JACOBIAN METHOD IS USED, THE FOLLOWING STATEMENT
c SHOULD BE USED.
c IF (K.GT.0.0) GO TO 3333
C CALCULATING THE JACOBIAN MATRIX FOR STATE ESTIMATION (JKE)
c CALL EJACOB(JK11,JK12,JK21,JK22,JK31, K32, JK41,JK42,JK51, JKE2,
c 1JKEM,PNC,QNC,V,D,NE,NT,B,G,NNBB,NM¥,MTOBO,NY,NLINES ,PRM,QNH,
c 1PLM,QLM, VM)

3333 CONTINUE

II1=1
DO 200 I=1,NMM
IF (am(I).EQ.0) GO TO 200
DO 212 J=2,NNBB
JKE(III,J-1)=JKEM(I,])
212 CONTINUE
CON(III)=CONM(I)
c WM{III,III)=WMM(I,I)
III=II1+1
200 CONTINUE

000

C WHEN FIXED JACOBIAN METHOD IS USED, THE FOLLOWING STATEMERT
c SHOULD BE USED.

c IF (K.GT.0) GO TC 3334

c FINDING THE TRANSPOSE MATRIX OF JKE--JKET

c CALL TRAN(JKET,NNBB1i,N¥,JKE)

c 3334 CONTINUE

C CALCULATING THE RESULT OF JKET*WM

c CALL XRR{JXET,NNBB1,NM,WM,NN,AESTINM)

c CALCULATING THE RESULT OF AESTIM=*JKE

c CALL XRR{AESTIM,NNBB1,NM,JKE,nnbb1l,ESTIM)
c CALCULATING THE RESULT OF AESTIM*CON

CALL XRR(AESTIM,NNBB1,NM,CON,1,CON1)

C CALCULATING THE INVERSE MATRIX OF ESTINM
< CALL INVERM(IM,ESTIM,NNBB1)
c CALCULATING THE RESULT OF IM#CON1
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CALL XRR(IM,NNBB1,NNBB1,CON1,1,CON2)

DO 100 I=2,NB
D(I)=D(I)+CON2(I-1)

100 CONTINUE
DO 105 I=1,HB
V(I)=V(I)+V(I)*CON2(I+NB1)

105 CONTINUE

C THIS TEST THE PROGRAM IS CONVERGED OR DIVERGED OR
C NOT BOTH
CALL TEST(CON2,ITEST,NB,CRIT)
IF(ITEST.EQ.1.0R.ITEST.EQ.2)G0 TO 110
K=K+1
IF (K.LT.KMAX) 60 TO 90
WRITE(6,*) ’K=KMNAX"’

110 CONTINUE
WRITE(6,*) *ITEST=*,ITEST

RETURN
END

SUBROUTINE SORTGREAT(AIN,ADUT,NN)

THE INPUT TO THIS SUB IS ARRAY AIN(NN), THE OUTPUT IS ACUT(NX,2).
THE OUTPUT ARRAY WILL CONTAIN THE ELEMENTS OF AIN, SORTED OUT,

THE SMALLER IN ABSOLUTE VALUE IS ORDERED FIRST. THE ORDER OF

THE ELEMENT AS IT WAS IN AIN IS STORED IN THE FIRST COLUMN OF AOCUT.
ARRAY AIN WILL CONTAIN IN PLACE OF A PROCESSED ELEMENT, THE ABSOLUTE
OF THE LARGEST ENTRY + 1.0.

O Q000 a0

INTEGER ORDER
REAL AIN(NN), ADUT(NN,2)

ALARGE =0.0
c THIS DO LOOP WILL SET "ALARGE" TO A VALUE GREATER THAN THE
C GREATEST ABSOLUTE VALUE OF "AIN" ELEMENTS + 1.

C DO 2 I=1,KN

C A=ABS(AIN(I))

C IF(A.LT.ALARGE)ALARGE=4-1.0
C2 CONTINUE

DO 10 KK=1,NN

SMALLEST = ALARGE
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DO 5 I=1,EN
VALUE=ABS{AIN(I))

IF(VALUE.GT.SMALLEST) THEN

SMALLEST = VALUE

ORDER = I

ELSE

CONTINUE

ENDIF

5 CONTINUE

AOUT(XK,1)=0RDER

AOUT(KK,2)=SMALLEST

AIN{ORDER) = ALARGE

10 CONTIKUE

RETURN

END

SUBROUTINE SORT(AIN,AOUT,¥NNE)

THE INPUT TD THIS SUB IS ARRAY AIN(NN), THE OUTPUT IS AOUT(NN,2).
THE OUTPUT ARRAY WILL CONTAIN THE ELEMENTS OF AIN, SORTED OUT,

THE SMALLER IN ABSOLUTE VALUE IS ORDERED FIRST. THE ORDER OF

THE ELEMENT AS IT WAS IN AIN I5 STORED IN THE FIRST COLUMK OF AOUT.
ARRAY AIN WILL CONTAIN IN PLACE OF & PROCESSED ELEMENT, THE ABSOLUTE
OF THE LARGEST ENTRY + 1.0.

QOO0 0

INTEGER ORDER
REAL AIN(WN), AOUT(NN,2)

ALARGE =1.0

c THIS DO LOOP WILL SET "ALARGE" TO A VALUE GREATER THAN THE
c GREATEST ABSOLUTE VALUE OF "AIN" ELEMENTS + 1.

DO 2 I=1,NN

A=ABS(AIN(I))

IF(4.GT.ALARGE)ALARGE=4+1.0

2 CONTINUE

DO 10 KK=1,NN

SMALLEST = ALARGE

D0 5 I=1,%¥
VALUE=ABS(AIN(I))

IF(VALUE.LT.SMALLEST)THEN

SMALLEST = VALUE

ORDER = I

ELSE

CONTINUE

ENDIF

5 CONTINUE
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ADUT(XX,1)=DRDER
AOUT(XK,2)=SMALLEST
AIN(ORDER) = ALARGE
10 CONTINUE

RETURN

E¥D

SUBROUTINE STAN(4,¥,AVE,SIG)
DIMENSION &(N)
SUM = 0.0
DO 10 I = 1,N
SUM = SUM +ABS(A(I))
10 CONTINUE

AVE = SUM/X
SIG = 0.0
DO 20 I=1,N

SIG = SIG + (abs(A(I)) - AVE)x(abs(A(I)) - AVE)
20 CONTINUE 5

SIG = SQRT(SIG/(¥-1))

RETURN

END

€ 3ok e o ok ok ok o ok o o ok 33 o o o K 2K oK ok 3 o Kok 3K e ok K K oK 3Kk o ok 3 ok K K ok ok o o 3 ok ok 3k 2 3K ok 3 3ok 3k K o ok ok ok ke ok ok K ok o ok
SUBROUTINE SYSDATA(NB,NLINES,G,B,¥T,K1,MTOBO,PSP,QSP,VSP,SP,
1YC,ZLINE ,K2)

(C 3% 2k 3k 3k 3 3k ke o 3k 3k 40 ok Dk 3Kk oK ok 3k 2k ak e e 3k ik 9k 3k 3k ok ke 3 3k 2 ok 2k e 3k ok sk 3K ok 3k o 3k 3k 3 3k 5 ke 3K 3k K i 3o i ok ke ok ok 3 ok ok S ke ok Kk

THIS SUBROUTINE READS IN THE SYSTEM PARAMETERS AND OTHER DATA

PARAMETER PASSED:
Ki = NUMBER OF LOAD BUS + 1
K2 NUMBER OF LOAD BUS + 2, NEEDED TO READ SPECIFIED VOLTAGES
B NUMBER OF BUSES
NLINE = NUMBER OF LINES

"

1}

PARAMETER RETURNED:
G = ADMITTANCE
B = SUSCEPTANCE
BT = 2 $\times$ NLINES
MTOBO = ARRAY OF: #, FROM_BUS, TO_BUS, LINE #

OO0 000000
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C PSP = ARRAY OF SPECIFIED KODAL REAL POWER INJECTIONS
C QSP = ARRAY OF SPECIFIED NODAL REACTIVE POWER INJECTIORS
c SP = ARRAY OF COMPLEX NODAL POWER INJECTIONS

c YC = ARRAY OF LINE CHANGING ADMITTANCES

C ZLINE = ARRAY OF LINE IMPEDANCES

c

C CALLED BY:

C MAIN PROGRAM

c

C CALLS:

C NONE

C

(C % 2k 3k 2k ke 2k 2k 3k 3K 2k 3 2 3 3k 6 2k 3 ok dk 2k ok 2k ke 3k 3K 2k ke Ak 3K 3k 3k ok 2k e 3k 3k 2k 3k o a 2k ke 2k 3k 3K Sk ak S 3k 3K K 3K 3 3k kA 3K e Ak ik 3k k¢ 3 3k K K K K
REAL G(NB,¥B),B(N¥B,NB),PSP(NB),QSP(NB),VSP(¥B)
COMPLEX SP,YC(NLINES),ZLINE(NLINES)
INTEGER MTOBO(NT,4),K2

C READING LINE ADMITTANCE

DO & I=1,NB
DO 5 J=1,NB
B(I,3)=0.0
5 6(I,3)=0.0
LN=NB+NLINES
DO 10 K=1,L¥
READ(15,%) I,3,6(I,J),B(I,])
G(J,I)=6(I,D)
B(J,I)=B(I,])
10 CONTINUE

C READING BUS DATA

D0 15 I=1,NB

READ(15,*}J,SP

PSP(J)=-REAL(SP)

QSP(3)=-AIMAG(SP)
15 CONTINUE

DO 4 I = 1,8T
READ(15,*) (MTOBO(I,J),J=1,4)
4 CONTINUE
READ(15,*) (YC(I),ZLINE(I),I=1,NLINES)
DO 20 I=K2,NB
READ(15,*)VSP(I)
20 CONTINUE
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RETURN
END
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SUBROUTINE NRAN{NUDR,NDR,SIG,IR)

(G e 3k 3k 3 3k ok 9k 9k 3K 3K 3K K sk 3 ke ke ok 3 3K K ke e ok ke ok 2k ok k3 e ok e 3k 3k 3k dkdk oK 3k kK ok

QOO OO0 OO0 00000a00O0000aaaOaOaan

THIS SUBROUTINE IS USED TO CREAT NORMALLY DISTRIBUTED
NUMBERS USING UNIFORMLY DISTRIBUTED NUMBERS BASED ON
THE CENTRAL LIMITATION THEORY

PARAMETERS PASSED:
FUDR = ¥O. OF NORMALLY DISTRIBUTED RANDOM NUMBER
INTEND TO GENERATE
SIG = STANDARD DEVIATION OF THE NORMALLY DISTRIBUTED
RAMDOM NUMBERS CREATED. THIS VALUE SHOULD BE
SPECIFIED AT THE BEGINNING OF THE SUBROUTINE
IR = A SEED USED TO PRODUCE UNIFORMLY DISTRIBUTED
RAMDOM NUMBERS

PARAMETER RETURNED:

NDR = NORMALLY DISTRIBUTED RANDOM NUMBER

CALLED BY:
SUBROUTINE MG

CALLS:
SUBROUTINE RANDOM

(G sk sk ok ok ok 3k 3k ok ok 3K 3K 3K 3 3k K 30K oK ok 3k 3k 2 3K 3K ok o ok 2k 3k o ok ok K 3k K o 3K 3K 3 oK 3K 3 3K 6 3k ok 8 8 o 3 ok ok ok ok ko ok KK oK 2k 3k K o 3K K 9 3ok ok ok ok oK

REAL KDR,RAN,SIG
INTEGER NUDR,IR
SUM=0.0

DO 10 I=1,NUDR

CALL RANDOM(IR,RAN)
SUM=SUM+RAN



10 CONTINUE
NDR=SUM*SIG*SQRT(3./NUDR)

RETURN
END

(C 3k ok ok o ok ok ke s o sk ok sk oK 3k o s o o 3k 3 ok o o ok sk o ke ok ke ak k ke o sk o o ok Sk o o o S o o o sk kK e ok ok kS ko e oo o o o ok sk ke o o o
SUBROUTINE EJACOB{JK11,JK12,J¥K21,JK22,JK31,JK32,JK41,]K42,JK51,
1JK52,JKEM,PNC,QNC,V,D,NB,NT,B,G,NNBB,NMM,NTOBO,NY ,NLINES ,PRY, QNH,

2PLM,QLM, VM)
ok s ok ke ok s ok ok ok ok oK okl ks sk ok 3 ok oo ok 3 ok ok 3 3 ok o ok o o s o 3k K ok o sk sk ko o o ok ok o K ok ok o ok ek o o o ok ok ke ok ok ok

THIS SUBROUTINE CALCULATES JACOBIAN MATRIX.
PNC AND QNC ARE NEEDED TO CALCULATE THE DIAGONAL
ELEMENTS OF SUBEJACOBIANS. THE OUTPUT IS JKEM.

PARAMETERS PASSED:
PNC = ARRAY OF CALCULATED NODAL REAL POWER INJECTIONS
QNC = ARRAY OF CALCULATED NODAL REACTIVE POWER INJECTIONS
V = ARRAY OF MAGNITUDE OF NODAL VOLTAGES
D = ARRAY OF ANGLE OF NODAL VOLTAGE ANGLES
NB = NUMBER OF BUSES
NT = 2 $\times$ NLINES #
B = SUSCEPTANCES
G = ADMITTANCES
NEBB = 2 \times$ NB
¥MM = NUMBER OF SYSTEM VARIABLES (= NNBB + 2 $\times $ NT + NB)
MTOBO = ARRAY QOF: #, FROM_BUS, TO_BUS, LINE #
HY =
NLINES = NUMBER OF LINES

PARAMETERS RETURKNED:
JKEM = JACOBIAN MATRIX FOR STATE ESTIMATION

CALLED BY:
MAIN PROGRAM

CALLS:
NONE

OO OO OO0 OO0 00a00000a0aan
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REAL JK11(¥B,NB),JK12(¥B,NB),JK21(NB,¥B),JK22(NB,NB)

REAL JK31(NT,NB),JK32(NT,¥B),JK41(NT,NB),JK42(NT,NB),
1JK51(NB,NB),JK52(NB,NB) ,NY(NLINES)

REAL JKEM(NMM,NNBB},PNC(NB),QNC(NB),V(¥B),D(K¥B),B(NB,NB),G(NB,NB)
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INTEGER MTOBO(NT,4)

GENERATING JK11,JK12,JK21,JK22,JK31,JK32,JK41,JK42,
JK51 AND JKb62

DO 10 I=1,NB

D0 20 J=1,NB

IF (I.EQ.J) GOTO 20

IF (G(I,J).EQ.0.0.AND.B(I,J).EQ.0.0) GO TO 20
DIJ=D(I)-D(J)

SINDIJ=SIN(DIJ)

COSDIJ=C0S(DIJ)
JR11(X,3)=V(I)*V(I)*(6(I,J)*SINDIJ-B(I,J)*COSDIJ)
JK12(I,3)=V{(I)*V({J)*(G{I,J)*COSDII+B(I,J)*SINDIJ)
JK21(1,J)=-JK12(1,7)

JK22(I,0)=3K11(I, 1)

CONTINUE

CONTINUE

DO 30 I=1,NB ’

JK11(T, I)=(~-V(I)*V{(I)*B(I,I)-QNC(I))
JRK12(I,I)={(V{I)*V(I)*G(I,I)+PNC(I))
JK21(I,D)=(~-V(I)*V(I)*G(I,I)+RNC(I))
JR22(I,1)=(-V(I)*V(I)*B(I,I)+QNC(I))
CONTINUE

DO 40 II=1,NT
KK=MTOBO(II,1)
I=NTOBO(II,?2)
J=MTOBO(II,3)
L=MTOBO(II,4)
DIJ=D(I)-D(J)
SINDIJ=SIN(DIJ)
C0SDIJ=C0S8(DIJ)

JK31{KK,I)=V(I)*V(JI)*(~G(I,J)*SINDIJ+B(I,J)*COSDII)
JK31(KK,J)=-JK31(KK,I)

JK32(KK,I)=V(I)*V(J)*(G(I,J)=COSDIJ+B{I,J)*SINDIJI)
JK32(KK,J)=JK32(KX,I)
JK32(KK,I)=JK32(KK,I)-2*V(I)*V(I)*G(I,D)

JK41(KK,I)=V(I)*V(I)*(B(I,J)*SINDIJ+G(I,J)*COSDII)
JK41(KK,I)=~JK41(KK,I)

JK42(KK,I)=~V(I)*V(J)*(B(I,J)*COSDIJ~G(I,J)*SINDIJ)
JK42(XK,J)=JK42(KX,I)
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JK42(KK,I)=JK42(KK,I)+2%V(I)*V(I)*B(I,3)
JK42(KK,I)=JK42(KK,I)~2*V(I)*V(I)*NY(L)

40 CONTINUE

DO 50 I=1,KB
JKE2(I,I)=V¥(I)
50 CONTINUE

CREATING JKEM MATRIX USING JKii,JK12,JK21,JK22,
JK31,JK32,JK41,JK42,JK51 AND JK52

DO 60 I=1,KB

DO 60 J=1,NB

JKEM(I,1)=JK11(I,D)
60 CONTINUE

DO 70 I=1,KB

DO 70 J=1,KNB

JKEM(I,J+NB)=JK12(I,J)
70 CONTINUE

DO 80 I=1,NB

DO 80 J=1,HB

JKEM(I+NB,J)=JK21(I,1)
80 CONTINUE

DO 90 I=1,NB

DO 90 J=1,NB

JKEM(I+NB,J+NB)=JK22(I,])
90 CONTINUE

DO 100 I=1,RT

DO 100 J=1,NB

JKEM(I+NB+NB,J)=JK31(I,3)
100 CORTINUE

DO 110 I=1,RT

DO 110 J=1,NB

JKEM(I+NB+KB, J+NB)=JK32(I,])
110 CONTINUE

DO 120 I=1,RT

DD 120 J=1,KEB

JKEM(I+NB+NB+NT,J)=JK41(1,3)
120 COBTINUE

DO 130 I=1,NT
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130

140

150

999

DO 130 J=1,¥B
JKEM(I+NB+NB+NT,J+NB)=JK42(I,J)
CONTINUE

DO 140 I=1,NB

DO 140 J=1,NB
JKEM(I+NB+NB+NT+NT,J)=JK51(1,3)
CORTINUE

DO 150 I=1,RB

DO 150 J=1,NB
JKEM(I+NB+NB+NT+NT,J+NB)=JK52(I,J)
CONTINUE

RETURN
END
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SUBROUTINE PQLCAL(PLC,QLC,V,D,B,G,NB,MTOBC,E,ST,ZLINE,

1YC,NLINES,NT) ‘
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THIS SUBROUTINE CALCULATES THE COMPLEX LINE FLOWS AT EACH END
OF EACH LINE *

PARAMETER PASSED:

V = ARRAY OF MAGNITUDE OF NODAL VOLTAGES

D = ARRAY OF ANGLE OF NODAL VOLTAGE ANGLES
B = SUSCEPTARCES

G = ADMITTANCES

NB = NUMBER OF BUSES
MTOBO = ARRAY OF: #, FROM_BUS, TO_BUS, LIKE #
E = BRRAY OF COMPLEX NODAL VOLTAGES

ST = ARRAY OF COMPLEX LINE FLOWS (FOR EACH END OF EACH LINE)

ZLINE = ARRAY OF LINE IMPEDANCES

YC = ARRAY OF LINE CHARGING ADMITTANCES
NLIKE = NUMBER OF LINES

NT = 2 $\times$ NLINES

PARRAMETER RETURNED:
PLC = ARRAY OF CALCULATED REAL POWER FLOWS
QLC = ARRAY OF CALCULATED REACTIVE POWER FLOWS

CALLED BY:
MAIN PROGRAM

CALLS:
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SUBROUTIKE CLF
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10

20

25

30

REAL PLC(NT),QLC(NT),v(NB),D(¥B),G(NB,NB),B(NB,NB)

COMPLEX E(NB),ST(NT),2LINE(NLINES),YC(NLINES)

DO 10 I = 1,NB

Ah = V(I)*COS(D(I))
BB = V(I)*SIN(p(I))
E(I) = CMPLX(AA,BB)
CONTINUE

CALL CLF(MTOBO,NT,E,NB,ST,ZLINE,YC,NLIXNES)
LINE FLOW CALCULATION USING CURRENT V ARD D VALUES

DO 20 I = 1,NT
PLC(I) = REAL(ST(I))
QLC(I) = AIMAG(ST(I))
CONTINUE

RETURK
EXD

2k 3 3k ok e e 2k 2k A 3 ok sk ok e 3 2k 3 3k 3k ok Ok e ik 2 3k ke e 2k 3k ok e ok ok ok kK

SUBROUTINE PQCAL(P,Q,¥,D,B,G,NB)
K ke o s b e o o ek o ok o ok 9 3k ok o ok 3ok Sk ke K ok ok ok ok 3k ok ok ok ok ok oK

REAL P(NB),Q(NB),V(NB),D{(NB),G(NB,EB),B(NB,NB)

DO 30 I=1,NB
P(I)=0.0

Q(I)=0.0

DO 25 J=1,NB

IF(6(I,J).EQ.0.0.AND.B(I,J).EQ.0.0)G0 TO 25
DIJI=D(I)-D(J)

SINDIJ = SIN(DII)

COSDIJ = COS(DII)

P(I) = P(I) + V(3)*(G(I,J3)*C0SDIJ + B(I,J)*SINDIJ)
QCI) = Q(I) + V(3)*(-B(I,J)*COSDIJ + G(I,J)*SINDIJ)
CONTINUE

P(I) =P(I)*V(I)

Q(T) = Q(I)*V(D)

COXTINUE
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RETURN
END
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SUBROUTINE RANDOM(R,RAN)
ke o ok s e ok o 3 3K ok K ok ok o o o o o ok o 3 o oK oK

THE PROGRam IS 4 RANDOM PROGRam TO GET THE RANDOM
NUMBER. R IS A ’SEED’ AND RAN IS A RANDOM NUMBER
INTEGER R,4

R=R*2045+1497794

4=R/1048576

R=R-4%1048576

RAN=1.DO*FLOAT(R)/1048576.D0

RAN=(RAN-0.5)*2

RETURN

END

ok sk ok sk sk o e K kK 6 K 6 ok o 3 o ook 3 K o ok o o koo ok o koK ok ok ke koK o o R Rk K o K o 3K K Ko o o o
SUBROUTINE FRANK(¥B,NL,NNBB,K1,KMAX,CRIT,P,PSP,Q,QSP,
iV,D,CONN,G,B,JK11,JK12,JK21,JK22 ,FM,DFM,FIN,¥FIK,NR,NEW)

ok o k5 o 3 3K 30 2 2 2 K S 3k 6 36 3K 26 K K K 3 6 K K e KKK o oK oK o 3k K ok ok ok ok K o o Sk ok 3 ok ok ok ko

IF THE FACTORIZED FM IS AVAILABLE AND THE FIXED JACOBIAN
METHOD IS TO BE USED USING THAT FM, THEN NEW=0

THIS SUBROUTINE CALCULATES THE NODAL VOLTAGES V AND D
USING EITHER NR METHGD (FJM = 0) OR THE FIXED JACOBIAN
METHOD (FJM = 1). BEFORE CALLING THE SUBROUTINE,
INITIAL VALUES FOR V AND D MUST BE SPECIFIED.

NB # OF BUSES

K1 # OF LOAD NODES + 1

K2 # OF LOAD NODES + 2

KL # OF LOAD NODES

K # OF ITERATIONS FOR CONVERGENCE

KM&X MAXIMNUM # OF ITERATIONS ALLOWED
CRIT CONVERGENCE CRITERION
ITEST  CONVERGENCE TESTING INDICATCR

INTEGER DFM,FJM
REAL JK11i{XB,NB),JK12(¥B,NB),JK21(¥B,NB),JK22(NB,NB)
REAL P(NB),PSP(NB),Q(NB),QSP(NB),V(NB),D(NB),CONN(NNBB)
REAL G(NB,NB),B(NB,NB),FM(DFM,DFM)
K=0
IF(NEW.NE.1)GO TO 37

10 CALL PQCAL(P,Q,V,D,B,G,NB)
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CALL JACOBB(JK11,J¥12,JK21,JK22,FM,P,Q,V,D,NB,DF¥,K1,B,G)
CALL FACTOG(DFM,FM)

35 CONTINUE
IF(FJM.NE.1 )60 TO 40

37 CALL PQCAL(P,Q,V,D,B,G,NB)

40 CALL DELTAA(PSP,QSP,P,Q,CONN,NB,NNBB)
CALL TESTPOO(NB,NNBB,K1,ITEST,CRIT,CONN,PSP,QSP,K,FJIM,MFJI¥,NR)
IF(ITEST.EQ.1.0R.ITEST.EQ.2)G0 TO 60
IF{K.LT.KMAX)GD TO 45
WRITE(6,150)KMAX ,FIN

150 FORMAT(15X,22HFAILED TO CONVERGE IN ,IZ,
126HITERATION BY METHOD FJM = ,I2//)
GO TO 60
45 CALL UTIONN(NB,NNBB,DFM,CONN,FM)
DO 50 I=2,HB
D(I) = D(I) + CONN(I-1)

50 CONTINUE
DO 55 I = 2,Ki

55 V(I) = V(I)*(1.0 + CONN(I + NB - 2))

K = K+1

32 IF(FJM.EQ.1)G0 TO 35
GG TO 10

60 RETURN
END
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