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Decomposing the Non-Product Queueing 

Lattice Through Genetic Algorithm 

Electrical and Computer Engineering Department 

Wei Han 

Abstract 

In this paper, a Genetic Algorithm technique is adapted to decompose 

the state transition lattice of a class of non-product form queueing models. 

Genetic Algorithms are search algorithms based upon the mechanics of nat- 
• 

ural genetics. They combine a survival-of-the-fittest among string structures 

with a structured, yet randomized, information exchange to form a search 

algorithm with some of the innovative flair of human search. While random-

ized, genetic algorithms are no simple random walk. They efficiently exploit 

historical information to speculate on new search points with inproved perfor-

mance. Here genetic algorithms is applied to a non-product queueing lattices 

optimization problem. Only the lattice of type A structure are considered. 

By applying this technique, the lattice is decomposed into solvable subsets 

which can be solved sequentially and independently. 
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Chapter 1 

Introduction 

1.1 Product and Non-Product Form 

In studying the behavior of computer systems, queueing network models are a useful 

tool for evaluating performance and studying the interaction of resources, software 
• 

and workload[1]. The product form solution of the balance equations, when it ex-

ists, plays an important role in analyzing such queueing network models. Product 

form solutions are of great interest because the direct numerical solution of balance 

equations is computationally expensive. 

In [2] it is shown that specific structure in the state transition lattice leads to a 

sequential method of solution. The method is sequential either in terms of individual 

state or in terms of groups of states. In both cases, substantial computational savings 

are possible. A great deal of research has been performed on the subject of product 

form solutions. Originally, Jackson described the equilibrium state probabilities for 

open networks of queues with a single class of jobs, Poisson arrival statistics, and 

exponential service times[3]. These probabilities were of a characteristic "product 

form": 

p(ni, n2, • • • , nm = Pi (ni)P2(n2) • • • Pm(nm) 

1 



Later, Gordon and Newell analyzed closed queueing networks with each station 

having an exponential service time distribution[7]. The equilibrium states probability 

as : 

P(1111 n2 )  • • • , rim) = 11 fi(ni) (1.2) 
G(N) . 

where G(N) is a normalization constant chosen to make all the feasible state 

probabilities sum to one. N is the total number of jobs. The fi are akin to the 

marginal probabilities of (1.1). 

Product form solutions are of great interest because the direct numerical solution 

of balance equations is computationally expensive. While the calculation of G(N) 

may not be trivial [5], the evaluation of product form solutions is still computationally 

and analytically preferable to solving to very large systems of linear equations. In 

[2] it was shown that the existence of the product form solution corresponds to a 

decomposition of the state transition lattice (complex) into elementary geometric 

building blocks (cells). 

There is a similarity between the balance equation of queueing network state 

transition lattices and current conservation equations of resistant circuits. Naturally, 

the flow in the former involves probability flux[9] rather than current. Transition rates 

are akin to conductance and equilibrium probabilities are akin to voltages. There are 

three significant differences though. There is a scaling of equilibrium probabilities 

to unity which induces probability flux flow in place of voltage sources. The flow 

direction are predetermined from the transition directions. Finally, the transition 

rates are labeled in a patterned manner from the queueing schematic. The existence 

of product form solutions has been characterized in terms of certain types of queueing 

networks. That is the algebraic topology of the state transition lattice, shown in 

9 



Fi,ure 1.1: Product Form 



fig 1.1. 

Non-product form queueing networks are far less likely to have a closed form 

solution for the equilibrium probabilities. It is shown in fig 1.2. Direct solution tech-

niques are prohibitively expensive. Techniques analogous to that of the z-transform 

can sometimes be used to determine distributions of interest [1,8]. In [1] the sequential 

decomposition technique was described. Conclusions are given in Chapter 4. 

1.2 Sequential Decomposition 

This paper deals with the exact Computation of the state probabilities of a class 

of non-product form queueing networks which is of interest for communication and 

computation system. It is shown that specific structure in the state transition lattice 

leads to a sequential method of solution. The method is sequential either in terms of 

individual state or in terms of groups of states. 

In [8] a class of non-product form networks is described whose state transition 

lattices can be shown to be equivalent to a lattice tree of simplexes. In this "flow 

redirection" method the lattice geometry is manipulated by equivalence transforma-

tions. Sequential decomposition refers to the related process of solving one subsets of 

states at a time for the equilibrium probabilities: 

Definition 1.1: a solvable subset of queueing network states is a subset of states 

for which the equilibrium probabilities can be determined without regarding to the 

equilibrium probabilities of the remaining unknown states. Here probabilities are 

determined with respect to a reference probability. 

A simple example is presented in Fig 1.3. States S1 and S2 form a solvable 

subset. The equilibrium probabilities can be determined without regarding to the 

values associated with the other states. This is done through the following global 

4 
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Figure 1.2: Non-Product Form 
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(1.3) 

Figure 1.3: A solvable subset 
a 

balance equations: 

(a + .3)130 = 71)]. + 0132 

aP2 =-- 7Pi (1.4) 

These equations can be solved for the probabilities p1  and p2  as a function of 

reference probability po. In fact. a more general principle can be established. The 

method of sequential decomposition is applicable to queueing systems whose states 

have the geometry shown in Fig 1.4. Here each circular chister represents a state or 

a group of states. Consider the jai cluster, the rule is that there must be only one 

state. with unknown probability, external to the cluster from which a transition(s) 

entering the cluster originates. 
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Figure 1.4: The basic structure of Type A 
m 

The clusters are solved sequentially, starting from the first cluster to the second 

and so on. Note that there is no restriction on the number of transitions which may 

leave the ith cluster for destination in the j = i + 1, i + 2, • • •, cluster. The solution 

equations may not be unique. 

Note also that the direct solution of linear equations takes time proportional to 

the cube of the number of equations. If N states can be solved as M states then the 

computational effort is proportional to (N/M)3  * M rather than N3. 

Two types of the structure which allow the state transition lattice to be decom-

posed into solvable subsets was obtained in [2]. The first type of structure is illustrated 

in Fig. 1.4 and Fig. 1.6. Here each circular subset represents a state or a group of 

states. For the ith subset the rule is that there must be only one state. with unknown 

probability, external to the subset from which a transition(s) entering the subset to 

\ithe second and so on. There is no restriction on the number of transition .which may 



leave the ith subset for destinations in the j = i 1, i 2, • • • subsets. This type of 

structure is type A structure. 

The second type of structure is illustrated in Fig. 1.5. Here the first subset consists 

of a single state. The remaining subsets each consist of a state or a group of states. 

These are arranged in a tree type of configuration with the flow between subsets from 

the top of the diagram to the bottom and a return flow from the bottom level back 

to the top level. The subsets may be solved from the top to the bottom. Transitions 

may traverse several levels as long as the direction of flow is downward. This type 

referred to as Type B structure. 

In this paper, only Type A structure is considered to be decomposed a state 

transition lattice into a number of solvable subsets, each of which can be solved inde-

pendently, by using Genetic Algorithri. The state transition of Type A is illustrated 

in Fig. 1.6. 

S 



9 

Figure 1.5: The basic structure of Type B 
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Figure 1.6: A typical example of Type A lattice 



Chapter 2 

Genetic Algorithm 

2.1 Introduction 

Upon previous discussion, the tas)s becomes an optimization problem of objective 

function. While the optimization problem itself is unremarkable (a straightforward 

parameter optimization problem whicli has been solved by other methods), the ge-

netic algorithm approach we adopted is noteworthy because it draws from the most 

successful and longest lived search algorithm. Further more, the GA approach is 

provably efficient in its exploitation of important similarities, and thus connects to 

our own notions of innovatative or creative search. 

Genetic Algorithm, developed by John Holland, his colleagues and his students 

at the University of Michigan, provides robust and efficient search in complex spaces. 

Actually, Genetic Algorithms are search algorithms based upon the mechanics of 

natural genetics. Survival of the fittest among string structures and structured yet 

randomized information exchanges are the basic philosophies behind these algorithm. 

While randomized, genetic algorithm are no simple random walk. It is search proce-

dure that uses random choice as a tool to guide a highly exploitative search through 

a coding of a parameter space. They have been applied to a variety of function opti-

mization problems, and also, combinational problems such as the Travelling Salesman 

11 



Problem. 

GA are different from the normal search methods encountered in engineering op- 

timization in the following ways: 

1. GA work with a coding of the parameter set not the parameters themselves. 

2. GA search from a population of points. 

3. GA use probabilistic not deterministic transition rules. 

Genetic algorithm requires the natural parameter set of optimization problem to 

be coded as a finite length string. A variety of coding schemes can and have been 

used successfully. Because GAs wak directly with the underlying code they are not 

dependent upon continuity of the parameter space and derivative existence. 
• 

In many optimization methods, we move gingerly from a single point in the de- 

cision space to the next using some decision rule to tell us how to get to the next 

point. This point-by-point method is dangerous because it often locates false peaks 

in multimodel search spaces. GAs work from a database of points simultaneously (a 

population of strings) climbing many peaks in parallel, thus reducing the probability 

of finding a false peak. 

Unlike many methods, GAs use probabilistic decision rules to guide their search. 

The use of probability does not suggest that the method is simply a random search, 

however. Genetic algorithms are quite rapid in locating improved performance. 

A simple Genetic Algorithm consists of three operators: 

• Reproduction 

• Crossover 

• Mutation 

12 



With our simple genetic algorithm we view reproduction as a process by which 

individual strings are copied according to their fitness(fitness is defined as the non-

negative figure of merit we are minimizing, thus, the fitness in genetic algorithm 

work corresponds to the objective function in normal optimization work). Highly fit 

strings received higher numbers of copies in the mating pool. There are many ways 

to do this; we simply give a proportionately higher probability of reproduction to 

those strings with higher fitness (objective function value). Reproduction is thus the 

survival-of-the-fittest or emphasis step of the genetic algorithm. The better strings 

make more copies for mating than ,the worse. 

The rapid convergence usually occurs when super individuals appear in the pop-

ulation. These super individuals will be rewarded with a large number of offspring in 

the next generation. Since the population size is typically kept constant, the number 
8 

of offspring allocated to a super individual will prevent some other individuals from 

contributing any offspring to next generation. These super individuals could be the 

sub-optimal solutions for the problems, but when they dominate the reproduction 

process, the search could no longer progress to reach the real optimal solution. Var-

ious methods have been proposed to control rapid convergence. One way to control 

rapid convergence is to control the range of trials allocated to any single individual, so 

that no individual receives many offspring. The ranking system is one such alterna-

tive selection algorithm. In this system, each individual receives an expected number 

of offspring which is based on the rank of its performance and not on the magnitude. 

In this paper, the ranking system where the amount of offspring reproduced depends 

on its ranking of performance and not on the magnitude is adopted. 

After reproduction, simple crossover may process in two steps. First, members of 

the newly reproduced strings in the mating pool are mated at random. Second, each 

13 



pair of strings randomly select two positions in each string and swap all the characters 

between these two positions to create two new strings. More sophisticated crossover 

techniques are proposed in [10][11] for individual problems. The crossover similar 

to the one developed in [10] is used in this paper. The process of reproduction and 

crossover in a genetic algorithm is in this kind of exchange. High-performance notions 

are repeatedly tested and exchanged in the search for better and better performance. 

Mutation is the occasional random alteration of the value of a string position. It 

is not frequently used in either the artificial or the natural genetic systems, thus it is 

not adopted in this paper. 

So, our implementation of genetic algorithm is as follow: 

• Ranking 

• Reproduction 

• Crossover 

2.2 Model Description 

In previous sections, it is shown that Genetic Algorithms are mechanically quite 

simple, involving nothing more than random number generation, string copies, and 

partial string exchanges. However, together with the reproduction and the structure 

randomized, information exchange of crossover give genetic algorithms much of their 

power. 

In the algorithm, a population of n strings is numerical coded so that each of them 

is a complete IDEA or a prescription for performing a particular task. The population 

contains not just a sample of n IDEAS, rather it contains a multitude of NOTIONS 

and Ranking of these NOTIONS for task performance. Genetic Algorithms carefully 

14 



exploit this wealth of information about important NOTIONS by 

to reproducing quality NOTIONS according to their performance 

a crossing these NOTIONs with many other high performance NOTIONS from 

other strings. 

The format of the string in our decomposition problem is defined as follow: 

a1, a2, a3, ! • • - ! • • • am 

Here, ai  is the state id, M is the number of states in the lattice and ! marks the 

subset boundary. In Fig. 2.1, as an example, the state transition lattice consists 

of nine states which are grouped into three subsets with the dash lines marking the 

boundary. the corresponding string can be represented as 
e 

2 4 5! 01 3 6! 78 

The ranking of a certain string depends on the number of states in each subset 

and the number of transitions between subsets in its corresponding lattice. Thus the 

fitness or the object function of the string is defined as following: 

objective function = /V/ * (2.1) 

where M is the number of subsets in the string. The smaller value of fitness a string 

has, the higher rank it is granted. If there is a tie on the values of F's of different 

strings, then the size of subsets will assume the role of tiebreaker in the ranking 

determination. Since the computation time for solving a set of linear equations is 

proportional to the cube of the number of equations in that set, those strings with 

15 



lower transitions win higher ranks in the tiebreak. Here ni  is the number of states in 

the ith subset of the string. 

The compUtation time for solving a set of linear equations is proportional to the 

cube of the number of equations. This leads to the establishment of the second term of 

objective function. The rule of constructing a Type A structure yields the first term. 

Let Ti  denote the number of transitions, originating from the states with unknown 

probabilities and external to the ith subset, going into the ith subset and m denote 

the. number of subsets in one particular decomposition structure. To emphasize the 

significance of the structure which, satisfies the type A rule, Ti  is set to 0 if there 

is only one incoming transition originating from unknown states external to the ith 

subset. Once a structure is formed, in other words, a string is generated, every subset 

is inspected and the number of transitions from all subsets which are positioned after 

this subset is calculated. This grants Ti with its value. Ti  is decreased by 1 if it equals 

to 1 and remains its value otherwise. 

According to the rank of the string, certain number of offsprings are generated for 

each string on a predetermined basis in the reproduction procedure. The crossover is 

conducted in a fashion that is shown in the following example: 

Parent 1: 2 4 5 8! 0 1! 3! 6 7 
Parent 2: 0 1 3! 2 4 5 8! 7 6 

Starting from the left end of the strings, copy characters from parent 1 and parent 

2 to child 1 and child 2 until the first ! in both parents is met. 

Child 1: 2 4 5 
Child 2: 0 1 3! 

Crossover all the succeeding characters prior to the second ! in both parents. 

16 



Figure 2.1: Two parents before crossover 
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Child 1: 2 4 5 2 
Child 2: 0 1 3! 8! 

Note that the second ! is part of the crossover package. Repeat the above proce-

dure, i.e. alternatively copy and crossover the characters from parents to children, till 

the right end of the strings is reached. Crossover is an operation in which two "par-

ent" classifiers produce an offspring that is possibly important over both of them. But 

the crossover points above must be chosen quite carefully, or otherwise the offspring 

might have no improvement, or even a retrogression. The results are 

Child 1: 2 4 5 2 0 1! 6! 6 7 
Child 2: 0 1 3! 8! 4 5 3! 7 8 

The side-effect of the crossover is that states 2 and 6 appear twice in child 1 

but states 3 and 8 are left out. Modifications have to be made to ensure that the 

legitimacy of the lattice structure is maintained. Thus randomly choose one of the 

left-outs to replace the second 2 and check 

Child 1: 2 4 5 3 0 1! 6! 8 7 
Child 2: 0 1 3! 8! 4 5 2! 7 6 

if the subsets is legitimate. If not, randomly pick up another left-out for replace-

ment. If none of them are satisfied, separate this state and become a single-state 

subsets right after the above subset. Similar adjustments are made on the second 6 

as well as child 2 and the final products in this example are shown in Fig. 2.2. 

18 



Figure 2.2: Two new children after crossover 



Chapter 3 

Algorithm 

This algorithm is divided into five parts as follows: 

Step 1: Initialization. 
. 

1. For each state of the transition lattice, the following information is included: 
I 

• the number of its neighbors 

• each neighbor's ID 

• the transition information between the node and its neighbors 

2. Divide each string into several subsets randomly. 

3. According to the subset lengths obtained above, we start to generate the string. 

As discussed before, the next state is always picked up from the neighbor pool 

of current state. 

4. Repeat procedures 2,3 100 times to generate 100 strings randomly. 

Step 2: Determining the number of transitions. 

1. After initialization, we can calculate the number of transitions for each string. 

Only the number of transitions initiated from the state whose subset is behind 

20 



the current subset is considered. Also, if the transition number is the same, we 

calculate the E M3. Here M is the number of states in the ith subset. 

2. Repeat the above step 100 times till all data are found. Each datum carries the 

information of the number of transition and > 

Step 3: Rank the string according to its associated data. 

1. Now we rank the 100 strings by the number of transitions. If there is a tie, we 

break it by using the quantity of E 1123. 

2. If any string has more than pne copies that are generated during initialization, 

eliminate the extra copies to .avoid formation of super individuals. 

Step 4: Reproduce. 

Pick up the higher ranked strings and duplicate according to their rankings. This 

number can be adjustable upon the request. Remember that the higher ranking the 

string stands, the more number of copies it will receive. In my program, I simply 

selected the best 20 strings to be copied and discarded the rest of them. 

Step 5: Crossover. 

1. First we randomly pick up two strings from the population as the parents in 

crossover. 

2. After crossover, two child-strings are generated. If either of them contains illegal 

elements adjust it with the method mentioned above. 

Step 6: Simulation 

Repeat from step 2 through step 5 40 times. 

Step 7: Adjustment 

21 



According to the result, adjust subset length and reproduction number in order 

to obtain the better result. 

99 
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Figure 3.1: The first result of 55 structure 
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Chapter 4 

Conclusion and Further 
Suggestion 

4.1 Conclusion 

Genetic algorithm has been selected to decompose the state transition lattice of Type 

A strtucture. By dividing the lattice into several solvable subsets which can be solved 

sequentially, a large amount of computation time can be saved. 

4.2 Suggestion 

The result from the first round of simulation is not satisfied enough, because the 

initialized subset length is planned to obtain the zero transition. This results in large 

subsets, such as in the 5*5 structure, 15 nodes are grouped in one subset. Thus, large 

amount of computation is still needed. Therefore, I suggest further decomposition of 

this 15 nodes with algorithm in a second round. The result is obviously better. 

25 



Appendix A 

List of Program 

This program is a simulation progrdm for self-decomposition of algorithm for the state 

transition lattices of certain non-product queueing protocols. 

26 



THES25.0 Page: 1 
1: #include <stdio.h> /* 25 NODE strcture version */ 
2: #include <math.h> 
3: #define DATA 100 
4: #define DATAF 50 
5:  
6: int NODE; 
7: int Tran(DATA][2); /* array of 50 data's transition */ 
8: int minEDATA]; 
9: int aIDATA7[50]; /* 50 data */ 
10: int al[DATA][50]; 
11: int i, j, jind, impo, II, cn, nxn; 
12: int p, z, cc, variety, seed=1; 
13: int zpop, size, tnp, kin„total, c2; 
14: int flag[DATA]; 
15: double drand(); 
16: int neno[80]; 
17: int tneig[160]; 
18: int pop[25]; 
19: int B[80]; 
20:  
21: struct neighbor( 
22: int id; 
23: int status; 
24: ); 
25: struct nodeC 
26: int id; 
27: int no; 
28: struct neighbor nb[25]; 
29: ) n[25]; 
30: FILE *fp; 
31:  
32:  
33:  
34: main() 
35: ( 
36:  
37:  
38:  
39:  
40:  
41:  
42:  
43:  
44:  
45:  
46: int nn, mn, im, 1, ln, jd, in, x1, y1, jn, ii, jj; 
47: double drand(); 
48: srand(&seed); 
49: variety =DATA; 
50: NODE=25; 
51: for(x1=0; x1<NODE; x1++) 
52: n[x1).no=0; 
53: for(x1=0; x1<80; x1++) 
54: nenoCx1]=-1; 
55: i=j=0; 
56: if ((fp=fopen("input25","r"))==NULL) ( 
57: printf(" input25 file reading error !\n"); 
58: exit(1); 
59:  
60:  
61: for(im=0; im<NODE; im++)( 
62: fscanf(fp, "%d", &nn); 
63: mn =nn-n[im].no; 
64: In = n[im].no-1; 
65: for(1=1; l<=mn; l++)( 
66: fscanf(fp, "%d %d", &n[iml.nb[ln+l].id, &n[im].nb[ln+l].status); 
67: /*printf("im=%d n[im].id=%d n[im].status4d\n", im, n[im].nb[ln+l].id, n[im].nbEln+ll.status);*/ 
68: jd=n[im].nbIln+ll.id; 
69: jn = -n[im].nbEln+U.status; 
70: in = nEldl.no; 
71: n[jd].nbCinl.id = im; 
72: n[jd].nb[in].status = jn; 
73: n[jd].no++; 
74:  
75: n[im].no=nn; 
76:  
77: /* 
78: for(x1=0; x1<NODE; x1++)( 
79: for(y1=0; y1<n[x1].no; y1++) 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

1. Initialize the fifty groups of data 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/* 1) initialize the type A with node, neighbor and status */ 
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80: printf("x1=%d nEx17.id=%d nEx1J.stutas=%d\n", x1,n[x1].nb[y1).id, rax17.flb[y1].status); 
81:  
82: */ 
83: nxn=0; 
84: for(y1=0; y1<DATA; y1++){ 
85: for(x1=NODE; x1<(2*NODE); x1++) 
86: aEy11 [x17 = 0; 
87:  
88: for(y1=0; y1<DATA; y1++)C 
89: for(x1=0; x1<NODE; x1++) 
90: C a[yl] [x1)=-1; } 
91: ) 
92: for(x1=0; x1<DATA; x1++){ 
93: for (y1=0; yl<2; y1t+) 
94: Tran[x1) [y17 = 0; 
95:  
96: for(x1=0; x1<DATA; x1++)( 
97: for(y1=0; y1<2*NODE; y1++) 
98: a1(x1]Ey1]=0; 

100:  
101:  
102: /* 2) creat subset length for 50 groups of data */ 
103: i=j=0; 
104: for(i=0; i<variety; i++)( 
105: while (j<=NODE)C 
106: j = j+(int) 16*drand(); 
107: auil[NODE-1+11 = 1; /* if exceed the size? */ 
108:  
109: j=0; 
110: /* for */ 
111:  
112: /* 
113: for(y1=0; y1<variety; y1++)C 
114: for(x1=NODE; x1<2*NODE; x1++) 
115: printf("ss length, x1=%d aEy17(x1l4d\n",x1, alyll[x1]); 
116: } 
117: */ 
118: for(i=0; i<variety; i++)C 
119: 1=0; 
120: cc=c2=zpop=0; 
121: size = NODE-1; 
122: for(x1=0; x1<NODE; x1++) pop[x11=x1; 
123: for(x1=0; x1<80; x1++) nefloCx1]=-1; 
124:  
125: a[i] [j] = p = crand(); 
126: while(] <(NODE-1) ) 
127: C 
128: while((a[i][j+NODE] ==0) && (j<(NODE-1))) 
129:  
130: c2=n[p].no; /* c2 is total No. of neig */ 
131: neig(); 
132: /* printf("return p=%d", p); */ 
133: while( (cc>0) && (repeat()==1) && (1<(NODE-1))) 
134:  

135: /* printf("i=%d j=%d aEil[j]=%d\n", i, j, a[i] ID); */ 
136: z=(int) cc*drand(); 
137: p=neno[z]; 
138: if(z I= (cc-1))( /* cc is the index of array neno */ 
139: neno[z] = neno[cc-1]; 
140: nenoEcc-11=-1; 
141:  
142: cc--; 
143: ) 
144: if(repeat()!=1 && j<(NODE-1))( 
145: j++; 
146: a[i] = P; 
147: /* printf(" check i,i=%d j=%d %d\n", i, j, a[i]LW; */ 
148: inkill(); 

149:  
150: else 
151: a[i] [NODE+j] = 1; 
152: /* while ==0 
153:  
154: if(j != (NODE-1))C 
155: /* printf("######3\n"); */ 
156: j++; 
157: a[i][j]=p=crand(); 
158: for(x1=0; x1<80; x1++) neno[x1] = -1; 
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159: cc=c2=0; 
160:  

161: ) /* while j<NODE *1 
162: ) /* for */ 
163: /* 

164: for(ii=0; ii<variety; ii++)( 
165: for(jj=0; jj<NODE; jj++) 
166: printf("initial gene,ii=%d jj=%d aiiil[jj]=%d\n", ii, jj, a[ii]iii]); 
167: ) 
168: */ 
169:  
170:  
171: for(nxn=0; nxn<2; nxn++)(r- 
172:  
173: transition(); /* return array of value indicated transition of 50 group*/ 
174: /* pass a array of transition TranC501 to the sort function */ 
175: sort(); /* return array of 50 data by order */ 
176: /* pass the min150] which is by order */ 
177:  
178: kill(); /* kill the gene with same tr and cube n */ 
179:  
180: if(nxn==1)( 
181: for(i=0; i<variety; i++){ 
182: for(j=0; j<50; j++) 
183: a1EilEjl=0; 
184: a[i][j]=0; 
185: ) 
186: redo(); 
187:  
188:  
189: for(x1=0; x1<variety; x1++)( 
190: for(y1=0; y1<2; y1++) 
191: Trarax11[y1]=0; 
192:  
193:  
194: reproduce(); /* reproduce the best data, the most amount */ 
195: /* pass a[100] which is the best first 30 data of a1003 */ 
196: variety=DATAF; 
197: cross(); /* return two new generated legaeclata */ 
198: printf(" A NEW LOOP START variety=/.d nxn=%d\n", variety,nxn); 
199: for(x1=0; x1<variety; x1++)C 
200: for(y1=0; y1<2*NODE; y1++) 
201: a[x1][y1]=a1[x1][y1]; 
202: ) 
203: ) /* for */ 
204: ) /* main *1 
205:  
206: /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

207:  
208: Varieties functions 
209: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

210:  
211:  
212:  

213: /* 1) creat random node between 0-8 */ 
214:  
215: int crand() 
216:  
217: double dd; 
218: dd=0; 
219:  
220: dd=drand(); 
221: zpop =(int) (size+1)*dd; 
222: p = pop[zpop]; 
223: inkill(); 
224: return(p); 
225: ) 
226:  
227: /*inkill */ 
228: inkill() 
229: ( 

230: int x1; 
231: x1=0; 
232:  
233: while(p != pop[zpop]) 
234: zpop++;) 
235: if(zpopl=size)C 
236: pop[zpop] = pop[size]; ) 
237: pop[size] =-1; 
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238: size--; 
239: zpop=0; 
240: return; 
241: ) 
242:  
243: /* 2) generate random number which less than 1 */ 
244:  
245: double drand() 
246:  
247: double x, y; 
248: x = (double) rand(); 
249: y = (double) rand(); 
250: if ( x==y ) 
251: ++y; 
252: x = (x > y)? y/x:x/y; 
253: return( x); 
254:  
255:  
256:  
257: /* 3) check if new generated node is repeated previously */ 
258:  
259: int repeat() 
260:  
261: int ml; 
262: m1=0; 
263: LL=0; 
264:  
265: while ((ml<=j) && (p != a[i]Em1))) 
266: ml++; ) 
267: if(p==a[i] [ml]) L1=1; 
268: else 11=0; 
269: return(Ll); 
270:  
271:  
272: /* create a neighbor array to be ready to pick up by ss selection */ 
273:  
274: int neig() 
275:  
276: int xl, pp; 
277: xl=pp=0; 
278:  
279: for(pp=cc; pp<c2+cc; pp++)c 
280: neno[pp] = n[p].nb[pp-cc].id;) 
281: z=(int) (cc+c2)*drand(); 
282: cc=c2+cc-1; 
283: p=neno[z]; 
284: if(z != cc)C 
285: neno[z] = neno[cc]; 
286: neno[cc]=-1; 
287:  
288:  
289: return(p); 
290: ) 
291:  
292: /*********************************************************************/ 

293: /* 4) caculate the transition */ 
294: transition() 
295: C 
296: int ssI251 [25]; /* ss is the array of ss No. and ID */ 
297: int ssno, xl, yl, d2, tm, sid; 
298: int tk, tp, vary, tng, tran, tl; 
299: for(y1=0; yl<NODE; yl++) C 
300: for(x1=0; xl<NODE; xl++) 
301: ssIy1Mx17 = -1; 
302: ) /* intialize the ss array of the Max size NODE */ 
303: if(nxn>=1) printf(His it did transition\n"); 
304: for(i=0; i<variety; i++)t 

305: j=0; 
306: for(x1=0; xl<=ssno; xl++){ 
307: for(y1=0; yl<=NODE-1; yl++) 
308: ss[xl] [y1]=-1; 
509: /* reinitialize the ss array before start a new germ */ 
510: for(x1=0; xl<=160; xl++) tneig[xl]=-1; 
511: xl=y1=ssno=sid=0; 
512: while(j<NODE) 
513:  
514: while(a[i]Ej+NODE1 != 1 && j < NODE) 
515:  
516: ss [x1] Eyll =a Ill [j]; 
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317: y1++; 
318: j++; 
319: ssno=xl; 
320:  
321: if(j I= NODE)( 
322: ss[x1](y1)=a[ilEjl; 
323: ssno=xi; 
324: sid=sid+(y1+1)*(y1+1)*(y1+1); 
325: y1=0; 
326: x1++; 
327: j++;- 
328:  
329: ) /* while j<NODE */ 7* finish one gene with ss */ 
330: j=NODE-1; 
331: while(a(i)[j+NODE] ==0){ 
332: 1--;) 
333: sid=sid+(NODE-1-i)*(NODE-1-j)*(NODE-1-j); 
334: Tran[i][1]=sid; /* finish cube of n as 2nd element in array of Tran */ 
335:  
336:  
337: tk=tran=0; /* start with the frist subset */ 
338: while(tk<ssno)C /* end with ssno-1 */ 
339: x1=tp=t1=tng=tran=0; 
340: for(y1=0; y1<=160; y1++) tneig[y1]=-1; 
341: while(ss[tk]Ex11 I= -1)( 
342: tp=ssEtkllx11; 
343: t1=nEtpl.no; 
344: tm=0; 
345: tneigEtng+807=tp; /* store source node ID in last 80 position */ 
346: while(tm<t1)C 
347: tnp=n[tp].nb[tm].id; 
348: tneig[tngl=tnp; 
349: tng++; 
350: tm++; 
351: ) /* store current neig of node in ss[a] in tneigEtng] */ 
352: x1++; 
353: ) 
354:  
355: tng=0; 
356: while(tneig[tng]I=-1)( 
357: tnp=tneigang]; 
358: tm=tk+1; 
359: while(tm<=ssno)( 
360: x1=0; 
361: vary=79; 
362: whileanp!=ss[tm)(x1) && ss[tm][x1]!=-1) 
363: x1++; } 
364: if((tnp==ss[tm][xl]) && (tneigEtng+80]!=-1)) 
365:  
366: tp=tneig[tng+80); 
367: if(nEtpl.nb[0].status<=0) 
368: tran++; 
369:  
370: else if((tn9==ss[tm]Ex1]) && (tneig[tng+801==-1)) 
371:  
372: d2=1; 
373: while(tneig[tng+vary]==-1) 
374: C vary--; 
375: d2++; 
376:  
377: tp=tneigEtng+varyl; 
378: if(nEtpl.nb[d2].status<=0) 
379: tran++; 
380:  
381: tm++; 
382: 3 /* while tm<=ssno */ 
383: tng++; 
384: ) /* while tng is out of supply */ 
385: if(tran==1)C 
386: tran=0; 
387:  
388: else Tran(i) [0]=tran+Tran[i] [0]; 
S89: tk++; 
S90: ) /* big while tk<=ssno */ 
S91: ) /* for loop */ 
S92:  
S93: return; 
S94: ) /* transition function */ 
;95: /**************************************************************************/ 
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96:  
97: 1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1 
98: /* 5) selection sorting */ 
99: sort() /* Tran[q] is for calculate the transition from origial data */ 
00: /* min[tr] is sorted array of transition */ 
1: C 
2: int tempi, temp2, con, tr; 
3: for(con=0; con<DATA; con++)( 
4: min[con]=0; 
5: flag[conl=0; 
6:  
7: i=tr=templ=temp2=0; 
8:  
.9: flag[tr] = i; 
.10: min[tr] = Tran[i] NJ; /* initial the first element */ 
1 1: for(i=1; i<variety; i++)( 
12: if(TranCil CO] < minCtr] I I Tran[i] [0] == min[tr] )C 
13: con=tr; 
14: /* printf("go into if loop tr=%d\n", tr);*/ 
15: whi le(min[tr] > TranCil [0] &8, tr>=0)C 
e16: tempi = min[trl; 
f17: temp2 = flag Etr]; 
f18: min[tr] = Tran[i] [01; 
f19: flagEtr] = i; 
,20: min[tr+1] = tempi; 
f21: flagCtr+1] = temp2; 
,22: /*printf("great than tr4d fl=%d min=%d i=%d\n", tr,flag[tr],min[tr],i); */ 
23: tr--; 
,24: ) /* whi le loop */ 
f25: if(Tran[i] E01==min[tr] &8, tr>=0)C 
f26: templ=f lag Etr1; 
.27: /* printf("if equaltr=%d fl=%d min=%d i=%d\n", tr, flagEtrl ,minCtrl ,i);*/ 
428: if ((TranCi] [1]<Tran[templ] [1] 11 TranCi] [1]==TranCtempll [1] ) && tr>=0)( 
.29: 
;30: whi le((Tran[i] E01==Tran[templ] [0]) && (TranCi] Ell <Tran [tempi] [1] I I TranCi] El] ==Tran [tempi] C11) && tr> 
;31:  
+32: tempi = minCtr]; 
;33: temp2 = flagCtrl; 
;34: min[tr] = TranCi] [0]; 
+35: flagEtr] = i; 
+36: minCtr+11=templ; 
+37: flagEtr+11 = temp2; 
+38: templ=f lag E--trl ; 
;39: /* printf("if Tran[il<TranEtemplli=%d", i);*/ 
+40: /* printf("tr=%d flag=%d min4d\n", tr, flagEtrl, min[tr]);*/ 
;41: ) /* whi le */ 
;42: /* if loop */ 
;43: else( 
+44: min[++tr]=Tran[i] [0]; 
+45: flagCtrl=i; 
;46: /* printf("keep the same order put into min arrayi=%d", i);*/ 
;47: /*printfetr4d min[trl=%d flagEtr]=7.d\n", tr, min[tr), flag[tr] ); (*/ 
;48:  

;49: ) 
;50: tr=con+1; 
;51: ) /* big if loop */ 
+52: else( 
+53: flag[++tr] = i; 
+54: min[tr] = Tran[i] [0]; 
;55: /*printfeless than tr4d fl=%d min=%d i=%d\n", tr,flag [tr.] ,minEtrl ,i); */ 
;56: ) 

+57: /* printf("&&&&&&&&&&&&&&&&&&&&just before returntr=%d\n", tr);*/ 
;58: /* for */ 
;59:  
;60: return; 
+61: ) /* sorting function */ 
'+62: 
;63: 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

;65: kill() 
;66: C 
;67: int yy, yl; 
;68:  
;69: impo=variety-1; 
;70:  
;71: for(i=0; i<impo; i++)( 
;72: kin=1; 
;73: while((min[i]==min[i+kin]) && (Tran[flagifi] Ell==Tran[flag[i+kin]] && (i<impo)) 
;74:  
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475: if(compare()==0)C 
476: /*printf("i=%d i+kin=%d f[i]=%d f[i+kin]=%d\n", i,i+kin,flag[i],flag[i+kin]) * 

477:  
478: for(y1=i+kin; y1<impo; y1++)( 
479: min[y11=min[y1+1]; 
480: flag[y1]=flagy1+1]; 
481: ) 
482: /* printf("i=%d i+kin4d impo4d\n", i, i+kin, impo);*/ 

gib 

483: impo--; 
484: ) /* if do compare */ 
485: else kin++; 

486: ) /* while */ 
487: 1 /* for */ 
488:  
489: printf("after kill same value,variety=%d impo=%d\n",variety,impo); 
490: /* 
491: if(nxn==0)( 
492: for(y1=0; y1<variety; y1++)( 
493: printf("after kill same, min[y1]=%d flag[y1]=%d\n", min[y1],flagy1]);) 
494: for(y1=0; y1<variety; y1++)( 
495: for(yy=0; yy<2*NODE; yy++)C 
496: printf("y14d yy=%d a[y1][yy]=%d\n", y1, yy,a[y1][yy]); ) 
497: ) 
498: ) */ 
499:  
500: y1=flag[0]; 
501: printf("y1=%d Tr[y1] [0]=%d Tr[y1] [1]=%d\n", Y1,Tran[y1][0],Tran[y1][1]); 
502: printfemin[0]=%d flag[0]=%d\n", min[0],flag[0]); 
503: for(yy=0; yy<2*NODE; yy++) 
504: printf("yy=%d a[y1][YY]=%d\n", YY,a[y1][YY]): 
505:  
506: return; 
507: ) /* kill function */ 
508:  
509: /* compare two gene are they the same */ 
510: int compare() 
511: C 
512: int cim, x1, xy, temp, x, cp; 
513: int com[2] [25]; 
514:  
515: for(xy=0; xy<NODE; xy++)( 
516: com[0][xy]=-1; 
517: com[1] [xy]=-1; 
518:  
519: xl=flag[i]; 
520: /* printf("in compare, x1=%d i=%d\n", x1, i); */ 
521: for(xy=0; xy<2; xy++)C 
522: cp=cim=j=temp=0; 
523: com[xy][0]=a[x1][j]; 
524: x=1; 
525:  
526: while((a[x1][j+NODE] != 1) && (j<NODE)) j++; 
527: /* printf("j4d Node No. of each ss\n", j); */ 
528: if(j!=NODE)C 
529: wh i le(x<=j ){ 
530: if(com[xy] [cim] > a[x1] [x] 
531: cp=cim; 
532: whi le((com[xy] Eciml >a [x1] [x] ) &8, (cim>=0))C 
533: temp=com[xy][cim]; 
534: com[xy][cim]=a[x1][x]; 
535: com[xy][cim+1]=temp; 
536: cim--; 
537:  
538: cim=cp+1; 
539: /* printf("it is great than cim4d x=%d\n", cim, x); */ 
540: ) 
541: elseC 
542: com[xy] [++cim] =a [x1] [x]; 
543: ) 
544: x++; 
545: ) /* while loop */ 
546: ) /* if loop */ 
547: x1=flag[i+kin]; 
548: ) /* big for loop */ 
549: /* 
550: if(nxn==1)( 
551: for(x=0; x<NODE; x++){ 
552: printf("com[0][x]=%d com[1][44d\n", com[0] [x], com[1][x]); ) 
553: ) 
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554: */ 
555:  
556: for(x=0; x<NODE; x++)( 
557: if(comE0Hx]!=com[1][x]) return(1); 
558: ) 
559: return(0); 
560: ) /*compare function called from kill */ 
561:  
562:  
563: /* to control the size of population, reproduce from the best */ 
564: control() 
565: C 
566: int fa, sin; 
567:  
568: fa=sin=0; 
569: printf("go to control loop $$$$$$$$$$$$$$, i=%d variety=%d\n", i, variety); 
570:  
571: while(i<DATAF)( 
572: sin=flag[fa); 
573: fa++; 
574: for(j=0; j<2*NODE; j++) 
575: { a [i] (j)=a1 [sin] ED; ) 
576: i++; 
577:  
578: return; 

579: ) /* control function called from reproduce */ 
580:  
581: /* this function is for redecompose the best gene, set to 10 */ 
582: redo() 
583:  
584: int re_a[50] [50]; 
585: int real[50][30]; 
586: int nx; 
587: /* int re_NODE, re_temp, act_j1, re_conl, i1, nx,,,j1; */ 
588: /* 
589: printf("This is the last turn in redo\n"); 
590: re_conl=0; 
591: i1=flag[0]; 
592: re_NODE=15; 
593: for(j=0; j<2*re_NODE; j++)( 

594: re_a[0][j]=0; 
595: } 
596: j1=j=0; 
597: re_a[0][1]=a[i1][j]; 
598: for(j=1; j<re_NODE; j++)c 
599: if(re_a[0][11]>aCi1l[MC 

500: act_j1=11; 
501: while((re_a[0](j1] > a[i1] ED) && (j1>=0))( 
502: re_temp=re_a[0][11]; 
503: re_a[0][11]=a[11][1]; 
504: re_a[0][j1+1]=re_temP; 
505: j1--; 

506: ) 
507: j1=act_j1+1; 
508: ) 
509: else re_a[0]L++j1)=a[i1][1]; 

510: ) 
511: */ 
512: for(i=0; i<variety; i++)k 
513: for(j=0; j<30; j++) 

514: re_a1[i][j]=0; 
515: ) 

516: for(i=0; i<variety; i++)( 
517: for(j=0; j<15; j++) 

518: a[i][j]=j; 
519: ) 

520:  
521: for(i=0; i<variety; i++)( 
522: j=0; 

523: while (j<=15)( 
524: j = j+(int) 12*drand(); 
525: re_al[i][15-1+D = 1; /* if exceed the size? */ 
526:  
527: ) /* generate the ss length for 15 node */ 
528:  
529: a[0][15]=19; 
530: a[0][16]=18; 
531: a[0] [17]=22; 
532: a[0] [18] =21; 
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633: a[0][19]=16; 
634: a[0][20]=15; 
635: a[0][21]=20; 
636: a[0][22]=17; 
637: a(07[237=23; 
638: a[0][24]=24; 
639:  
640: for(i=0; i<variety; i++){ 
641: for(j=15; j<25; j++) 
642: aEil[j]=a(OlEj]; 
643: ) 
644: for(i=0; i<variety; i++)( 
645: for(j=15; j<30; j++) 
646: a[i][1+103=rea1[1][j]; 
647:  
648: a[0][40]=1; 
649: a[0][41]=1; 
650: a[0][42]=0; 
651: a[0][43]=0; 
652: a[0] [44]=0; 
653: a[0] [45]=0; 
654: a[0] [461=0; 
655: a[0][47]=1; 
656: a[0][48]=1; 
657: a[0][49]=1; 
658:  
659: for(i=0; i<variety; i++)( 
660: for(j=40; j<50; j++) 
661: aCi] [j]=a[0] CD; 
662: ) 
663: for(i=0; i<variety; i++)( 
664: for(j=0; j<15; j++) 
665: re_a1Cil[1]=j; 
666: ) 
667:  
668: for(i=0; i<variety; i++){ 
669: for(j=0; j<50; j++) 

670: re_a[i] Ejl=a[i] [j]; 
671: ) 
672:  
673: for(i=0; i<variety; i++)( 
674: for(j=0; j<50; j++) 

675: a[i] 10=0; 
676: ) 
677:  

678: for(i=0; i<variety; i++)( 
679: for(j=0; j<30; j++) 

680: aEil [j]=re_a1 N] [j]; 
681: ) 
682:  
683:  
684: for(nx=0; nx<20; nx++)C 

685: NODE=15; 
586: cross(); 
687: for(i=0; i<variety; i++)( 
588: for(j=0; j<30; j++) 
589: re_al [1] Ej7=a1[1] CD; 
590:  
591: for(i=0; i<variety; i++)( 

592: for(j=0; j<50; j++) 
593: a[i][j1=0; 

594: ) 
595: for(i=0; i<variety; i++)( 
596: for(j=0; j<15; j++) 
597: aMED=re_a1[i] [j]; 
598: ) 
599:  
700: for(i=0; i<variety; i++){ 
701: for(j=15; j<30; j++) 

702: aEi1[1+10]=re_alCi][j]; 
703:  

704: for(i=0; i<variety; i++)( 
705: for(j=15; j<25; j++) 

706: a[i][jj=re_a[i][1]; 
707: ) 

708: for(i=0; i<variety; i++)( 
709: for(j=40; j<50; j++) 

710: a[i][1]=re_a[i][j]; 
711: ) 
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712: NODE=25; 
713: for(i=0; i<variety; i++)( 
714: for(j=0; j<2; j++) 
715: TranCi] [j]=0; 
716:  
717: transition(); 
718: printf("this is after transition\n"); 
719: sort(); 
720: kill(); 
721: for(i=0; i<variety; i++){ 
722: for(j=0; j<50; j++) 
723: a(il[j]=0; 
724:  
725: for(i=0; i<variety; i++) 
726: for(1=0; j++) 
727: a(i][j]=re_a1[i][j]; 
728: ) 
729: NODE=15; 
730: reproduce(); 
731: printf("nx4d\n", nx); 
732:  
733:  
734: return; 
735: ) /* function of redo */ 
736:  
737:  
738: /* reproduce the best data according to the best transition */ 
739: reproduce() 
740: ( 
741: int ind1, ind, y1, con, copy; 
742: for(i=0; i<variety /*50*/; i++)( 
743: for(j=0; j<2*NODE; j++) 
744: al[i][j] = a[l][j]; 
745:. ) 
746:  
747: for(i=0; i<variety; i++)( 
748: for(1=0; j<2*NODE; j++) 
749: a(i][j]=-1; 
750:  
751:  
752: i=con=yl=ind=indl=0; 
753: copy=7; 
754:  
755: while(i<DATAF) 
756: {/* reproduce the first 15 data from 16--1 copies by decr */ 

757: ind1=flag[ind3; 
758: con=con+copy; 
759: for(i=y1; i<con; i++)( 
760: for(j=0; j<2*NODE; j++) 
761: a[i][j]=al[ind1](j3; 
762: /* for */ 
763: y1=i; 
764: ind++; 
765: if((copy !=1) && (copy>0)) copy--; 
766: if((impo<49) && (ind==impo+1))( 
767: control(); 
768:  
769: ) 
770:  
'71: for(i=0; i<variety; i++)( 
'72: for(j=0; j<2*NODE; j++) 
'73: al(i][j]=-1; 

'74: ) 
'75:  
76: return; 
'77: ) /*reproduce function */ 

'79: /* this function serve the purpose of inhibiting the node which geat tan 14 
'80: re_cal() 

( 
'82: int xx, re_m, 
133: 
'84: re_id=15; 
'85: re_m=0; 
'86: for(xx=0; xx<5; xx++)( 
'87: while((reid != BEre_ml) && (13(re_m3 != -1)) re_m++; 
'88: if(re_id==B(re_mi)( 
'89: 13(re_m3=BEtotal-1]; 
'90: B[total-1]=-1; 

* 



791: total--; 
792: cn--; 
793:  
794: re_id++; 
795: ) 
796: return; 
797: ) 
798:  
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799: /*********************************************************************/ 
800: /* 6) cross over to generate new data */ 
801: cross() 
802: C 
803: struct repeat( 
804: int no; 
805: int position[30]; 
806: )o[25]; 
807: int x1, y1, np, nc, nd, z1, f, temp, m,nz; 
808: int 1, k, n2, r,t, q, yy, re, g; 
809: int napp[25]; 
810: yy=0; 
811: q=variety-1; 
812:  
813: while(q>=0)( 
814: re=1; 
815:  
816: for(y1=0; y1<NODE; y1++)C 
817: o[y1].no = 0; 

818: for(x1=0; x1<30; x1++) 
819: o[y1].position(x1] = -1; 
820: ) 

821: while((re==1) && (q>1))C 
822: z=(q+1)*drand(); 
823: z1=q*drand(); /* DATAF substitute by 70 */ 

824: if((z==z1) II ((z1+1)==q) II (z==q) II ((z+1)==q)) a  re=1; 
825: else re=0; 
826: ) 
827: if(q==1)C 
828: z=1; 
829: z1=0; 

830: ) 
831:  
532: /*if(nxn==0)( 
333: printf("next gene cross z=%d z1=%d q=%d\n", z, z1, q); 

334: )*/ 
535: j=f=0; 
336: while(j<NODE) 
337:  
338: if(f != -1) 
339:  
340: while((a[z1] Ej+NODE1 ==0) && (a[z][j+NODE]=0)) 
341: Cj++;) 
342: temp=a[z][++.1]; 

343: aCzlEjl=a(z13[1]; 
344: a(z17 [I]=temp; 
345: /* printf("first cross j4d\n", j); */ 

346: ) 
347: if((a[z][j+NODE]==0) && (a[zflEj+NODE1==0)) 

348:  
349: temp=a[z]E++.0; 
350: aUl[1]=aCz1l[j]; 
351: a [z1] =ternP; 
352: /* printf("continue j4d\n", j); 
353: f=-1; 

354: ) 
355:  
356: else( 

357: temp=a[z] [j+NODE]; 
358: aCz7U+NODEl=a[z1]Ej+NODE]; 
359: a[z1] [j+NODE]=temp; 
360: f=0; 
361: j++; 
362: ) 
363:  

364: /* check if new generated data repeated or not */ 
365:  
366: for(n2=0; n2<NODE; n2++)( 
367: nappEn2]=-1; 
168:  
169: nz=z; 
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870: for(y1=0; y1<=1; y1++) 
871:  
872: for(x1=0; x1<NODE; x1++){ 
873: napp[x1]=-1; 
874: o[x1].no=0; 
875: for(np=0;np<30; np++) oIx17.position(np)=-1; 
876: ) /* init structure and other para *1 
877:  
878: j=m=0; 
879: 1=-1; 
880: whilefj < NODE) 
881:  
882: n2=a[nz]Ej]; 
883: o(n27.no++; 
884: j++; 
885: ) /* record the number of nodes appear */ 
886:  
887: for(j=0; j<NODE; j++)C 
888: n2=a[nz][j]; 
889: if(o[n2].no==1) o[n2].position[0]=j; 
890: } /* record the position of node which appear once */ 
891:  
892: for(n2=0; n2<NODE; n2++){ 
893: if(o[n2].no>1)( 
894: k=j=0; 
895: for(x1=0; x1<o[n2].no; xl++)c 
896: while(n2 != a[nz] Ern 
897: C j++; ) 
898: o[n27.positionEkl=j; 
899: k++; 
900: j++; 
901:  
902:  
903: ) /* record the position of the node which appear more than once */ 

904:  
905: n2=0; 
906: while(n2<NODE) 
907:  
908: if(o[n2].no==0) 

909:  
910: L++;. 
911: nappEll=n2; 
912:  
913: n2++; 
914: ) /* record the node which not appear in the gene */ 
915:  
916: /* for(n2=0; n2<1; n2++) printf("n2=%d napp[n2]=%d\n", n2, napp[n2]); */ 
917: for(n2=0; n2<NODE; n2++) 
918:  
919: k=1; 
920: while(o[n2].no >1) 

921:  
922: m=o(n2].positionEkl; 
923: r=(L+1)*drand(); 
924: a[nzlEml=nappErl; 
925: /* printf("n2=%d r=%d m=%d napp[r]=%d 1=%d\n", n2,r,m,napp[r], 1);*/ 

926: if(r != L)C 
927: nappEr7=napp[1]; 
928: nappEll=-1; 
929:  
930: 1--; 
931: o[n2].no--; 
932: k++; 
933: ) /* while */ 

934: ) /* for Loop, replace the node with non-appear node */ 
935:  
936: nz=z1; 
937: /*printf("z=%d z1=%d nz4d\n", z, z1, nz);*/ 
238: ) /* for (y1) */ 

239:  
940: /* check the new generated data illegality */ 
241: nz=z; 
942: for(n2=0; n2<80; n2++) BEn23=-1; 

243:  
244: for(x1=0; x1<=1; x1++)C 

945: j=k=t=cn=1=nd=0; 
246: while(j<(NODE-1)) 
947: 
248: L=0; 
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949: g=a[nz][j]; 
950: n2=n[gl.no; 
951: cn=cn+n2; 
952: t=j; 
953: /* printf("A NEW g=%d n2=%d j=%d\n", g, n2, j); */ 
954: while(a[nz] [j+NODE] !=1 && j < NODE-1) 
955:  
956: if(l l= -1) 
957:  
958: k=nd=0; 
959: while(nd< cn) 
960:  
961: BEndl=nEgl.nb[k],id; 
962: k++; 
963: nd++; /" nd is the total no of neig */ 
964:  
965:  
966: if(nxn==41) 
967: C 
968: total=nd; 
969: re cal(); 
970: nd=total; 
971:  
972:  
973: if((a[nz][j+NODE]) != 1)( 
974: g=a[nz][++j]; 
975: m=0; 
976: /*printfOnext g=%d j=%d t=%d aEt3=%d\n", g, 1, t, a[nz][t]); 
977: for(y1=0; y1<nd; y1++) printf("y1=%d B[y1]=%d\n", y1, SEy1l);*/ 
978: while((g != B[m]) && (B[m] != -1)), 
979: C m++; ) 
980: if(g==13(m]) 
981:  
982: if(m != (nd-1))C 
983: Blm1=BEnd-1]; ) 
984: B[nd-1]=-1; 
985: nd=nd-1; 
986: cn=cn-1; 
987: temp = aEnzl[j]; 
988: ainzl[j]=a[nz][++t]; 
989: aEnzl[t]=temp; 
990: n2=n[temp].no; 
991: cn = cn+n2; 
992: j=t; 
993: 1=0; 
994: /* printf(Hfind g=%d t=%d afnzlitl4d cn=%d nd=%d\n", g, t, a[nz] [t], cn, nd); 
995:  
996: else 1=-1; 
997: ) /* if this ss is finish */ 
998: ) /* while a new germ begins */ 
999: /* printf("t=%d j=%d\n", t, j); */ 
000: a[nz][t+NODE]=1; 
1: j=t+1; 
2: for(nd=0; nd<80; nd++) 
3: BEnd1=-1; 
4: k=1=cn=nd=0; 
5: ) /* while j<NODE */ 
6:  
7: for(j=0; j<2*NODE; i++)( 

8: a1Cyyl[j]=aEnzl[j]; 
9:  
10: YY++; 
11: nz=z1; 
12: ) /* for a new germ */ 
13: for(x1=0; xl<2; x1++)C 

14: for(y1=nz; y1<q; yl++)C 
15: for(j=0; j<2*NODE; j++) a[yl] Ejl=ary1+11 [i]; 

16:  
17: q--; 
18: nz=z; 
19:  
20: /* printf("before return yy=%d q4d\n", yy, q); */ 
21: ) /* while */ 
22:  

23: for(i=0; i<variety; i++)C 
24: for(j=0; j<2*NODE; j++) 

25: aCi][j]=-1; 
26:  
327: return; 

* 
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)28: ) /*cross over function */ 
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