New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1-31-1991

Integrated digital speech system with PC

Zhen Zhu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

b Part of the Electrical and Electronics Commons

Recommended Citation
Zhu, Zhen, "Integrated digital speech system with PC" (1991). Theses. 2693.
https://digitalcommons.njit.edu/theses/2693

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2693?utm_source=digitalcommons.njit.edu%2Ftheses%2F2693&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Abstract

Title of Thesis :
Integrated Digital Speech System with PC

Name :
Zhen Zhu
Master of Science in Electrical Engineering
Department of Electrical and Computer Engineering

Thesis directed by :
Di. Chung H. Lu
Associate Professor
Department of Electrical and Computer Engineering

A PC-based real-time digital speech processing system is designed. Speech
synthesis, zulalysis; storage and retrieval are implemented in the system with
intelligent telephone functions. Speech data are stored on floppy disk and
casy 1o retrieve. Though floppy disk is slow in speed, real-time processing
1s achieved with low bit rate coding. The computer gets speech data from a
digital spcech processing unit or send data to it through a synchronous se:ial
communication port. The analog input of digital speech processing umt can
be scelected from the telephone line or the microphone, and output of the
digital speech processing unit can be sent to the earphone or telephone hine.
The software resides in the PC RAM. It is activated by hot-key combination
or the ring detect signal. The possibility of speedy playback without change

of pitch and inlonation is also discussed in this thesis.

% Integrated Digital Speech System
With PC

BY
/ / Zhen Zhu

z

Thesis submitted to the faculty of the graduate school of
the New Jersey Institute of Technology
in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering

1991

APPROVAL SHEET

Title of Thesis: Integrated Digital Speech System
with PC

Candidate: Zhen Zhu

Master of Science in Electrical Engineering, 1991

Thesis and Abstract Approved by the Examining Committee:

" Dr. Chung H. Ly} Advisor / Déate /
Associate Professor
Department of Electrical and Computer Engineerig

Dr. Anthony Robbi) Date
Associate Professor
Department of Electrical and Computer Engineerig

—_—

Dr. Sol Rosenstark ‘Date
Professor
Department of Electrical and Computer Engineerig

New Jersey Institute of Technology, Newark, New Jersey.

VITA

Name : Zhen Zhu
Present address :
Date of Birth :

Place of Birth :

Education :

1. New Jersey Institute of Technology
Electrical Engineering Department, M.S. E.E.
January, 1989 - January, 1991

2. Luwan College of Technology
Electrical Engineering Department, B.S. E.E.
September, 1978 - June, 1982

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Dr. Chung H.
Lu, his thesis advisor, for his valuable guidance, support, inspiration and
encouragement during the entire course of this thesis. Appreciation is also
extended to other committee members, Dr. Anthony Dr. Robbi and Dr.
Rosenstark, for their support and serving on the examination committee.

Contents

1 Introduction 1
I. Imtroduction e 1
II. General Description of the System 3
2 Principal Digital Speech Technology 6
I. Introductionto LPCo 6
II. Realization of Linear Predictive Coding in System 12
3 PC XT Interfacing Circuitry 22
I, Imtroduction e 22
II. DTMF Transcelver o o i i it e i e e e e 24
III. Telephone Line Interface 26
IV. 24 Converter o . i i i i i e e e 28
4 Software for IBM PC XT 31
I. Introduction to Terminate-and-Stay-Resident Program 31
II. System Functions i i i e 33
5 Conclusion and Suggested Future Work " 42

A Circuit Diagrams 44

B Software for IBM PC X7T

i

46

List of Figures

4.1
4.2
4.3

System Overview o i it e e

The Source-Filter Modelo oL
Curve Fitting L o
Lincar Prediction used in the System
Block Diagram of DSPU o oo

Companding Curve of the p-law Compander

Block Diagram of pPDT720

Block Diagram of PC Interface . . . o oo oo v vo e
Analog Audio Signal Flowchart o 0L,
Schemaltic of Telephone Line Interface. oo oL

Schematic of 2-4 Converter o v o v v i i e e

TFlowchart of the Program for PC
Menu Structure Lo L

Telephone Call Progress

il

List of Tables

2.1 Bit requirements for each parameter in LPC-10

3.1 DTMTF Coding and 75T2090 Digit In/Out

iv

...............

Chapter 1

Introduction

I. Introduction

Speech is an everyday, essential communication medium. It also has advantages over
other means of communication. You can listen while shaving, doing the housework,
or driving the car. Speech leaves hands and eyes frece for other tasks. The most
important convenience feature of speech communication is the tclephone, and this
gives people the advantage of being able to communicate over long distances. You
can go into a phone booth anywhere in the world, carrying no special equipment, and
transmit your message to a machine or a person by either voice or keystiokes. Pcople
arc always trying to improve this communication medium for more convenience and

efficiency.

With fast development of computer technology, machines including the computer
itself are more intelligent and they can do more and more tasks for people in their
daily lives. More and more work is done by a machine rather than a person, therefore
irrespective of whether they like it or not, people have to ‘talk’ with a machine more
than they did before. As a result, practical applications of speech signal processing

based on speech signal analysis, synthesis, recognition, transmission and 1ccording

have attracted much more attention than before.

Meanwhile, the Personal Computer (PC), since its introduction in the late 1970s,
has become an integral part of modern daily life. With a steady reduction in price,
the PC has n:lade substantial inroads into business offices, classrooms and private
residences. Researchers say some 28 million US workers use personal computers in
their offices, and that some 8.2 million more PCs are used in schools. Along with
this development, the home computer market has grown to 3.7 million units annually.
Computer literacy is an order of magnitude higher than it was five yecars ago. All
these developments are accomplished with a succession of quantum jumps in comput-
ing power. Today’s PC which can be the size of a briefcase, in comparison with the
room size mainframe in its infancy, contains greater computing power, larger memory
space and faster speed, and most importantly, it is easier Lo use, yet does not cost
more. Needless to say, speech processing with a PC will let more people get benefits

and conveniences from this advanced technology.

The purpose of this project is to take advantage of digital speech processing tech-
nology, telephony technology, and the phenomenal growth of peisonal computers. A
system that uses a PC was built. This system compresses live spcech signals to 2400
bits per second. The speech data can be stored and retrieved in real time on a floppy
disk. A 360k bytes floppy disk can store up to 20 minutes spcech data. A 1.2M bytes
floppy disk can store more than one hour of speech data.

Fully integrated, the system functions as a powerful, intelligent, digital speech
system. All features of telephone functions (including telephone usage accounting),

messaging systems, transcription systems, and various other automation functions

Q]

can be implemented.

II. General Description of the System

The system hardware contains a digital speech processing unit (DSPU), interfacing
circuilry, a regular household telephone set and a personal computer. The initial
phase of the project uses an IBM PC/XT. In the future, with minor modifications,
the whole system can be ported to any other PCs, such as IBM PC/AT, IBM PS/1,

and MacIntosh. Figure 1.1 shows the system overview.

The system software mainly consists of two parts: one in the PC, and the other
in the DSPU. The program for PC terminates and stays resident after it is executed
on the command line and can be invoked by a hot key stroke, timer or ring detector.
After it has been loaded, the user can still communicate with it by exccuting the
same program to suspend, restart, or unload itself. This program does tasks such as
reading and writing a diskfile, editing the user’s phone directory, dialing, checking
ID, automatically making a call or answering a call. The function of the DSPU is
to convert and compress the speech signal to a low bit rate (2400 bps) digital data.
In 1976, the US Government defined a standard coding scheme called LPC-10 for a
10-pole prediction with a data rate of 2400 bit/s. Today, many systems can achicve
even lower bit rates, and are simpler to operate and are more flexible. In this project,
we chose the VDT2400 developed by UNIDATA, with necessary modifications. It

consists of a speech analyzer, a synthesizer, and a pitch extractor.

The function of the interface is twofold. First, it gets the digital speech data fiom

the DSPU and then writes them on a floppy disk. Second, it feeds the DSPU with dig-

Digital Signal
Monitor

Processing Unit

TN
IBM PC XT N— -

e

Telephone Line

T Interface

Keyboard

Figure 1.1: System Overview

ital specch data from the floppy disk and then outputs an analog speech signal. Both
functions are performed in real time. The hardware also contains a 2-4 converter, a
DTMF (dual tone multiple frequency) transmitter and receiver, interrupt logic, one
input port and one output port. The basic functions of the system are to pick up a
message recorded previously, to answer calls and to record incoming messages. It can

also interactively prompt users for options.

&3

Chapter 2

Principal Digital Speech
Technology

I. Introduction to LPC

Human spcech is produced by the combined action of the vocal cords and the vocal
tract, which consists of the throat, mouth, and nose resonance cavities. The three

different sound types can be classified as:

e voiced
e unvoiced (fricative)
e unvoiced (aspirated)

Vocal cord vibration rate (which determines the pitch) varies from 60-70 1z for
the lowest male voice to 1200-1300 Hz for the upper limil of a soprano. Typically, a
female voice approximates 400 Iz for a voiced sound, a male voice hovers between 80

and 200 IIz. Predominant frequencies in unvoiced sounds are above 2000 IIz.

The speech can be produced by a source-filter model which indicatles the features

of the human voice and simulates human vocal tract elffects with filters, as shown in

0 dB/oct 0 dB/oct -6 dB/oct -6 dB/oct

Source Filter Compasation Speech

o . ,
Excitation Vocal Tract Rediation Output

3

Figure 2.1: The Source-Filter Model

Figure 2.1. The excitation source with a flat spectrum and the radiation compensation
with 6 dB/octave fall-off are often preferred to give the required trend in the output
spectrum. This idea is useful for Speech Linear Predictive Coding.

Digital speech processing can be made much more intelligent than analog process-
ing. For example, it is difficult to provide rapid access to messages stored in analog
form. But if a directly digitized audio waveform is used for transmission and storage,
the data rate is very high. Suitable coding can reduce the data-rate of specch to
as little as one hundredth of that needed by direct digitization. For many coding
method, speech parameters like intonation and amplitude are separated out from the
articulation of the speech and stored, or transmitted, instead of simply the digitized

waveform.

Linear Predictive Coding is a relatively new method of spcech analysis-synthesis.
It is primarily a time-domain coding method but can be adapted for frequency-domain
paramcters like formant frequency, bandwidth and amplitude. We briefly introduce

it below.

A specech sample z(n) can be predicted quite closely by the previous samples

improved by multiplying the previous samples by a set of numbers, say ay,...,ax,

which are adapted on a syllabic time-scale. The prediction error could be written as

e(n) = a(n)—az(n —1) —agz(n —2) — -+ — ayz(n — p)
= z(n)— };akm(n — k)

The mullipliers a; should be adapted to minimize the error signal. It turns out
that they must be re-calculated and transmitted on a time-scale that is rather faster
than syllabic but much slower than the basic sampling rate: intervals of 10-25 msec
are usually used (compare this with the 125 psec sampling rate for telephone-quality

speech). Turning the above relationship into z-transforms gives

E(z) = X(2) — ij: apzFz(z) = (1 — é arz"*) X (2)

Rewriting the speech signal in terms of the error,

1
- 1-— Zz=1 akz"k

X(z) E(z)

Speech can be viewed as an excitation source passing through a vocal tract filter,
followed by another filter to model the eflect of radiation from the lips as mentioned
before. The overall spectral levels can be reassigned as shown in Figure 2.1, so that the
excitation source has a 0dB/octave spectral profile, and hence is essentially impulsive.
Considering the vocal tract filler as a serial connection of digital formant filters, its

transfer function is the product of terms like

1
I —byz=1 4 byz2

where by and by control the position and bandwidth of the formant rcsonances. The

—6 dB/octave spectral compensation can be modeled by the first-order digital filter

_
1= bzt

8

The product of all these terms, when multiplied out, will have the form

1

l—czl—cgz™2 — o — g2 0

where ¢ is twice the number of formants plus one, and the ¢’s are calculated from the
positions and bandwidths of the formant resonances and the spectral compensation

parameter. Hence the z-transform of the speech is

1

1—y0 oz7k

X(z) = 1(z)

where I(z) is the transform of the impulsive excitation.

This is similar to the linear prediction relation. If p and ¢ are the same, then the
linear predictive coefficients a; form a p’th order polynomial which is the same as
that obtained by multiplying together the second-order polynomial representing the
individual formants (together with the first-order one for spectral compensation).
Furthermore, the predictive eiror £(z) can be identified with the impulsive excita-
tion I(z). It is possible to parametrize the error signal by its frequency and amplitude
(two relatively slowly-varying quantities) instead of transmitting il sample by sample
(at an 8 kHz rate). Comparcd to the speech sampling rate, the source parameters

vary relatively slowly and this leads to an extremely low data rate.

Lincar prediction can also be considered as a kind of curve-fitting technique. Fig-
ure 2.2 illustrates how four samples of speech signal can predict the next one. If the
order of linear prediction is high enough (at least 10) with the correct coellicients, the
prediction will closely model the resonances of the vocal tract. The prediction error
will be very small until the next pitch period begins.

Practical lincar piedictive coding schemes operate with a value of p between 10

and 15. The ap’s are recalculated every pitch period from 10 to 25 mscc. The pitch

9

preciceed ssmple

predichon error

Figure 2 2: Curve Fitting

and amplitude of the speech are estimated and transmitted at the same rate. If the

speech is unvoiced, theie is no pitch value: an “unvoiced flag” is transmitted instead.

At the 1cceiver, the excitation waveform is 1ecconstructed. Tor voiced speedh,
it 1s impulsive at the specified frequency and with the specified amplhitude, wiile
for unvoiced speech it is random, with the specified amphitude. This signal (1),
together with the transmitted parameters ay, ... 0, is used to 1egenerate the speedh

wavelorm by

a(n) =c¢c(n)+ i ar(n—£k)

}=1

The key problem m linear predictive coding is to detenmine the values of the

coeflicients « ... to minimize

Zc(n)z

n

There are several methods to solvert. We can find their advantages and disadvantases
and cven programs in many books We will not discuss them
The lincar predictive parameters that need to be stored o1 transimtted ates 1.

pitch, 2. voiced-unvoiced flag, 3. overall amphitude level, and 1. ilter coeflicients.

10

Table 2.1: Bit requirements for each parameter in LPC-10

Voiced Unvoiced | Comment

Sounds Sounds
Pitch/Voicing 7 7 | 6 bits pitch, 1 voicing

60 values, semilog

Energy 5 5 | 32 values, semilog
kq 5 5 | Coded by table lookup
ko 5 5 | Coded by table lookup
ks 5 5 | Linear
ky 5 5 | Linear
ks 4 - | Linear
ke 4 - | Linear
ke 4 - | Linear
kg 4 - | Linear
kg 3 - | Linear
k1o 2 - | Linear
Synchronization 1 1 | Alternating 1s and Os
Error Detection/
Correction - 21
TOTAL 54 54

Frame Rate 44.4 11z (22.5 msec)

The DVT2400 is improved LPC which still has some similarity to the US Gov-
ernment standard coding scheme LPC-10. The bit assignment for the parameters in
LPC-10 is shown in Table 2.1.

In the system, all these parameters must be transmitted from DSPU to the PC
through a synchronous communication port and stored on the floppy disk when

recording or vice versa when playback, as shown in Figure 2.3.

11

ai N aj
a2 "] Encode az ”
Input Linear . : Output
Speech . . and . Lincar Speech
Predictive as Read/ o ‘
210 > Wri 210 » .
Analysis V rite "1 Predictive
on Synthesis
Pitd Amplhitude N Amplitude N Y
A‘ llit 4 | Piteh | Floppy Pitch g
e = — >
D::Ect(:i- Voicing Flag Disk Voicing Flag

Figure 2.3: Linear Prediction used in the System

II. Realization of Linear Predictive Coding in Sys-
tem

The DSPU may be divided into four functional sections, as shown in Figure 2.4. they
are: A digital speech processing section, a host processor section (including control,
memory, etc.), a digital I/O port, and an analog I/O port.

The first step of speech processing is coding. In the coding procedure, an analog
speech signal from the handset microphone is supplied to an industry standard p-law
coding and decoding (CODEC) chip. This signal is then passed through an anti-
aliasing filler and sampled at a 6.4KHz rate using pulse code modulation (PCM). It
is then converted to an 8-bit serial data stream. In the decoding procedure or the
reccive path (synthesis), the output from the digital processing scction is converted
back to an analog speech signals by the CODEC, then fed to a low pass filter and the

handset earpiece.

A p-law CODEC chip S3507 is used in the system. It contains independent
circuitry for processing transmitting and receiving signals. Switched capacitor filters

provide the necessary bandwidth limiting of voice signals in both directions. Circuitry

12

N\ Memory
Port \W/
| 1 Synthe-
: 3 //\\ : <]
> sizer
£\
(> wsp)
80186 @ e A e
<<__/ Extractor Analog Speech 1/0
(DSP)
—— '.4——
CODEC
Digital Speech 1/0 S
N\ N Analyser }
~—— BISYNC ~7
(DSP)
COMM Control ”
»| Adapter

Figure 2.4: Block Diagram of DSPU

13

IS}
t
m

®
0

Companded and coded signsl
Normahzed outgat

Rifos frm oo mm mome it o e y = e - o - ——

Figure 2.5: Companding Cuive of the p-law Compander

for coding and decoding operates by the piincaiple of successive approximation, usine
charge redistiibution 1 a binary weighted capacitor airay to define segments and a
tesistor chain to define steps. A bandgap voltage generator supplies the reference level
for the conversion process. The PCM data woid is formatted according to the p-law
companding curve with the sign bit and the ones complement of the 7 magmitude

bits. The pi-law quantization is given by:

log[1 + ptedl

Semnz

14 log(l + 4t

y(n) = Spar)sgn[\(n)]
wheie

© Spaz s the maximum absolute value of the signal;

o sgufs(n)] = 1 when s(n) 15 positive o1 negative,

o | s(n) | is the absolute value of s(n);

o s 1s a paramcter that determines the level of compiession.

Figure 2.5 shows companding curve of p-law compander.

H

This process of compression-cxpansion avoids enlarging the quantization stepsize
for weaker signal and then impacts the speech quality when the quantizer is designed
to accommodalte stiong signals. The 8-bit PCM data is clocked out by transmis-
sion shift clock which can vary from 64KIIz to 2.048MIlz. The chip also has noisc
suppression when the channel is idle.

From the CODEC, the serial data stream goes to a digital speech processing
section which consists of three custom 16 bit digital signal processor chips. All of
them are pPD 7720 which is introduced here.

Fabricated in high-speed NMOS by NEC, the pPD7720 signal processing interface
(SPI) is a complete 16-bit microcomputer on a single chip, as shown in Figure 2.6.
ROM space is provided for program and data/coeflicient storage, while the on-chip
RAM may be used for temporary data, coeflicients and results. Computational power
is provided by a 16-bit Arithmetic/Logic unit(ALU) and a separate 16 x 16-bit fully
parallel multiplier. This combination allows the implementation of a “sum of prod-
ucts” operatil)n in a single 250 ns instruction cycle. In addition, each arithinctic
instruction provides for a number of data movement operations to further increase
throughput. Two serial I/O ports are provided for interfacing to CODECs and other

serially oriented devices while a parallel port provides both data and status informa-

tion to conventional P for more sophisticated applications.

Features of the uPDT7720 chip include:

1 Fast instruction execution: 250 ns/8 Mz clock;

2 16-bit data word;

3 Multioperation instructions for optimizing program execcution;

4 Large memory capacity;

15

~—3SULN
so f=sora
ey
L_so

51

PONLT

Y
DACR —{ oria H
INTERFACE ' [T S
ona LOGIC Ran
ILSTRULCTICY 123a16
R . MULTIPLIER —
S12a23 ¢
] 1
1
PC
r—I v] L]
0
sTacK !
ACK } == — = = -
5 2 1
3
RO
I SGY l TH 1
s{sjc{z}jojo
v
FLAG A A A A A v
tio A A DATA
] a RO ol
sjclzjofo 512213
FLAGBi Bl B8 | B viv
CLr —— 110 B8l8
HS T — nce
P T o] . Acc 8
VCC e
HO—p—
GHo INTERHUPT

Figure 2.6: Block Diagram of pP1D7720

16

[~——*o
Py

!

-
L‘U.DU "
‘ R

3113 READIWRITE

CONTROL tr ¢

e—tn

f-e—CF

lae—~4g

5 Program ROM, 512 x 23 bits;

6 Data/coellicient ROM, 510 x 13 bits;

7 Data RAM, 128 x 16 bits;

8 Fast (250ns/ 8MHz) 16 x 16-bit parallel multiplier with 31-bit result;
9 Four-level subroutine stack for program efliciency;

10 Multiple I/O capabilitics.

Bach instruction is 23-bit long which is divided into 10 fields related to different
tasks, such as Jump, ALU, addressing etc. Each instruction can be expressed as a set
of six instructions of assembly language. Program for a DSP chip is straightforward
to save time. The PASCAL and C program for calculating LPC paramecters can be
ported to uPD7720 assembly.

All three NEC 7720, programmed differently, provide speech analysis, pilch ex-
traction and speech synthesis. The speech data stream from the CODEC is fed to the
signal processors for analysis and pitch extraction. The analysis models the data, si-
multaneously processing voiced and unvoiced sounds while compressing and removing
information unnecessary to reproduce speech faithfully and intelligibly. This method
allows for the transmission of sounds that traditional low bit rate voice digitizers
cannot classify, resulting in improved voice quality and speaker recognition, even in
noisy environments.

As a host processor, the 80186 integrates a chip-select logic unit, two independent
high-speed DMA channels, three programmable timers, a programmable interrupt
controller and a clock generator. All the 80186 integrated peripherals are controlled

by 16-bit registers contained in a 256-byte control block, which may be mapped into

17

either the memory or I/O space. The chip-select logic unit, timer, interrupt controller
and clock generator are used in the system. Six memory chip-select oulpuls are
provided for 3 address areas: upper memory, lower memory, and midrange memory.
The range of each chip-select is user programmable. The 80186 can also gencrate
chip-selects for up to seven peripheral devices. The 16-bit programmable timers are
used for real-time coding and time delays. The interrupt controller is used for three
DSP chips and 8274 communication chip.

The data from the digital signal processors are fed to the host microprocessor in the
form of pitch frequency information and linear predictive coding parameters. The host
microprocessor then performs a quantization operation on the data, formats it to 54
bit serial-synchronous data frames, each containing 53 data bits and a synchronization
bit and is outputed in RS-232C standard.

Data received from the disk is fed to the host microprocessor where it is processed
and fed to the synthesizing signal processor. This chip synthesizes the digital signals
into a scrial data stream which is then sent to the CODEC to be converted back
analog voice signals. Therefore, the system must have a capability of getling data
from DSPU through the synchronous communication adapter and storing them or
vice versa in real-time processing. Because the speed to access a floppy disk is much
slower than a harddisk, during real-time operation, it may be too late to start disk
operation when a bufler is already full or empty. In the design two bufleis with length
of 512 bytes cach are used. When one bufler is busy with transmission or reception,
the other is used to read from or write on to a floppy disk.

Two interrupts which connect to JRQs and IRGQ)4 are used for receiving and
transmitling respectively. An error flag is used to tell that the disk file cannot be

read or written for some reasons as well as due to recording timeout. When it is set,

18

the recording or playback operation is stopped. The program also checks if any key
is entered to stop recording or playback. The programs below show the interrupt

service routine and recording precedure.

void interrupt ssi() {
disable();
*(pointer++) = inportb(DATA_PORT);
counter++;
outporth(PORT_8259.20, 0x20);
enable();

record() {
int i, numwrite;

unsigned data;

char key;

if((fp = fopen(filename,”wb”)) = NULL) {
disable();
old_vect = getvect(0xb);
setvect(0xb,ssi);
enable();

}

clse return;

pointer = bulfl0;
outportb(MODE_INITIAL, 0x98);
oulportb(INTERNAL_.CONTROL, 0x02);

19

outportb(EXT MODEM-INTERFACE, 0x10);
oulporth(EXT_-MODEM_INTERFACE, 0x00);
outportb(USART.STATUS, 0x0C);
outportb(USART STATUS, 0x32);
outporth(USART_STATUS, 0x32);
outporth(USART_STATUS, 0x04);
inportb(DATA_PORT);
data = inport(PORT_8259.20);
outport(PORT-8259.20, data & Ox{7f);
outporth(PORT_8259.20, 0x20);
while (tkeyhit()) {
if (counter >= BUFFLENGTH) {
counter = 0;
if (bufllag) {
pointer = buff0;
numwrite = fwrite(buff1,1,BUFFLENGTIL,p);

}
else {
pointer = buffl;
numwrite = fwrite(bufl0,1,BUFFLENGTIL,p);
}
bufflag = 1;

if (numwrite = BUFFLENGTII)

erior_flag = 1;

20

if(error_flag) break;
}
outportb(EXT_-MODEM_INTERFACE, 0x10);
outportb(EXT_MODEM_INTERFACE, 0x00);
outport(PORT_8259_20, data);
outportb(PORT_8259.20, 0x20);
fclose(fp);
crror_flag = 0;
disable();
setvect(0xb,old_vect);

enable();

21

Chapter 3

PC XT Interfacing Circuitry

I. Introduction

Interfacing circuitry deals with the connection between IBM PC XT, DSPU, and a
telephone line, as shown in Figure 3.1.

When the computer is off, the system can work as an ordinary telephone. So the
exlernal set (the base of ordinary telephone set) has ringer, dialer, and 2-4 conver-
tor. The handset which includes mouth and ear pieces switches to either internal or
external circuits. Three signals: ring detect, DTMF detect, remote ofl-hook detect
connect to the IBM PC XT through an AND gate. Each flag for DTMI® data re-
ceived or off-hook detected is latched in a D {lip-flop for CPU to check and they can
be enabled or disabled to generate an interrupt. With an 8-bit read/write port, the
CPU is able to check call progress and control a telephone set.

The compressed speech data are transmitted between DSPU and the IBM PC
XT through synchronous serial port. Each frame has fifty-four bits including one
synchronizing bit alternated with 1 and 0 pattern.

The main function of the telephone line interfacing is to feed the telephone line
with analog speech signal of one side and get one of the other side from the telephone

line. The spcech signal to {ced the telephone line can be cither from the mouth picce

22

Telephone Line

Switch

A

< Anolog
, > 2-4 Converter
DPSU Buffer
+—> Serial
Comm. Ring Detector
<—=>1 Interface
A
< Interrupt DT Dialer
PC <
Logic
XT
DTMF Latch & Reset
A
/ AN
(> Port and Control
< 7

Figure 3.1: Block Diagram of PC Interface

23

I

Telephone

Set

Y

From Mouthpiece >

2-4 —

Audio to CODEC /

—-————
Converter |,

A

N To Telephone Line

Audio from CODEC

To Earpiece y ‘ d L«

Figure 3.2: Analog Audio Signal Flowchart

or from CODEC and the speech signal either from the telephone line or from the
mouth piece can connect to CODEC as shown in Figure 3.2. The speech signal is
switched by an analog bilateral switch HC4066 which connects to +5V and -5V

power lines and an MC1488 is used to shift the logic level to control the switches.

1I. DTME Transceiver

When you make a phone call, traditionally, pulses generated by shorting and opening
the pair of telephone line, tells the connection device the number of the destination.
Now, DTMF (dual tone multi-frequency) is often used. It can still be sent out after
the connection established.

Silicon Systems’ SSI 75T2090 is used to transmit and receive DTMI signals as
well as Lo detect call progress signals in the system. It is a Dual-Tone Multi-Frequency
(DTMF) Transceiver that can both generate and detect all 16 standard Touch-Tone.

The DTMF Receiver in the SSI 75T2090 detects the presence of a valid tone pair
on a telephone line or other transmission medium. The analog input is pre-processed
by 60Hz reject and band-splitting filters, then is fed into an Automatic Gain Con-

troller. Light bandpass filters detect the individual tones. The chip provides the

21

Table 3.1: DTMF Coding and 75T2090 Digit In/Out

Hexadecimal Code Frequency
Digitin | D7 Dg Ds D4 | Low Group | lligh Group
/out D3 D2 D1 Do fo 1z f() 11z
1 0 0 0 1 697 1209
2 0 0 1 0 697 1336
3 0 0 1 1 697 1447
4 0 1 0 0 770 1209
5 0 1 0 1 770 1336
6 0 1 1 0 770 1447
7 0 1 1 1 852 1209
8 1 0 0 0 852 1336
9 1 0 0 1 852 1447
0 1 0 1 0 941 1336
. 1 0 1 1 941 1209
1 1 0 0 941 1447
A 1 1 0 1 697 1633
B 1 1 1 0 770 1633
C 1 1 1 1 852 1633
D 1 0 0 0 941 1633

coded digital outputs which can drive standard CMOS circuitry, and are three-state

enabled to facilitate bus-oriented architectures.

The DTMF generator on the SSI 75T2090 responds to a hexadecimal code input
with a valid tone pair. Pins Dy-Dy are the data inputs for the generator. A high to
low transition on LATCH causes the hexadecimal code to be latched internally and
the appropriate DTMI® tone pair to begin. The DTMF output is disabled by a high
on RESET and will not resume until new data are latched in.

The call progress detector consists of a bandpass filter and an energy detector for

turning the on/ofl cadences into a microprocessor compatible signal.

I{ - C
1
Rit 4 2w
R26 o1
Lov
N frr
c2 " s S 1
RL2 20K
tH
[p7me v i R10
rox nESSI2 R N i
=2 1= 560
ALS 37 4 E33 !“"
#78 1N4004
cs -\:d'
1 .
39cp . ! ; -1 e
a1y 2tw —_—
- =i
t 2
L3 -]
NESSI2 ™~ 5 11w 7 vy
23
8 - o — c1 R9
P R S B AR T v Y L
12¢ 1csee y ‘1) o1y S a0e
3 85 $ d‘—-*
'<7 o6 !
1h4004 N1A12A
l, o X
P 1sC2
< g?f-nr e dnta-t }-——
243904 _.
I a1 RY 5T T
e 1 A h
1 .
< zimm o 2e o-n ¥ o3
oS
184003

Figuie 3 3: Schematic of Telephone Line Interface

IIT. Telephone Line Interface

The telephone line inteiface comprises of a ring detector, a remote ofl-hook detector,
aonfoll hook contioller, a 2-1 convertor and a DTMFE tranceiver. In this seclion, we
will only briiefly discuss the first thiee. Two photo coupleis and a transformer are
used to isolate the telephone line from the internal eircuit. The schematic is shown
i IMiguie 3.3.

In “on-hook” condition, no DC loop exists thiough the telephone set Only 1ne
signals come in to signal a incoming call. When you pick up the telephone set, the DC
loop 1s closed, the 1esulting DO curient tells the central office that one wants to male

20

a call and it provides a dial tone if the line is not busy. If the call is completed after
dialing, the central oflice will send a ring voltaﬂgc to the destination and a ringback to
the caller. When the destination picks up the telephone-set to signal an “off-hook”
condition, the central office will remove the ring voltage and connect the two parties.
In the system, the computer has to ‘pick up’ hand-set, check call progress, and dial.

During the receiving of a call procedure, 750, conducts because AC ring voliage
comes in and it will generate an interrupt. The ring detect interrupt service routine
will check ring voltage again and make @; on. When Relay I{; contacts close, they
provide a DC path across the telephone line through B and Rjs. The resulting
DC cuirent through 2o signals an “off-hook” condition to the central office, which
then removes the ring voltage and connects the calling party to the line. Bridge
rectifier BI?; ensures that, regardless of the phone-line polarity, the end of R;o that’s
connected to Cj is always positive with respect to the other end. When the other
party hangs up the telephone hand-set, a pulse of high voltage will be generated
and it instantly lessens the DC voltage appearing between tip and ring. That voltage
change is coupled through C; as a gated pulse that appears on IC8 pin3, momentarily
illuminating the internal LED. The ISO; phototransistors then conduct, placing a
bricf low in pins 3 of U9A. That will be latched into a D flip-flop for the CPU to
check and generate an interrupt when it is enabled.

When the computer makes a call, it closes K, and then checks the dialing tone
from the output of U2A. After making sure of the dialing tone on the line, it sends
a U2B DTMF signal to dial and check which signal appears on the line. If it is a
ringback, the computer will continue to check and send the message to the input of

U2B after the ringback disappears and befoie a timcout.

27

H
Rl
,;_W__
‘1 R2? B
3 V2

Trancmit -

R}

I B

< focel o g

Iigure 3.1 Schematic of 2-1 Converter
V. 2-4 Converter

The signal on the phone line is the sum of the transmil and 1cccive signals. The
2-1 converter subtracts the transmitted signal from the signal on the line to form
the received signal. It is important to match the hybrid impedance as closely as
possible to the telephone line to produce only the received signal. Figure 3.4 shows
the schematic of the 2-1 converter.

It uses two operational amphficrs, one in the transmit path and the other in the
. receive path. The input fiom the CODEC or mouth picce amplifier provides a gain
of 6 dB over the transnut signal level desired at the line. Under ideal conditions, with
no loss in the transfoimer and peifect line matching, the signal level at the line will

then be the desited -9dBm. In practice however there is impedance nmsmatch and

loss in the couphng transformer. Therefore it may be desired to provide a gain in the

transmit and receive paths to overcome the loss. The reccive gain G and transmit
gain G are setl by the ratios of resistors R4, s and Ry, I?; respectively. The circuit

can be analyzed as follows:

Iy Ry R
Vo= —-——{(V +V,+<1+__>()V
R .Rs(R+ Vex) Riy) \Rs+R;) *
Ry
Ve = —-E;Vl

If Ry/ R, is chosen to equal the loss in the transformer, it can be assumed the V; is
twice as high as Vry (transmit portion of the total line signal). Since Vrp = Vox +

VR_\; a,nd sz = 2 VTX

Ry Ry R4
/; = ——(V Vo (1 _._._) ()2 .
Vi Rs(ThR+ Vax)+ 1+ AN Vrx
Ry Ry 27 IRy
=y [V Vi @ “J(‘*“—)—“JV’
i rx + |{(Vrr + Vrx) + -}-R1 R R

To climinate any transmit signal from appearing at the received signal input, the

second term in the above equation must be set to zero, giving

Ry (R4> (I, >
(142
Tt TR\t i

Solving for Rs/R7, we get

R 2R
o142
7~ TR
Additionally, we have
Ry
Ggr = I

29

and
&

Gr = I

These cquations can be solved to select component values thatl meet the desired

requirements.

30

Chapter 4
Software for IBM PC XT

I. Introduction to Terminate-and-Stay-Resident
Program

A Terminate-and-Stay-Resident (TSR) program is employed in this design. A general
idea about TSR is given here.

TSR programs are loaded from the command line, and reside in memory above
MS-DOS and beneath transient programs. After the TSR is made resident, DOS
takes over, and the user can execute other programs. In the system, T'SR interrupt
service routine attaches the keyboard interrupt, timer, and IRQ,, so that the TSR
can pop up as the result of one of the events, They can be a hot key, the {imer when
it reaches a previous set time, or interrupt source JR(Q);. These events can occur
while the system is executing another TSR, running a transient task, or waiting for
a command. When the TSR is finished, the interrupted task resumes.

As a single-task operation system, MS-DOS controls various resources to support
a single task. The TSR program, when it interrupts another program and pops up,
needs the services of MS-DOS. So the conditions available for popping up and context,
switching must be handled with care to prevent the system from crashing.

When a TSR interrupts a task, the context items that have to be switched are:

31

Stack

]

e Program scgment prefix (PSP)
o Control-Break setting

Critical error interrupt handler

[«

Disk transfer address (DTA)

]

Video memory

@

e Screen cursor

Switching the stack can guarantee enough stack for the TSR. The TSR must
switch the DOS PSP pointer to its own PSP which contains ficlds that control how
the program operates. The TSR program should not be terminated when the user
presses Control-Break or Control-C, usually to terminat(; the current program. The
DTA has to also be saved because DOS reads and writes records from files opened
with the FCB functions and searches directory in this area. And the video mode,
video memory contents, cursor position, and cursor configuration must be saved and
rectored since they all are used by TSR.

Most MS-DOS functions are not reentrant. The typical TSR cannot operate
without DOS functions. So the following flags are established to tell TSR if it can

pop up or not.
o Own running flag (avoid reentrant execution of itself)

e Disk operations flag

e ROM-BIOS video functions flag

o DOS busy flag

In the system, the basic condition for TSR to pop up is set by three interrupt
service routines. They are key ISR, timer ISR and an ISR that attaches to JRQ),.

Another feature of the TSR in the system is that it is able to communicate with
the TSR after it is resident. It can be suspended, unloaded and can not be loaded

for a second time if it is alicady memory resident.

II. System Functions

In this seclion, the software related to the system functions is explained. The main
structure and flowchart of the software are shown in Figure 4.1 and menu structure
in Figure 4.2.

During telcphone line connection, call progress signals the status of the telephone
line. Call progress is measured by the presence of one or more supervisory signals
on the phone line. There is the dial tone that tells you that the line is ready for
use, the busy signal that tells you a call can not be completed, the ringback that
simulates the ringing sound of the phone at the other end, and finally, an obscure
rcorder signal that tells you that the call only went halfway through and has to be
repeated. Figure 4.3 shows all the standards for those new or precise call-progress
signals.

Two methods of detecting a call progress signal are by the frequency and their
cadence. For the most reliable detection, both of those should be used together.

Unfortunately, through the output of SSI 75T2090, the computer can only know
if a signal in the frequency range fiom 3501z to 62011z is present or not. If such a

signal is present, the compuler must identify the call progress by its cadence.

33

Software Structure in PC RAM

Modification of PC Modification of PC User’s Programs
Key Interrupt Timer Interrupt and Interrupt
Service Routine Service Routine Service Routine

User’s Popup Program

Check Timer Int.

Check Key Int.
‘» “l Y

Show Menu Show a short Show a Short

Do: Message, Message:

1 Check Record Do: Do:
of Incoming Call 1 Answer with Get the No

2 Choose a Telephone Recorded Message from the List;
No to Make a Call 2 Record Incoming Dial;

3 Set Future Time Call Send Recorded
to Make a Call 3 Record Outgoing Message oul.

4 Check Outgoing call Call

y

Return

Figure 4.1: Flowchart of the Program for PC

31

Pop Up

Inbound Call —— Check a Call (Pick up one {rom the list Lo playback)
L Delete a Call (Pick up one [rom the list to delctc)

- Set answer (record answering message)

L+ Check answer (playback answering message)

QOutbound Call— Edit outgoing call list

L+ Record outgoing call
— Playback outgoing call

— Delete outgoing call

_L—+ Set time for outgoing call

Make a Call ——— Dial =~ ———— > Dial dircctly

—» Record Scelect

— Use directory

-—» Auto Redial

— Edit directory

L—s Directory

| —+ Insert

L+ Delete

Figure 4.2: Menu Structure

1
The DIAL TONE frequencies are a 350 Hz sinewave
and a 440 Hz sinewave that are continuously
present until dialling is begun.

The RINGBACK simulates the phone being rung at
other end. this s a 440 Hz sinewave and a 480

Hz sinewave with a cadence of 2 seconds on and

4 seconds off.

The BUSY signal announces the call cannot be
completed. This is 480 Iz sinewave and a 620
Hz sinewave with a cadence of 0.5 seconds on
and 0.5 seconds off.

The REORDER signal announces the call went only

part way through the phone system. Like the busy
signal, this is also a 480 Hz sinewave and a 620
Hz sinewave The cadence is 0 25 seconds on and

0 25 seconds off.

Figure 4.3: Telephone Call Progress

The computer samples and stores call progress detect from the output of SSI
75T2090 at every fixed time period for thirty times. The compuler also stores the ideal
patierns for each call progress signal. For example, the pattcrn of reorder signal can
be ‘11110000111100001111000011110000” and €11111111000000001111111100000000°
for a busy signal. After all samples have been finished, the computer compares input
sample pattern to cach ideal pattern. The program has a threshold and shilt function
in case that the phases are different and noisy. When two patterns compare, they
shift relatively to get the minimum number. The program checks if it is less than
the threshold. If so, the number of that ideal pattern is returned. The programs are

shown below.

#dcfine WAIT_TIME 5
enum react { NOTHING,DIALTONE,RINGBACK,BUSY,REORDER };
#define detect-tone() (((inportb(FONEPORT)&0x80) == 0)70:1)

unsigned onenum(long in) {

36

int i,cnt;

for(i=0,cnt=0; i<32; i++){
cnt +=1in & 1;
in >>=1;

}

return(cnt);

}
Fdefine shift(x) ((x<<1)—(((x&0x80000000)==0)70:1))

unsigned related(long 11,long 12){
unsigned min=32,tmp,i;
for(i=0; i<31; i++){
if((tmp = onenum(112)) < min) min = tmp;
12 = shift(12);
}
return min;
}
enum react test_tone(){
long bufl;
unsigned i,cnt;
for(i=0,cnt=0; i< WAIT_TIME * 32; i++){
delay(63);
if(detect_tone() == 0) cnt = 0;
else{
if(et == 0) cnt++;

clse break;

37

} /* else */
}/* for ¥/
if(i >= WAIT-TIME * 32) return(NOTHING);
buff = 0x3;
for(i=2; i<32; i++){
delay(63);
bull <<= 1;
bufl += detect-tone();
}/* for i %/
if(related(buff,0x[0f0[0{0) < 8) return(REORDER);
if(related(buff,0xff00{100) < 8) return{ BUSY);
bull = 0;
for(i=0; 1<32; i4++){
delay(188);
bufl <<= 1;
buff += detect_tone();
}/* fori ¥/

if(related(bufl,0x000007{f) < 10) return(RINGBACK);

if(related(bufl,0xfIIfIff } < 8) return(DIALTONE);
return(NOTHING);

}/* test_tone ¥/

When the computer records every speech data file, it must get a file name for that

speech data in order not to be mixed up. The file name for each incoming call is

defined as the specific time when a call comes in. The first letter of a file name with

38

A to L indicales January to Deccember, the next two digits are day of month, the
next two digits are hours and the next two are minutes, and the last digit indicates
seconds. So the file name for incoming speech data gets a format of YDDIHIIMMS.in

and the program for the record file name is shown below.

getrecordname() {
char head[12] = "ABCDEFGIIJKL”;
struct tm *curtime;

time_t bintime;

time(&Dbintime);

curtime = localtime(&bintime);

sprint{(filename,” %c%02d%02d%02d%d.in” ,head [curtime->tm_mon],
curtime->tm _mday,curtime->tm_hour,curtime->tm-min,

curtime->tm_sec/6);

When a user wants to make future calls, he just sclects ‘outbound call’ from the
main menu and tells the computer the time, number and message for each call. The
computer can do it one by one without attention. When the uscr sets a future call,
an execution-time-pointer will point the nearest time he sets. The timer interrupt
scrvice routine will check the time each minute. The programn for calling pops up
if it reaches that time. The timer interrupt service routine also checks the hot key-
combination for the program popping up. The system has a function that it will stop
after recording a certain period of time when it processes real-time speech data. A

timer-counter is set in the main program and is deceased in the timer ISR. If the

39

timer-counter is zero, nothing happens. If it is nonzero, it will be decrcased by one,
and as soon as it is decreased to zero, the error-flag is set and real-time recording or

playback ends. The following shows the timer interrupt service routine.

void interrupt newtimer()
{
(*oldtimer)();
if (!scancode){
kbv;l = peekb(0,0x417);
if ('resoff && ((kbval & keymask) << keymask) == 0)
if(lrunning){
popllg = 1;

popkind = ’k’;

}
if((*pt.PP)%1092 == 0){

if(timer_count != 0 && running == 1)
if(-timer_count == 0) error{lag = 1;

if(exet_pt != -1 && running == 0){
popllg=1;

popkind = "t’;

}
if (popllg && peckb(dosseg, dosbusy) ==0)
if (diskflag == 0 && videoflag == 0){

outportb(0x20,0x20);

40

popllg = 0;
dores();

The ring detector and data valid flag of DTMI receiver connect to JR()s. Both
of them can be read, reset and disabled. The program is activated when a call comes
in. The previ(;usly recorded message will be sent out and the incoming message will
be recorded on the disk. The information about all the incoming calls will be listed
on the screen for the user to check or delete.

A directory of up to one hundred phone numbers is built up for the user’s con-
venience. The user can use this directory or just dial to make a phone call. Ile also
can record the speech of either partner. When the line is busy, the user can sct to

automatic redial mode and the computer will dial again and again for him.

41

Chapter 5

Conclusion and Suggested Future
Work

Digital speech signal processing has lots of advantages over analog speech signal pro-
cessing. The integrated PC based Digital Speech System can perform detailed call
accounting, message indexing for easy retrieval, and timed distribution of messages to
pre-selected telephone numbers. The potential applications are many. In the future,
with added features of speech recognition, speaker recognition, and text to specch
conversion, the system can become more versatile and perform more useful automa-

tion functions.

The speed of speech communications mostly depends on the speaking not listening.
Sometimes, it is desirable to listen to previously recorded thirty minutes of speech
within twenty minutes or even less with the same quality, intonation. There is no
problem recognizing a speaker who speeds up his speech. You also can adjust the
time of speech to fit it into a certain interval. This, as a suggested future work, can
be achieved in the system. In this design, all compressed speech data are stored on
the disk in a format of 54-bit frame and can be processed futther. Normally, [rom

forty to fifty percent of specch data frames are silent. Some of the silent frames can

42

be removed and the specch is still clear. Some unsilenced {rames can be removed {rom
a steady group of speech frames. It is possible that up to fifty percent of time can
be saved. This processing can be realized by checking each frame, removing some of
silent and redundant ones to decrease time duration of a steady segment, and then
joining the remaining frames together.

The system has been implemented with speech synthesis and analysis. If speech
segments are stored instead of messages, the computer can create a sentence by itsclf.
With implementation of speech recognition, it is possible that a PC based digital

speech system with more intelligent functions can be developed.

43

Appendix A

Circuit Diagrams

44

Teut veq

ou ez M
| sean ¥ auserso | wrs
KieaAS M3334S IVE .G CA.VESA.n
R
[T3ETITR 1Y} Foam v
YIdHR e
E—— T 5 3 3
CezoHsL ﬁ “':;‘ SRR S\ st ¢
ﬁ_j 060235t IS8 s ¢ F; T - N d u o
DJ\N\/—O. A
™ " 00K pmg ™ HE [i d— Inr RIS <9
1 %0z ey
3q
il _ a l o B T <3
I3 ta
a0 1 3T N S—— R 2 D
3 > 20 0 ' 3
x1x T " o 2 + i ;
—] @ St e ot N B 56 7 sttame —+d 8 —<
(— © st g [T EO —a o Y g e
— 2 T 224 UYL 0 :o :: T ~J vra 2eome 851
A T
T Qe K1V 0 8! yotn 7 1 e : >
X v YLOHYL 0y >
— ey 0 : 26a
e s [YISHRL oz yroouye
T te =y 0 ¢ td ot
f ¥t
£33 a0 X117 7T alo we 9] FILELITY (]
0 gotn g T\
x1g n T o iz - 1 aans
uot e 3%3 15
| i) ECIN e taz w0
g :‘ et Mt : . 20 v
5 o I3} ._”_____Q o4 O
vt 2t T
> i we b2 \ "
¢ o [v
(1129 2 =
3 s b s +
3y < 3T
ot - o0 t B
) w
\ 2
N 3 1
it
1009KT s td
Tean ¥t vtn - 26 L1
[£713 L u 3
va T 1
23a b-a o4
T 171 esrt ortn T
3Z ;
Y06CK2Z
031 4 Jnezz n L 1119 24
— s © T Jnt o gnezz art o R A
RLANCE B I 91>
vzvie reorat l [I “’l sraee RIS
€s9 € ey vrin 2
e m.—?n dooot R 2
= (1131 290y
2] k'l 00— AT S © ASI0A
> re e st
21 bt 1 v
} 990k 1t g e
¢ | To c ¥
-, oy
631-345 5 erin 9 u:” sz z
> wez B -
q ¥ " ity x "1t Y]
ot Tt L1 1 oz
] 71" Y e
YOORXL | i& yoorxt
sty a
oty ezt veun 5‘. © 4
095 v
= < zessax st zoy l $:
[=0 3>
3+ as 3o
arel so tost |
| ‘ 5 T |
T
- [ot HA
. [o Aoz 34 e 7 I F TR T
- s0t ¥ dooot H
e AA— H
(24 l
¥z cr 13s azt- > ! 2333 ¢ noron]
It ¥ T —— R }-’—C 7353 9 HarCh]
3380 n}
1t ¥oz 155
asot) o

Appendix B
Software for IBM PC XT

46

#include «<dos.h>
#include <stdio.h>
#include <string.h>
#include <dir.h>
#include "tsr.h"

#include <conio.h>
#include <ctype.h>

#define table_len 100
#define file_len 10
#define ON 1
#define OFF 0

#define MENU_ROW 5
#define MENU_COL 60
#define MENU_LEN 18
#define MENU_HIG 12

#define LIST_IN_ROW 8
#define LIST_IN_COL 12
#define LIST_IN_LEN 37
#define LIST _IN_HIG 12

#define DIR_ROW 3
#define DIR_COL 5
#define DIR_LEN 35 *
#define DIR_HIG 12

#define LIST_OUT_ROW 5
#define LIST OUT_COL 9

#define LIST_OUT_LEN 50
#define LIST_OUT_HIG 12

/* key code */
#define BACK 8
#define TAB 9
#define CR 0Oxd
#define ESC 0x1b
#define SPACE 0x20

#define FUN 0O
#define PgUp 0x49
#define PgDn 0x51
#define UP 0x48
#define DOWN 0x50
#define LEFT 0Ox4b
#define RIGHT 0x4d
#define DEL 0x53
#define HOME 0x47
#define END 0Ox4f
#define F3 0x3d

47

#define F4 0x3e
#define F5 Ox3f

#define PORT_8259_20 0x20
#define PORT_8259_21 0x21

#define INT_LEVEL 0xb

struct sheet{

char NAME[15]; /* user name */

char NUM[15]; /* user’s teltphone number */
Jtable[table_len];

#include <time.h>
#define List_len 10
union TIME_UNION({
char c[4];
long 1;
I
struct List_struct(
char NAME[15];
char NUM[15];
union TIME_UNION TIME;
char STATE;
} List[List_len];
int exe_t_pt=-1;

static union{
long far *PP;
long II;

} pt;

static int menu;

static int error_flag = 0; /* stop record or playback when ON */
static int timer_count = 0; /* use for duration of recording */
FILE *fp;

char filename[13];

static char sv1[2400], sv2[700], sv3[300]J;

static union REGS rg;

extern unsigned _heaplen = 128;

extern unsigned _stklen = 4096;

unsigned scancode = 52;

unsigned keymask = 12;

char signature{] = "PHONE"; /* TSR SIGNATURE */

static void interrupt ifunc();

main(arge, argv)
char *argv(];

48

{

int ivec;

if{ivec = resident(signature, ifunc)) != 0){
iflarge > 1)(
rg.x.ax = 0;
if (stremp(argv[1], "quit") == 0)
rg.x.ax = 1;
else if (stremp(argvl 1], "restart") == 0)
rg.x.ax = 2;
else if (stremp(argv[1], "wait") == 0)
rg.x.ax = 3;
if(rg.x.ax)(
/* call the communications interrupt */
int86(ivec, &rg, &rg);
return;
}
}
printf("\nDigiPhone is already resident");
}
else {
[E e initial load of TSR program ------ */
printf("\nResident DigiPhone is loaded");
openfiles();
resinit();
}
}

il

void interrupt ifunc(bp,di,si,ds,es,dx,cx,bx,ax)

{
if (ax == 1) /gt " ¥/
terminate();
else if (ax == 2) /* "restart” ¥/
restart();
else if (ax == 3) /* "wait" */
suspend();
1

#define DTMFPORT 0x22e
#define FONEPORT 0x22¢

enum funct { PICK_UP,
ON_HOOK,
DETECT_TONE,
CHECK_RING,
CHECK_REMOTE_HOOQK,
CHECK_DTMF_RX,
LINE2CODEC,
MOUTH2CODEC,
MOUTH2LINE,
CODEC2LINE,
RES_OFFHOOK_INT,

49

}

DIS_OFFHOOK_INT,
RES_DTMF_RX_INT,
DIS_DTMF_RX_INT,
RES_DTMF_TX,
DIS_DTMF_TX,
HANDSET_INTL,
HANDSET_EXTL,
RESET_ALL

do_function(function_num)
enum funct function_num;

(

static char fone_status;

switch (function_num) {

case PICK _UP:

fone_status 1= 2;

outportb(FONEPORT, fone_status);

break;
case ON_HOOK:

fone_status &= 0xd;

outportb(FONEPORT, fone_status),

break;
case DETECT TONE:

return (((inportb(FONEPORT)&0x80) == 0)70:1);
case CHECK_RING:

return (((inportb(FONEPORT)&0x10) == 0)?0:1);
case CHECK_REMOTE_HOOK

return (((inportb{FONEPORT)&0x20) == 0)?0:1);
case CHECK_DTMF_RX:

return (((inportb(FONEPORT)&0x40) == 0)?0.1);
case LINE2CODEC:

fone_status 1= 8;

outportb(FONEPORT, fone_status),

break;
case MOUTH2CODEC:

fone_status &= 7;

outportb(FONEPORT, fone_status);

break;
case MOUTH2LINE:

fone_status &= Oxb;

outportb(FONEPORT, fone_status);

break;
case CODEC2LINE:

fone_status |=4;

outportb(FONEPORT, fone_status);

break;
case RES_OFFHOOKR_INT:

fone_status |= 0x20,

outportb(FONEPORT, fone_status),

fone_status &= Oxdf;

outportb(FONEPORT, fone_status);
break;

case DIS_OFFHOOK_INT:
fone_status |= 0x20;
outportb(FONEPORT, fone_status);
break;

case RES_DTMF RX_INT:
fone_status |= 0x40;
outportb(FONEPORT, fone_status);
fone_status &= 0xbf;
outportb(FONEPORT, fone_status);
break;

case DIS_DTMFEF RX_INT,
fone_status |= 0x40;
outportb(FONEPORT, fone_status);
break;

case RES_DTMF _TX:
fone_status |= 0x80;
outportb(FONEPORT, fone_status);
fone_status &= Ox7f}
outportb(FONEPORT, fone_status);
break;

case DIS_DTMF _TX:
fone_status |= 0x80;
outportb(FONEPORT, fone_status),
break;

case HANDSET INTL:
fone_status = 1;
outportb(FONEPORT, fone_status);
break;

case HANDSET_EXTL:
fone_status &= Oxfe;
outportb(FONEPORT, fone_status),
break;

case RESET ALL:
outportb(FONEPORT, 0xfD);
fone_status = 0;
outportb(FONEPORT, fone_status);

)
}

#define WAIT TIME 5
enum react { NOTHING,DIALTONE,RINGBACK,BUSY,REORDER };

#define detect_tone() ((inportb(FONEPORT)&0x80) == 0)?0:1)

unsigned one_num(long in){
int i,ent;
for(i=0,cnt=0; 1<32; i++){
ent += in & 1;
in >>= 1;

51

return(cnt);

}

#define shift(x) (x<<1)I(((x&0x80000000)==0)70:1))
unsigned related(long 11,long 12)(
unsigned min=32,tmp,i;
for(i=0; i<31; i++){
if((tmp = one_num(l1712)) < min) min = tmp;
12 = shaft(i2);
}
return min;

}

enum react test_tone()(
long buff;
unsigned i,cnt;

for(i=0,eni=0; i<« WAIT_TIME * 32; i++){
delay(63);
if{ detect_tone() == 0) ent = 0,
elsef
if ent == 0) ent++;
else break;
} /% else */
M* for */
if{ i >= WAIT TIME * 32) return(NOTHING);

buff = 0x3;
for(i=2; 1<32; i++){
delay(63);
buff <<= 1;
buff += detect_tone();
V* fori*

if{ related(buff,0xfOf0f0f0) < 8) return({ REORDER);
if{ related(buff,0xff00ff00) < 8) return{ BUSY);
buff = 0; .
for(i=0; 1<32; 1++)(

delay(188);

buff <<= 1;

buff += detect_tone();
J/* for i */
if{ related(buff,0x000007{f) < 10) return(RINGBACK);
if(related(buff, OxfH{ff{ff) < 8) return(DIALTONE);
return(NOTHING);

}* test_tone */

dial_one(char c){
outportb(DTMFPORT,c),
delay(150);
do_function(RES_DTMF_TX);
delay(100);

52

)
dial(char buffl]){

int 1=0;
while(buffli] != 0){

i buffli] >='1" && buffli] <='9")

dial_one(bufflil<<4);
else iflbuffli} == 0"
dial_one(0xa0);
1++;

}
#include <stdlib.h>

#define KEYBD 9
#define TIMER 0x1C
#define DISK 0x13
#define VIDEO 0x10
#define ZERODIV 0
#define INT28 0x28
#define CRIT 0x24
#define CTRLC 0x23
#define CTRLBRK 0x1B

static void interrupt (*oldbreak)();
static void interrupt (*oldetrle)();

static void interrupt (*oldtimer)(),
static void interrupt (*old28X);

static void interrupt (*oldkb)();

static void interrupt (*olddisk)();

static void interrupt (*oldvideo)();
static void interrupt (*olderit)(),

static void interrupt (*ZeroDivVector)(),

static void interrupt newtimer();
static void interrupt new28();
static void interrupt newkb();
static void interrupt newdisk(),
static void interrupt newvideo();
static void interrupt newecrit();
stalic void interrupt newbreak(),
static void interrupt ring();
static union REGS rg;

static struct SREGS seg;

static unsigned sizeprogram,;
static unsigned dosseg;
static unsigned dosbusy;
static char far *mydta;
static unsigned myss;

static unsigned stack;

53

static unsigned intpsp;
static unsigned psps[2];
static int pspetr;

static int resoff;

static int running;
static int popflg;

static int diskflag;
static int videoflag;
static int cflag;

static char popkind;

static void resterm(void);
static void pspaddr(void);
static void dores(void);

void resinit()

{
segread(&seg);
myss = 5eg.ss;
stack = _SP;
rg.h.ah = 0x34;
intdos(&rg, &rg);
dosseg = _ES;
dosbusy = rg x.bx;
mydta = getdta();
pspaddr();
oldtimer = getvect(TIMER);
0ld28 = getvect(INT28);
oldkb = getvect(KEYBD);
olddisk = getvect(DISK);
oldvideo = getvect(VIDEQ);
setvect(TIMER, newtimer);
setvect(KEYBD, newkb);
setvect(INT28, new28);
setvect(DISK, newdisk);
setvect(VIDEO, newvideo);
setvect(INT_LEVEL,ring);

do_function(RESET_ALL);
do_function(DIS_OFFHOOK_INTY);
do_function(DIS_DTMF_RX_INT),
do_function(HANDSET _INTL);
outport(PORT_8259_20, inport(PORT_8259_20) & 0xf7ff);
outportb(PORT_8259_20, 0x20);
pt.II = 0x0040006¢cL;
sizeprogram = myss + ((stack+50)/ 16) - _psp;
setvect(ZERODIV, ZeroDivVector),
keep(0, sizeprogram);

}

void interrupt newvideo(bp,ds,si,ds,es,dx,cx,bx,ax)

{

54

static int hbx;
static unsigned vidbp[5];
static unsigned vidoutbp;

vidbp[videoflag++] = _BP;

_BX = bx;

_BP = bp;
(*oldvideo)();
vidoutbp = _BP;
hbx = _BX;

_BP = vidbp[--videoflag];
ax = _AX;

bx = hbx;

cx = _CX;

bp = vidoutbp;
dx = _DX;

es = _ES;

di = _DI;

}

static void interrupt newbreak()

(

return;

)

void interrupt newecrit(bp,di,si,ds,es,dx,cx,bx,ax,ip,cs,flgs)
{

ax = 0;

cflag = flgs;
}

void interrupt newdisk(bp,di,si,ds,es,dx,cx,bx,ax,ip,cs,flgs)
(

diskflag++;

(*olddisk)();

ax = __AX;

newerit();

flgs = cflag;

--diskflag;
)

static int kbval;

void interrupt newkb()

{

extern unsigned scancode;
extern unsigned keymask;

if (scancode && inportb(0x60) == scancode){

kbval = peekb(0, 0x417);
if (resoff && (kbval & keymask) == keymask){

55

kbval = inporth(0x61);
outportb(0x61, kbval | 0x80);
outportb(0x61,kbval);
disable();
outport(0x20,0x20); /* send eoi to 8259 ¥/
enable();
if (frunning)(
popflg = 1;
popkind = ’k’;
1
return;
}
1
(*oldkb)(Q);

}

void interrupt newtimer()

{
extern unsigned scancode;
extern unsigned keymask;

(*oldtimer)();
if (Iscancode)(
kbval = peekb(0,0x417);
if (Iresoff && ((kbval & keymask) << keymask) == 0)
if!running)(
popflg = 1;
popkind = ’k’;
)
}

if{ (*pt.PP)%1092 == 0){
if(timer_count != 0 && running == 1)
if(--timer_count == 0) error_flag = 1;
iflexe_t_pt != -1 && running == 0)(
popflg=1;
popkind =t;
}
}

if (popflg && peekb(dosseg, dosbusy) ==0)
if (diskflag == 0 && videoflag == 0)(
outportb(0x20,0x20); /* send so1 to 8259 */
popflg = 0;
dores();
}
}

void interrupt new28()

{
(*o1d28)();
if (popflg&& peekb(dosseg, dosbusy) != 0){

56

popflg = 0;
dores();

}

}

void resident_psp()

{
int pp;

intpsp = peek(dosseg, *psps);
for(pp = 0; pp < pspetr; pp++)
poke(dosseg, pspsippl, _psp);
)

void interrupted_psp()

{
int pp;

for (pp =0; pp < pspctr, pp++)
poke(dosseg, pspsipp], intpsp);
}

static void dores()
{
static char far *intdta;
static unsigned intsp;
static unsigned intss;
static unsigned ctrl_break;
time_t tnow;
struct tm *tmnow;
union TIME_UNION tunow;

running = 1;

disable();

intsp = _SP;

intss = _SS;

_SP = stack;

_SS = myss;

enable();

oldcrit = getvect(CRIT);

oldbreak = getvect(CTRLBRK);

oldctrle = getvect(CTRLC);
setvect(CRIT, newcrit);
setvect(CTRLBRK, newbreak);
setvect(CTRLC, newbreak),
ctrl_break = getcbrk();
setcbrk(0);

intdta = getdta();
setdta(mydta);
resident_psp();

switch(popkind){

_case 't

57

time(&tnow);
tmnow = localtime(&tnow);
tunow.c[0] = {mnow->tm_min;
tunow.c[1] = tmnow->tm_hour;
tunow.c[2] = tmnow->tm_mday;
tunow.c[3] = tmnow->tm_mon;
if{ftunow.] == List[exe_t_pt]. TIME.])
popup();

break;

case 'k’
popup();
break;

case 'r’
popup();
break;

}

interrupted_psp();
setdta(intdta);
setvect(CRIT, olderit);
setvect(CTRLBRK, oldbreak);
setvect(CTRLC, oldctrlc);
setcbrk(ctrl_break);
disable();

_SP = intsp;

_SS = intss;

enable();

running = 0;

)
static int avec = 0;

unsigned resident(signature, ifunc)
char *signature;

void interrupt (*ifunc)();

(

char *sg;

unsigned df;

int vec;

segread(&seg);
df = seg ds - seg cs,
for (vec = 0x60; vec < 0x68; vec++){
if (getvect(vec) == NULL){
if (lavec)
avec = vec;
continue;
)
for (sg = signature; *sg; sg++)
if (*sg = peekb(peek(0,2+vec*4)+df, (unsigned)sg))
break;
if (*sg)

58

return vec;
)
if (avec)
setvect(avee, ifunc);
return 0;

}

static void pspaddr()
{
unsigned adr = 0;
unsigned enddos;

rg.h.ah = 0x52;
intdos(&rg, &rg);
enddos = _ES;
enddos = peek(enddos, rg.x.bx-2);
while (pspetr <2 &“
(unsigned)({dossc g ~~ -t) + adr) < (enddos << 4)){
if (peek(dosseg, adr) == _psp){
rg.h.ah = 0x50;
rg.x.bx = _psp +1;
intdos(&rg, &rg);
if (peek(dosseg, adr) == _psp + 1)
pspslpspetr++] = adr;
rg.h ah = 0x50;
rg.x.bx = _psp;
intdos(&rg, &rg);
)
adr++;
)
)

static void resterm()

{
closefiles();
setvect(TIMER, oldtimer);
setvect{(KEYBD, oldkb);
setvect(INT28, 01d28);
setvect(DISK, olddisk);
setvect(VIDEQ, oldvideo);
setvect(avec, (void interrupt (*)()) 0);
freemem(peek(_psp, 0x2¢));
freemem(_psp);

}

void terminate()

{
if (getvect(VIDEQ) == (void interrupt (*)()) newvideo)
if (getvect(DISK) == (void interrupt (“)()) newdisk)
if (getvect(KEYBD) == newkb)
if (getvect(INT28) == new28)
if (getvect(TIMER) == newtimer)(

59

resterm();
return;

}
resoff = 1;

}

void restart()

(

resoff = 0;
}
void suspend()
{

resoff = 1;

}

int get_char()
{
static int ¢,flag=0;
if(flag == 0){
while (1) {
rg.h.ah = 1;
int86(0x16, &rg, &rg);
iftrg.x.flags & 0x40) (
int86(0x28, &rg, &rg),
continue;
)
rg.h.ah = 0;
int86(0x16, &rg, &ry);
if (rg.h.al == 0)
¢ =rgh.ah | 128;
else
¢ =rgh al;
break;
}*while*/
if{c<128)
return(c);
elsef
flag = 1;
return(0);
}
Jelse(
flag = 0;
return(c&0x70);
}
)

set(x,y,on,num)
int x,y,on,num;
{
union REGS regs;
regs.h.ah = 2;/* set cursor position ™/

60

regs.h.dh = x;
regs.h.dl = y;
regs.h.bh = 0;
int86(0x10,®s,®s);
regs.h.ah = 1;/* turn on/off cursor */
regs.h.ch = (on==1)num-0x20;
regs.h.cl = 11;
int86(0x10,®s,®s);

]

window_frame(y,x,],h,title,cursor_on)
int x,y,l,h,cursor_on;
char title[];
{
int i,j,len;
char buffl80];
textattr(YELLOW + (BLUE<<4));

len = strlen(iitle),

set(x,y,OFF,13);

putch(#);

for(i=1; i<(l-len)/2 ;i++) putch(="),

cprintf{("%s",title);

i+=len;

for(; i<l-1; 1++) putch(=);

putch(y’);

for(i=1; i<h-1; i++){
set(x+i,y,OFF,13); putch(|”);
set(x+i,y+I-1,0FF,13),putch(|");

)

set(x-+h-1,y,0FF,13);

putch(E);

for(i=2; i<l ;i++) putch(=");

putch(d”);

for(i=0; i<80; i++)
bufflil ="

buff[l-2] = ’\0’;

for(i=h-2;i>0;i--)(
set(x+1,y+1,0FF,13);
cprintf("%s" buff);

)

set(x+1,y+1,cursor_on,10),

textattr(LIGHTGRAY + (BLUE<<4));

]

show_menu(select_group, row, col, hight_choice)

int select_group, row, col, hight_choice;
{

int 1;

static char *fun_namel[6][4]

= {

61

{"Exit "
"Inbound call ",
"Outbound call”,
"Make a call "
})

{

"Check a call ",
"Delete a call”,
"Set Answer ",
"Check Answer ",
],

{

"Exit "
"Dial "
"Auto Redial ",

"Directory ",

},
(
"BExit
"Edit e
"Insert "
"Delete "
5,
{
"BExit "
"Dial Directly”,
"Use Directory”,
"Record Select”,
}’
{
"Exit "
"Make a Call ",
"Check a Call ",
"Delete a Call ",
}
1

for (i=0, i<4; i++) [*
set(row+(2%1), col, OFF, 13);
if (A == hight_choice)
textattr(BLACK + (LIGHTGRAY<<4));
else
textattr(LIGHTGRAY + (BLUE<<4));
cprintf("%-14s",fun_name[select_groupl(il);
)
)

message(num, row, col)
char num,; /¥ num = 0 clear message window */

int row, col;

{

char saveline[80];

62

static char *msg{10] = ("Playing back, Press any key to quit",
"Recording... Press any key to quit ",
"AYAX: Move; Ent: select, ESC. quit ",

Do not interrupt! "

" Waiting for dial tone ,
" Waiting for a while, please ",

" Not complete, dial again? YN ",

Press any key, when finish. ",
! Pick up? Y/N "
" Quit ? Y/N “};

"

iflnum != 0) {
gettext(col,row+1,c0l+36,row+1,sv3),
set(row,col,OFF,13);
textattr(LIGHTGRAY + (BLUE<<4));
cprintf("%-36s",msg[num - 1]);

}

else
puttext(col,row+1,col+36,row+1,s5v3),

}

edit(high_row, row, col, begin)
int high_row, row, col, begin;
{

char buff[20], ¢;

inti=0;

char keyl;

set(row+high_row, col+3, ON, 10);
strepy(bufftablelbegin+high_row] NAME),

while (1) {
¢ = get_char();
switch(e) {
case FUN:
keyl = get_char();
switch(key1){
case RIGHT:
ifi<13 & buffli] I="\0") {

1++;
putchar(buffli-1]);

}

ifi>15 & 1<29 & bufili-16] !="\0") {
i++;
putchar(bufili-17]);

}

break;

case LEFT:

ifi(i>1 & i<14) | (i>16)) {
i
putchar(BACK);

)

63

break;
}
break;
case BACK:
if{i>0) (
i-;
putchar(BACK);
putchar(%);
putchar(BACK);
}
break;
case CR:
if (G<15) {
set(row+high_row, col+18, ON, 10);
/* store new name */
buffli] = \0’;
strepy(table(begin+high_row]. NAME bufl);
i= 16;
strepy(buff,table[begin+high_row]. NUM);
)
else
/* store new number */
buffli-16] = \0’;
strepy(tablefbegin+high_row]. NUM,buff);
return;
)
break;

default:
ifi<14 & isprint(c) != 0) {
putchar(c);
buffli++] = ¢;
}
if (i>15 & 1«30 & isdigit(c) != 0) {
putchar(c);
buffli-16] = ¢;
i++;
)
)

show_dialthigh_row, row, col, begin, menu)

int. high_row, row, col, begin, menuy;

{

" inti;
for G=0;1 < 10; i++) {
set(row+i, cel, OFF, 13);
if (Imenu & i == high_row)
textattr(BLACK + (LIGHTGRAY<<4));

else

64

textattr(LIGHTGRAY + (BLUE<<4));
cprintf("%2d %-14s %-14s",begin+i,table[begin+il NAME,
table[begin+i]l. NUM);

}

getrecordname() {
char head[12] = "ABCDEFGHIJKL";
struct tm *curtime;
time_t bintime;

time(&bintime);
curtime = localtime(&bintime);

/* filename is up to the time when a call is just coming, first letter
A to L indicate Jan to Dec, next two are day of month, so are hours,
mins, and the last letter indicates digit of seconds. YDDHHMMS.in */

sprintf(filename,"%c%02d%02d%02d%d.in" head[curtime->tm_mon],
curtime->tm_mday,curtime->tm_hour,curtime->tm_min,
curtime->tm_sec/6);

)

#define EXT _MODEM_INTERFACE 0x3A1
#define INTERNAL_CONTROL 0x3A2
#define MODE_INITIAL 0x3A3
#define DATA_PORT 0x3A8

#define USART_STATUS 0x3A9

#define BUFFLENGTH 1024

int bufflag = 0;
char *pointer;
int counter = 0;
void interrupt (*old_vect)();
char buffO[BUFFLENGTH],buffl1[BUFFLENGTH];
struct file_{
char name[13];
long filesize;
} filelfile_len];
char month[12][4] = ("Jan”, "Feb", "Mar", "Apr", "May",
"Jun”, "Jul”, "Aug"”, "Sep", "Oct", "Nov","Dec"};

void interrupt sso(){
disable();
outportb(DATA_PORT, *(pointer++));
counter++;
outportb(PORT_8259_20, 0x20); /* write eoi to 8259 */
enable();

65

playback() /* playback data file = filename ¥/
{

int i, numread;

unsigned data;

if{ (fp = fopen(filename,"rb")) I= NULL){
disable();
old_vect = getvect(0xc);
setvect(Qxc,ss0);
enable();

}

else return;

fread(buff0,1, BUFFLENGTH*2,{p),
pointer = buff0;

outportb(MODE_INITIAL, 0x98);
outportb(INTERNAL_CONTROL, 0x02);
outportb(EXT MODEM_INTERFACE, 0x10);
outportb(EXT MODEM_INTERFACE, 0x00);
outportb(USART _STATUS, 0x0C);
outportb(USART _STATUS, 0x32);
outportb(USART _STATUS, 0x32);
outportb(USART_STATUS, 0x30);

data = inport(PORT _8259_20);
outport(PORT _8259_20, data & Oxeff); /* Enable 8259 Int Level 4 =/

inportb(DATA_PORT);

outporth(PORT_8259_20, 0x20); /* write eoi to 8259 */
outportb(USART_STATUS, 0x21);

outportb(DATA_PORT, 0x05);

while (lkeyhit()) {
if (counter >= BUFFLENGTH) {
counter = 0;
if (bufflag) {
pointer = buff0;
numread = fread(buffl,1, BUFFLENGTH,p);
}
else {
pointer = buffl;
numread = fread(bufl0,1, BUFFLENGTH,{p);
}

bufflag = 1;
if (numread != BUFFLENGTII)
error_flag = 1; /* end of file */

}

if{ error_flag > 0) break;

66

outportb(EXT MODEM_INTERFACE, 0x10);
outportb(EXT_MODEM_INTERFACE, 0x00);
outportb(USART _STATUS, 0x0C);

outportb(USART STATUS, 0x32);

outportb(USART _STATUS, 0x32);
outportb(USART_STATUS, 0x30);

outport(PORT_8259_20, data); /* Restore 8259 Int Mask */
inporth(DATA_PORT);

outportb(PORT_8259_20, 0x20); /* write eoi to 8259 */

felose(fp);
error_flag = 0;

disable();
setvect(0Oxc,0ld_vect);
enable();

}

void interrupt ssi(){
disable();
*(pointer++) = inportb(DATA_PORT);
counter++;
outportb(PORT_8259_20, 0x20); /* write eoi to 8259 ¥/
enable();
}

record()
int i, numwrite;
unsigned data;
char key;

ifl (fp = fopen{filename,"wh")) = NULL)
disable();
old_vect = getvect(0xb);
setvect(0xb,ssi);
enable();

]

else return;
pointer = buff0;

outportb(MODE_INITIAL, 0x98);
outportb(INTERNAL_CONTROL, 0x02);
outportb(EXT_MODEM_INTERFACE, 0x10);
outportb(EXT_MODEM_INTERFACE, 0x00);
outportb(USART_STATUS, 0x0C);
outportb(USART_STATUS, 0x32);
outportb(USART_STATUS, 0x32);
outportb(USART_STATUS, 0x04);
inportb(DATA_PORT);

data = inport(PORT _8259_20),

87

outport(PORT_8259_20, data & 0xf7ff); /* Enable 8259 Int Level 3 */
outportb(PORT_8259 20, 0x20); /¥ write eoi to 8259 */

while (keyhit()) {
if (counter >= BUFFLENGTH) (
counter = 0;
if (bufflag) (
pointer = buff0;
numwrite = fwrite(buffl,1 BUFFLENGTH,p);
}
else {
pointer = buffl;
numwrite = fwrite(buff0,1, BUFFLENGTH,p);
)
bufflag "= 1;
if (numwrite != BUFFLENGTH)
error_flag = 1; /* disk full */
]

if{ error_flag > 0) break;
)

outportb(EXT MODEM_INTERFACE, 0x10);
outportb(EXT_MODEM_INTERFACE, 0x00);
outport(PORT_8259_20, data); /* Restore 8259 Int Mask */
outportb(PORT_8259_20, 0x20); /* write eoi to 8259 */

felose(fp);
error_flag = 0;

disable();
setvect(0xb,old_vect);
enable();

int keyhit() {
static union REGS rg;

rg.h.ah = 1;
int86(0x16, &rg, &rg);
if (rg.x.flags & 0x40)
return 0,
rg.h.ah = 0;
int86(0x16, &rg, &rg), /* eat the keystroke #/
return 1;

show_list_in(high_row, row, col, menu, num) /* menu and file */
int high_row, row, col, menu, num;

68

int i;
for 1=0;1< 10;i++) |
set(row+i, col, OFF, 13);

if (lmenu & i == high_row)
textattr(BLACK + (LIGHTGRAY<<4));
else

textattr(LIGHTGRAY + (BLUE<<4));
if G < num)

eprintf(" %2d %-3s %c%e, %c%e:Foc%e %5d Sec.'i,

month[(int) file[ilnamel[0] - 0x41],
file[i]l.name[1],file[i].name[2],
file[:].name[3],file[i] name[4],
file[il.name[5],file[i].name(6],
file[i].filesize/300);

else

cprintf{" "),

}

auto_redial()
{
int 1;
char dialnum[13];

readkey(dialnum,11,20,6,"DIAL NUMBER");
for (i=0; i<10; i++) {
do_function(PICK_UP),
message(5,24,30);
/* if(test_tone() == DIALTONE){*/
dial(dialnum);
/* 1
message(0,24,30);
if (test_tone() = RINGBACK) {
do_function(ON_HOOK);
delay(50000);
continue;
}
else break;
)
message(8,24,30);
while (tkeyhit()) ;
message(0,24,30);
do_function(ON_HOOK);

}

void inbound_call()

{
int i,count=0,file_row=0;
long totalsize;

69

char key keyl;
int menu = ON, menu_choice = 0;
struct fiblk fileinfo;

for(i = 0; i < file_len; i++) {
strepy(file[il.name, NULL);
file[il.filesize = 0;

]

if (findfirst("*.in", &fileinfo, FA_SYSTEM) ==0) [
strepy(file[0l.name, fileinfo.ff_name);
file[0].filesize = fileinfo.ff_f{size;

1=1;

count = 1;

while (findnext(&fileinfo) == 0 && 1 < 10) {
count++;
file[il.filesize = fileinfo.ff_fsize;
strepy(filelil.name, fileinfo.ff_name);
i++;

}

}

gettext(LIST_IN_COL+1, LIST_IN_ROW, LIST_IN_COL+1+LIST_IN_LEN,
LIST_IN_ROW+LIST_IN_HIG, sv1);

window_frame(LIST_IN_COL, LIST_IN_ROW, LIST_IN_LEN, LIST_IN_HIG," Call List ",0FF),
window_frame(MENU_COL, MENU_ROW, MENU_LEN, MENU_HIG, " MENU ",0FF);
do {

show_list_in(file_row, LIST_IN_ROW+1, LIST IN_COL+1, menu, count);

show_menu(l, MENU_ROW+2, MENU_COL+2, menu_choice),

key = get_char();
if (menu == OFF) {
switch (key) {
case FUN:
keyl = get_char();
switch(keyl) {
case UP:
if(file_row > 0) file_row--;
break;
case DOWN:
if(file_row < 9) file_row++;
)
break,

70

case CR:
switch (menu_choice) {

case 0: /* check */
message(1,22,30);
strepy(filename, filelfile_row].name);
playback();
message(0,22,30);
break;

case 1: /* delete */

unlink(file[file_row].name);

for (i=file_row;i<count-file_row;i++) {
strepy (filelil.name, fileli+1].name),
filelil.filesize = file[i+1].filesize;

)

count--;

break;

)
menu = ON,
break;
case ESC:
menu = ON;
key = HOME; /* keep prog on inbound sub menu */
break;
)
}
else { /* menu 1s ON #/
switch (key) (
case FUN:
keyl = get_char();
switch(keyl) {
case UP:
iftmenu_choice > 0) menu_choice--;
break;
case DOWN-
iflmenu_choice < 3) menu_choice++;
break;
}

break;

case CR:
switch (menu_choice) {
case 2. /¥ set answer */
message(2,24,30);
do_function(MOQUTH2CODEC);
strepy(filename, "answerin msg"),

record();
message(0,24,30);
break;
case 3: /* check answer */

if (findfirst("answerin.msg", &fileinfo, FA_SYSTEM) ==0) {
message(1,24,30);

71

strepy(filename, fileinfo.ff_name);

playback();
message(0,24,30);
}
else { /¥ print error message ¥/

setMMENU_ROW+10, MENU_COL+1, OFF, 13);
textattr(LIGHTGRAY + (BLUE<<4));
eprintf("%-14s"," No Answer MSG");
)
break;
case 0:
case 1: menu = OFF;
break;

}
)
) while(key != ESC | menu == OFF);
puttext(LIST_IN_COL+1, LIST_IN_ROW, LIST_IN_COL+1+LIST_IN_LEN,
LIST IN_ROW+LIST IN_HIG, svl);

}

get_near_t({
int i;
time_t tnow;
struct tm *tmnow;
union TIME_UNION tunow;

time(&tnow);

tmnow = localtime(&tnow);
tunow.c[0] = tmnow->tm_min;
tunow.c[1] = tmnow->tm_hour;
tunow.c[2] = tmnow->tm_mday;
tunow.c[3] = tmnow->tm_mon;

for(i=0; i<List_len; i++)
if(List[il TIME.1 < tunow.l) List[i] STATE = OFF;

for(i=0; i<List_len; i++)(
if{List[i].STATE == ON) break;
}

ifi<10)(

exe_t_pt = i;

for(i++; i<List_len; i++)

if{ List{i]. STATE==0N && List(l]. TIME.I<List[exe_t_pt]l. TIME 1)
exe_t_pt =1;

}
else

exe_t_pt = -1;

72

int pos[6]={4,20,35,39,42 45};
void show_list_outChigh_row, high_col, row, col, menu)
int high_row, high_col, row, col, menu;
{
int 1,;
for(i=0; i<List_len; i++){
set(col+i,row,OFF,0);
textattr(LIGHTGRAY + (BLUE<<4));
cprintf("%2d:",1);

if (lmenu & i == high_row & high_col == 0)
textattr(BLACK + (LIGHTGRAY<<4));
else
textattr(LIGHTGRAY + (BLUE<<«4));
set(col+i,row+pos[0],OFF,0);
cprintf{”%s",List[i]. NAME);

if (!menu & i == high_row & high_col == 1)
textattr(BLACK + (LIGHTGRAY<<4));
else
textattr(LIGHTGRAY + (BLUE<<4));
set(col+i,row+pos[1],0FF,0);
cprintf{"%s",List[i]. NUM);

if (lmenu & i == high_row & high_col == 2)
textattr(BLACK + (LIGHTGRAY<<4));
else
textattr(LIGHTGRAY + (BLUE<<4)),
set(col+i,row+pos[2],0FF,0);
cprintf{"%s", month([List[i] TIME.c[3]]);

if (Imenu & i == high_row & high_col == 3)
textattr(BLACK + (LIGHTGRAY<<4)),
else
textattr(LIGHTGRAY + (BLUE<<«4));
set(col+i,row+pos[3],0FF,0);
eprintf{"%-2d",List[i]. TIME.c[2]);

if (!lmenu & i == high_row & high_col == 4)

textattr(BLACK + (LIGHTGRAY<<4));
else

textattr(LIGHTGRAY + (BLUE<<4));
set(col+i,row+pos[4],0FF,0);
cprintf("%024d", List[i]. TIME.c[1]);
textattr(LIGHTGRAY + (BLUE<<4));
cprintf{(":");

if lmenu & i == high_row & high_col == 5)
textattr(BLACK + (LIGHTGRAY<<4)),
else
textattr(LIGHTGRAY + (BLUE<<4));
set(col+i,row+pos(5],0FF,0);

73

cprintf("%02d",List[i]. TIME.c[0]);
}* for i %/
}

void outbound_call(}{
char key,keyl;
int row=0,col=0;
int pt,i;
static char *help_namel[T7]
= {
"Move: Arrow ",
"Select: Enter ",
"Set T.: Enter ",
"Delete: F3 ",
"Record: F4 ",
"PlayBk: F5 ",
"Quit: Esc. "
};

gettext(10, 5, 10+50, 5+12, sv1);

window_frame(LIST_OUT_COL,LIST_OUT_ROW,LIST_OUT _LEN,LIST_OUT_HIG," Directory
" OFF);

window_frame(MENU_COL, MENU_ROW, MENU_LEN, MENU_HIG, " HELP ",0FF);

for (i=0; i<7; i++) {
set(MMENU_ROW+1+i, MENU_COL+1, OFF, 13);
cprintf(" %-14s",help_name[1});

)

do(
show_list_out(row,c0],10,6,0FF);
key = get_char();
switch(key)(
case FUN:
keyl = get_char();
switch(key1){
case DOWN:
if{(++row>9) row = 0;
break;
case UP:
ifl--row<0) row = 9;
break;
case RIGHT:
if{++col>5) col = 0;
break;
case LEFT:
if(--col<0) col = 5;
break;
case F3:
strepy(List[row] NAME, ".............. ")
strepy(Listlrow] NUM,".-. .");
Listfrow]. TIME.l = 0x00010000;

74

List[row].STATE = OFF,
sprintf(filename,"%d.out",row);
unlink(filename);

break;

case F4:

sprintf{filename,"%d.out",row);
message(2,24,40);

record(;

message(0,24,40);

break;

case F5:

sprintf{filename,"%d.out",row);
message(1,24,40);

playback();

message(0,24,40);

break;

1
break;

case CR:

textattr(BLACK + (LIGHTGRAY<<4));
List[row].STATE = ON;
switch{col){

case 0:

for(pt=0,key1=0; keyl '= CR;)(
set(LIST_OUT_ROW+row+1,LIST_OUT_COL+pos[col]+pt+1,0N,10);
keyl = get_char();
if isalnum(keyl) 1| keyl=="" 11 keyl=="-")(

}

for(i=13; i>pt; i--)
Last[row] NAMEJi] = List[row].NAME[:1-1];
Listlrow]. NAME[pt] = key1;
set(LIST_OUT_ROW+row+1,LIST _OUT _COL+pos[0]+1,0N,10);
cprintf("%s",List[row] NAME),
if{(++pt==14) pt --;

else if(keyl == BACK) pt--,
else if{ keyl == FUN){

keyl = get_char();
switch(key1)(
case LEFT:

if(--pt<0) pt++;break,
case RIGHT:

if{++pt>13) pt--,break;
case DEL:

for(i=pt; i<13; i++)

List[row].NAME[i] = List[row]. NAME[i+1];
List[row]. NAME[13] =",
set(LIST_OUT_ROW-+row+1,LIST OUT_COL+pos[col]+1,0N,10);
eprintf("%s",List[row] NAME);
break;

. case HOME:

pt=0; break;

75

)
}

case END:
pt=13; break;
)

break;

case 1:

for(pt=0,key1=0; keyl != CR;){
set(LIST_OUT _ROW+row+1,LIST OUT_COL+posicoll+pt+1,0N,10);
keyl = get_char();
if(isdigit(keyl) || keyl=="" 11 keyl=="-")(

]

List[row]. NUMIpt] = key1;

set(LIST_OUT_ROW+row+1,LIST OUT_COL+pos{col]+1,0N,10);
cprintf("%s",List[row] NUM);

if(4++pt==14) pt -;

else if(keyl == BACK) pt--;
else if{ keyl == FUN){

)
}

keyl = get_char();
switch(key1)(
case LEFT:

if(--pt<0) pt++;break;
case RIGHT:

if(++pt>13) pt--;break;
case DEL:

for(i=pt; i<13, i++)

List[row] NUMIi] = List{row].NUM[1+1];
List[row]. NAME[13] = ’;
set(LIST_OUT_ROW+row+1,LIST_OQUT_COL+pos[col]l+1,0N,10);
eprintf{"%s",List{row] NUM);
break;

case HOME:
pt=0, break;
case END:
pt=13, break,
)

break;

case 2:

if(++Listrow]. TIME.c[3]==12) List[row]. TIME.c[3] = 0;
break;

case 3:

if(++List[row]. TIME.c[2]==32) List[row]. TIME.c[2] = 1;
break;

case 4:

if{(++List[row]. TIME.c[1]==24) List[row].TIME.c[1] = 0;
break;

case 5:

if{++Last{row . TIME ¢[0]==60) List{row].TIME.c[0] = 0;
break;

}

76

break;

)
}while(key != ESC);

get_near_t();
puttext(10, 5, 10+50, 5+12, svl);

}

void dialmenu()

{
int i;
char key,keyl;
char dialnum[13];

int dial_row = 0, page_begin = 0, menu_choice = 0,
int record_flag = OFF; /* Off: record the other party */
int menu = ON; /¥ switch between menu and directory */

gettext(DIR_COL+1, DIR_ROW, DIR_COL+1+DIR_LEN, DIR_ROW+DIR_HIG, svl);
window_frame(DIR_COL,DIR_ROW,DIR_LEN,DIR_HIG," Dial Directory ",OFF);

window_frame(MENU_COL, MENU_ROW, MENU_LEN, MENU_HIG, " DIAL MENU ",0FF),
while (1) {

show_dial(dial_row, DIR_ROW+1, DIR_COL+1, page_begin, menu);
show_menu(4, MENU_ROW+2, MENU_COQOL+2, menu_choice);

setMENU_ROW+10, MENU_COL+1, OFF, 13);
textattr(LIGHTGRAY + (BLUE<<4));

1f (record_flag)
if (record_flag == 1)
cprintf{"9%-14s","* Record other "),
else
cprintf("%-14s","* Record self ");
else
cprintf{("%-14s","* No Recording ");

key = get_char();
if (menu == OFF) {
switch (key) {
case FUN:
keyl = get_char();
switch(keyl } (
case UP:
if(dial_row > 0) dial_row--;
else if (page_begin > 0) page_begin--;
break;
case DOWN:

77

/*

/-k

ifldial_row < 9) dial_row++;
else if (page_begin < 90) page_begin++;
break;
case PgUp:
if ((page_begin -= 10) < 0)
page_begin = 0;
break;
case PgDn:
if ((page_begin += 10) > 90)
page_begin = 90,
break;
)
break;

case CR: /* choice is made, do whatever */
/* switch menu_choice ¥/
if (menu_choice == 2) {/* use directory */
do_function(PICK_UP);
message(5,24,30);
ifltest_tone() == DIALTONE){*/
delay(500); /* use this instead */
dial(table[dial_row+page_beginl. NUM);
¥
message(0,24,30),
message(8,24,30);
if (record_flag) {
getrecordname();
message(0,24,30);
message(2,24,30);
record();
message(0,24,30);
message(8,24,30);
}
while (lkeyhit()),
message(0,24,30);
do_function(ON_HOQOK);
do_function(MOUTH2CODEC);
)
menu = OFF;
break;

case ESC: menu = ON;

)
)
else {
switch (key) {
case FUN:
keyl = get_char();
switch(keyl) {
case UP:
iftmenu_choice > 0) menu_choice--;

78

break;
case DOWN:
iflmenu_choice < 3) menu_choice++;
break;
)
break;

case CR:
switch (menu_choice) {
case 0: puttext(DIR_COL+1, DIR_ROW, DIR_COL+1+DIR_LEN,
DIR_ROW+DIR_HIG, svl);
return;
case 1: /¥ dial directly */
do_function(PICK_UP);
readkey(dialnum,11,20,6,"DIAL NUMBER");
message(5,24,30);
if(test_tone() == DIALTONE){*/
dial(dialnum);
3
message(0,24,30);
message(8,24,30);
if (record_flag) {
gelrecordname();
message(0,24,30);
message(2,24,30),
record();
message(0,24,30);
message(8,24,30),
)
while ('keyhit());
message(0,24,30);
do_function(ON_HOOQOK);
do_function(MOUTH2CODECQC);
break;
case 2: /* use directory */
menu = OFF;
break;
case 3: /¥ record select */
if (++record_flag > 2) record_flag = 0;
if (record_flag)
if (record_flag == 1)
do_function(LINE2CODEC);
else
do_function(MOUTH2CODEC);
else
do_function(MOUTH2CODEC);

79

}

mnt readkey(bufflen, x,y,title)
char buffl];
unsigned len;
int x,y;
char title[];
{
char b[30],c;
int i=0;

gettext(y+1, x, y+len+1+strlen(title)+7, x+3, sv3);

window_frame(y,x, len + strlen(titie) + 7,3,"",ON);
cprintf{(" %s: " title);

dof
¢ = get_char();
switch(e){
case ESC:
return(-1),
case BACK.
HE>0)(
I--3
putchar(BACK),
putchar(’ ’);
putchar(BACK),
)
break;
case FUN:
get_char();
break;
case CR:
break,
default:
if(i<len)(
putchar(c);
bli++] = ¢;

)

/* switch ¢ #/
Jwhile(¢ != CR);
bli]l = "\0’;
bilen] ="\0’;
strepy(buff,b);
puttext(y+1, x, y+len+1l+strlen(title)+7, x+3, sv3);
return(strlen(buff));

}

void directory()
{

mt i;
char key,key1;

80

int dial_row = 0, page_begin = 0, menu_choice = 0;
int menu = ON; /* switch between menu and directory */

gettext(DIR_COL+1, DIR_ROW, DIR_COL+1+DIR_LEN, DIR_ROW+DIR_HIG, svl);
window_frame(DIR_COL,DIR_ROW,DIR_LEN,DIR_HIG," Dial Directory ",OFF);

window_frame(MENU_COL, MENU_ROW, MENU_LEN, MENU_HIG, " MENU ",0FF);
while (1) {

show_dial(dial_row, DIR_ROW-+1, DIR_COL+1, page_begin, menu);
show_menu(3, MENU_ROW+2, MENU_COL+2, menu_choice);

key = get_char();
if (menu == OFF) {
switch (key) {
case FUN.
keyl = get_char();
switch{ keyl) {
case UP:
ifldial_row > 0) dial_row--;
else if (page_begin > 0) page_begin--,
break;
case DOWN:
ifldial_row < 9) dial_row++;
else 1f (page_begin < 90) page_begin++;
brealk,
case PgUp:
if ((page_begin -= 10) < 0)
page_begin = 0,
break;
case PgDn-
if ((page_begin += 10) > 90)
page_begin = 90;
break;
)
break;

case CR: /* choice is made, do whatever */
/* switch menu_choice */
switch (menu_choice) {
case 0: /* case = 0, no directory =/
menu = ON;
break;
case 1:
edit(dial_row, DIR_ROW+1, DIR_COL+1, page_begin);
break;
case 2° /* isert */
for(i = table_len-1,i > dial_row + page_begin;i--) {
strepy(table(i] NAME, tablel1-1] NAME);
strepy(table[i] NUM], table[i-1] NUND,

81

)
strepy(tableldial_row+page_beginl NAME, "............. "

strepy(tableldial_row+page_beginlNUM, ".-..");
break;
case 3- /= delete */

for (i=dial_row + page_begin;i<table_len-1;i++) {
strepy (table[i] NAME, tablel[i+1].NAME);
strepy (table[1. NUM, table[i+1]1.NUM);

}
strepy(table[table_len-1].NAME, “.............. ")
strepy(table[table_len-1J.NUM, ".-...");

}

break;

case ESC: menu = ON;

)
}
else {
switch (key) {
case FUN:
keyl = get_char();
switch(key1) {
case UP:
iflmenu_choice > 0) menu_choice--;
break;
case DOWN:
iflmenu_choice < 3) menu_choice++;
break;
}
break;

case CR:
if (menu_choice == 0) {
puttext(DIR_COL+1, DIR_ROW, DIR_COL+1+DIR_LEN,
DIR_ROW+DIR_HIG, svl);
return;

)
menu = QFF;

}
}
}
}

void interrupt ring(){
disable();
do_function(RES_DTMF_RX_INTY;
popkind =’r;
popflg = 1;
outportb(PORT _8259_20, 0x20); /* write eoi to 8259 =/
enable();

82

}
void popup()

int i,j, xpos, ypos;
char key keyl;

int menu_choice = 0;
menu = ON;

xpos = wherex(),
ypos = wherey();

if (popflg == 1) {
message(9,3,32),
message(0,3,32);
set(0, 0, ON, 10);
gotoxy(xpos, ypos);
return;

}

gettext(MENU_COL+1, MENU_ROW, MENU_COL+1+MENU_LEN, MENU_ROW+MENU_HIG,
sv2);

dof
window_frame(MENU_COL, MENU_ROW, MENU_LEN, MENU_HIG, " MENU ",0FF);
show_menu(0, MENU_ROW+2, MENU_COL+2, menu_choice),
key = get_char(),
switeh (key) {
case FUN:
keyl = get_char();
switch{ key1) {

case UP:
iflmenu_choice > 0) menu_choice--;
break,
case DOWN:
ifimenu_choice < 3) menu_choice++;
break;
}
break;
case CR: /* chowce is made, do whatever >/

/7 switch menu_choice =/
switch (menu_choice) {

case 0:
key = ESC;
break;

case 1: inbound_call(),
break;

case 2: outbound_call(),
break;

83

case 3: window_frame(AMIENU_COL, MENU_ROW, MENU_LEN, MENU_HIG, " Make
Call ",OFF);

do {
show_menu(2, MENU_ROW+2, MENU_COL+2, menu_choice);
key = get_char();
switch (key) {
case FUN:
keyl = get_char();
switch(key1) (

case UP.
iflmenu_choice > 0) menu_choice--;
break;
case DOWN:
if{menu_choice <« 3) menu_choice++;
break;
)
break,
case CR: /= choice is made, do whatever */

/* switch menu_choice */
switch (menu_choice) {
case 0: break;
case 1: dialmenu(); /= dial =/
break;
case 2* auto_redial();
break,
case 3: directory(),
}

)
) while (menu_choice!=0 | key '= CR);

}
}/* switch key */
Jwhile(key != ESC);
puttextMMENU_COL+1, MENU_ROW, MENU_COL+1+MENU_LEN, MENU_ROW+MENU_HIG,
sv2);
set(0, 0, ON, 10);
gotoxy(xpos, ypos);

if{ (fp = fopen("table.txt","wb")) == NULL) {
printf("can not write table.txt!"),
return;

}

else {
fwrite(table,1,table_len*sizeofistruct sheet),fp);
felose(fp);

)

if{ (fp = fopen("list.txt","wh")) == NULL) {
return;

}

84

else {
fwrite(List,1,List_len*sizeof{struct List_struct),ip);
felose(fp),
}
}

/¥ -- start-up function, to be used in TSR application -- */
void openfiles()

{
int i;
FILE *fp;

/* open table.txt ¥/
if{ (fp = fopen("table.txt","rb")) == NULL){
f{ (fp = fopen("table.txt”,"wb")) == NULL }{
printf{"can not write table.txt'"\n");
return;

)
else{
for(i=0; i<table_len; 1++){
strepy(table1l. NAME, " "),
strepy(table[1]. NUM,)" . ..-...");
}/¥ for1*/
fwrite(table,1,table_len”sizeof{struct sheet),fp);
felose(fp);
W iffpow «/

elsef

fread(table,1,table_len~sizeof{struct sheet),fp);
felose(fp);
}

if{ (fp = fopen("list.txt","rb")) == NULL){
if{ {fp = fopen("list txt","wb")) == NULL)}{
printf("can not write list.txt!\n");

return;
1
elsef
for(i=0, i<List_len; i++){
strepy(Lasthil NAME, ", ")
strepy(ListiLNUM,".- ..

Last[1l. TIME.] = 0x00010000;
List[i] STATE = OFF;
/% for i/

fwrite(List,1,List_len™sizeof{struct List_struct),ip);

felose(fp);
W iffp w ¥/
else{

fread(List,1,List_len*sizeofistruct List_struct),fp);
felose(fp),

felose(fp);

get_near_t(),
}

void closefiles()
{
}

86

Bibliography

[1] Motorola Data Book., 1984.
[2] Silicon Systems Data Book., 1990.
[3] NEC Electronics Ins. Microcomputer Products., 1984.

[4] Markel, J.D.and Gray, A.H. “Linears prediction of specch”, Springer Verlag,
Berlin. 1976.

[5] Witten, I.H. Principles of Computer Speech.,1982.

[6] Viswanathan,R.,and J. Makhoul. “Quantization Propertics of Transmission Pa-

rameters in Lincar Predictive Systems.” IEEE Trans. Acous., Spcech and Swnal

Proc., Vol. ASSP-23:309-321 June 1975.
[T] Documentation of the Govcrnment Standard LPC-10 Algorithm.

[8] Singhal,S. and B.S.Atal. Improving Performance of Multi-Pulse LI’C' Coders at
Low Bit Rates.” Proc. IEEE Int. Conf.4cous., Speech, and Signal Proc.(march

1984):1.3 - 1.

’

[9] Sugainura, N., and F Itakura. 'Spcech Data Compression by LPC Analysis-

Systhesis Techwque.” Trovs. IECE "81/8, Vol. J64-A, No.8.599-600.

oo
-1

	Integrated digital speech system with PC
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Acknowledgements
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1 : Introduction
	Chapter 2 : Principal Digital Speech Technology
	Chapter 3 : PC XT Interfacing Circuitry
	Chapter 4 : Software for IBM PC XT
	Chapter 5 : Conclusion and Suggested Future Work
	Appendix A : Circuit Diagrams
	Appendix B : Software for IBM PC XT
	Bibliography

	List of Figures
	List of Tables

