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ABSTRACT

Title of Thesis :
Efficient Multiprocessor Scheduling by Mean Field Theory Neural Networks

Name:
Pei-Ken Y1

Master of Science in Electrical Engineering

Thesis Directed by : Dr. Nirwan Ansari

In this thesis, we develop an optimization method based on Mean Field Theory
(MFT) Neural Networks to solve the Task Scheduling problem. The MFT algorithm
combines characteristics of the Simulated Annealing (SA) algorithm and the Hopfield
neural network. MFT exhibits rapid convergence and at the same time it preserves
the solution quality afforded by SA. Since MFT has been successfully used to solve
the Traveling Salesman Problem (TSP), a new modification to MFT is also presented
which supports Task Scheduling problem. The temperature behavior of MFT during
Task Scheduling is approximately analyzed and shown to possess a critical tempera-
ture (T¢) at which most of the optimization occurs. This temperature is analogous to
the gain of the neurons in a neural network and may be used to tune such networks

for better performance.
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Chapter 1

Introduction

What is a Neural Network? Finding comprehensible answers has been difficult.
Often expressed in technical jargon, many of the treatments assume a facility
with branches of advanced mathematics that are seldom used in other special-
ties [10]. We can define it in this way, a neural network is a system composed of
many simple processing elements, called neurons, operating in parallel[16][19].
The function of a neural network is determined by the network structure, inter-
connection strengths and the processing performed by the computing elements
or nodes.

Artificial neural networks are biologically inspired. The network configu-
rations and algorithms are usually derived from the organization of the brain
[8]. The most important thing is that it can also be utilized to solve nonlinear
problems. An artificial neural network is a computational structure modeled
after the biological neural network. For example, they learn from experience,
from previous examples to new ones, and abstract essential characteristics from
inputs containing irrelevant data [9].

Despite these functional similarities between the artificial and biological,
artificial neural networks will not duplicate the function like the biological’s

[20]. It is incorrect to ignore the surprisingly brainlike performance of certain



artificial neural networks. These abilities, however limited, hint that a deep
understanding of human intelligence may lie close at hand, and along with it a
host of revolutionary applications [17].

Artificial neural networks, as mentioned above, can adopt not only linear
but also nonlinear systems. It is this factor, more than any other, that make
many researchers interested in neural networks. Given a set of inputs, the neural
network is initially trained to produce the predefined outputs. A wide variety
of training algorithms have been developed, each with its own advantages and
disadvantages. There are several existing models of neural networks such as
Hopfield Nets (HN), Backpropagation (BP), Mean Field Theory (MFT), etc.
They promise human-made devices that perform functions reserved for human
beings. Dull, repetitive, or dangerous tasks can be performed by these machines
and entirely new applications will arise as the technology matures. It is thus
reasonable to expect that a rapid increase in our understanding of artificial
neural networks lead to improved network paradigms and a host of application
opportunities. We can also prove from the training that more neural networks
are said to improve with experience. The more data they are fed, the more
accurate or complete they will get [19].

In this thesis, we are going to focus on MFT. It has been shown that MFT
exhibits better performance in pattern-recognition tasks than BP does [4]. The
MFT algorithm combines characteristics of the simulated annealing [18] algo-
rithm and the Hopfield neural network. Since MFT model is bidirectional,
rather than feed-forward as BP, it can represent a major extension of computa-
tion.

MFT is an efficient algorithm, and it can be used to solve scheduling prob-

lems within the neural network paradigm. It was recently successfully applied to



solving the Traveling Salesman Problem (TSP) [12]. In this thesis, we consider
optimizing the Task Scheduling problem by using MFT. MFT is an optimization
technique that can be used to solve other combinatorial optimization problems.
The detail of approximation and learning of MFT will be discussed later.

We shall next proceed to Chapter 2 with the discussion on MFT. The mul-
tiplexing encoding will be reviewed in Chapter 3. The mapping of the task
scheduling problem into a MFT framework will be discussed in Chapter 4. Sim-

ulation results and conclusions will be presented in Chapter 5.



Chapter 2

Mean Field Theory

2.1 Introduction To Mean Field Theory

Since single layer networks proved severely limited in what they could represent
and in what they could learn, the entire field went into virtual eclipse in the 60’s
and 70’s. In contrast to single layer networks, multilayer networks have greater
representational power. Present research efforts are geared towards multilayer
networks [17][19]. MFT is a learning algorithm which can be incorporated in
multilayer networks.

The feedback of MFT networks have recurrent paths from their outputs back
to their inputs. The response of such networks is dynamic; after applying a new
input, the output is then recalculated, and the process is repeated again and
again. For stable networks, successive iterations produce smaller and smaller
output changes until eventually the outputs become constant.

MFT was developed by “marrying” Hopfield Model (HM) and Boltzmann
Machine (BM). In this thesis, we want to use the feature of MFT to optimize the
Task Scheduling Problem. To solve the Task Scheduling problem by MFT, we
need to map the problem into a neural network framework by encoding the tasks

as neurons and modifying the Hopfield Model and the Boltzmann Machine.



In BM, learning takes place via two phases. First, the network is run with
both the input and the output units clamped. Co-occurrence probabilities are
measured after the system has reached a global energy minimum. This proce-
dure is then repeated with only the input units clamped. The weights are then
adjusted according to gradient-descent in an information-theoretical measure.
In order to reach a global energy minimum in each phase of this process, it is
necessary to use the very time-consuming simulated annealing method. This,
combined with measuring the co-occurrence statistics, makes the Boltzmann
machine one or two orders of magnitude slower than MFT [4]. Consequently,
there has been relatively little experimentation with the Boltzmann machine.

In Hopfield model, all nodes in a network are fully connected. Consequently,
it is worthwhile looking at the effects of limited connectivity. In addition, Hop-
field leads to symmetric connection. Each connective neurons will influence
each other. In contrast, the connections between biological neurons are asym-
metric. Finally, learning rules are inadequate models for synaptic processes. It
is known that only a restricted number of vesicles of neurotransmitter molecules
are discharged at synaptic junctions, indicating that the synaptic efficacy can-
not have a very broad spectrum of values. We will now consider extensions of

the Hopfield model incorporating some of these features.

2.2 The Mean Field Theory Approximation

A brief description of the mean field theory approximation is given here. For
more detailed treatment, we refer the readers to [4] [12] [13]. Consider the

Hopfield energy function(E(S)) [7] [14],



B(S) = —5 Y T,5:5; 2.1)
i
where each neuron is denoted by S;, and S; = —1 or 1. T;; = 1 or 0, depending
on whether neuron i and j are connected or not.

The stability of a network may be proven through an elegant mathematical
technique. Suppose a function can be found that it always decreases each time
the network changes rate. Eventually this function must reach a minimum and
stop, thereby ensuring that the network is stable. The change rate in energy
E(S)(Eq. 2.1), called the “local field” k, [19], is defined by

OFE
h, = ~35, = ZT,,SJ- (2.2)

where 95, is the change in neuron 2.

It can be shown [6] [7] that when the following updating rule,

S,' B sign(h,-) (23)

is used, the energy described by Eq. 2.1 will reach the closest local minimum.
Other neural network applications, optimization problems and recognition
tasks require that the global minimum of Eq. 2.1 is reached. There exist
various stochastic procedures for performing the hill-climbing necessary to avoid
getting stuck in local minima. A frequently used scheme is Simulated Annealing
(SA) [18], where fluctuations of energy in Eq. 2.1 are allowed according to the

Boltzmann distribution [13]

P(S) = %eE(SVT (2.4)



Z =Y O (2.5)

where the “temperature” T has been introduced to set the magnitude of the

fluctuations.

2.3 Mean Field Theory Learning

2.3.1 Simulated Annealing

Since SA is a probabilistic hill-climbing algorithm which finds a global mini-
mum of E(S) by combining gradient descent with a random process. Unlike
traditional gradient descent method, SA allows, under certain conditions, move
which causes an increase in E(S), thus avoiding getting stuck at a local minima.

The probability of allowing such a move which causes an increase of AE follows

a Boltzmann distribution:

7)

P, {uphill move = AE} = exp( (2.6)

that depends on a parameter, T, the temperature. The temperature is lowered
as the SA algorithm proceeds, thus lowering the probability of accepting uphill
moves and attempting to force the system into a global optimum.

Two conceptual operations are involved in SA. One is thermostatic opera-
tion which schedules a physical system decreasing in temperature. It takes a
finite amount of time before thermal equilibrium is established. The other is
relaxation operation which iteratively find the new equilibrium point at new
temperature using the final state of the system at the previous temperature as

a starting point.

The above stochastic mechanism which has been applied in the Boltzman



Machine [16] is also used in MFT. We have analytically and experimentally
investigated the effect of temperature on the behavior of MFT on the proposed

task scheduling problem that will be discussed in Chapter 4.

2.3.2 The Boltzmann Machine

The Boltzmann Machine (BM) [22] is a learning algorithm for neural networks
with or without hidden units. The dynamics are based on the Hopfield en-
ergy function. The model learns by making an internal representation of its
environment. The learning procedure changes weights so as to minimize the
distance between output and desired probability distributions, as measured by
the so-called G-function [13], given by

P,

GZZPalogF/—a‘ (27)

where P, is the probability that the visible units are collectively in state «
when their states are determined by the environment. P, represents the desired
probabilities for these states. The corresponding probabilities when the network
runs freely are denoted P/,. G is zero if and only if the distributions are
identical; otherwise it is positive.

The Boltzmann Machine recipe for changing T}, such that G is minimized is
as follows:

1. Clamping Phase. The values of the input and output units of the network
are clamped to a training pattern, and for a sequence of decreasing temperatures
Tw,Tn-1,....,; To, the energy of the network shown in of Eq. 2.1 is allowed to
relax according to the Boltzmann distribution Eq. 2.4. At T = T,, statistics

are collected for the correlations [13][18]



P,j =< S,'Sj > (2.8)

Relaxation at each temperature is performed by updating unclamped units

according to the algorithm

P(Si = 1) = [1 + {2 To%/D)1 (2.9)

2. Free Running Phase. The same procedure as in Step 1, but this time the

network runs freely or with only the input units clamped. Correlations

Pr, =< 55, > (2.10)

are again measured at T' = Tj
3. Updating. After each pattern has been processed through Steps 1 and 2,

the weights are updated according to

ATi; =n(R; — Pr) (2.11)

which is the learning rate parameter. Eq. 2.11 corresponds to the gradient
descent of G. Steps 1,2 and 3 are repeated until no more changes in T, take

place.

2.4 Mathematical Model of MFT

The general mathematical equations of MFT, modified from Hopfield model,
will replace the h, by U, and S; by V,. In MFT, we use continuous variables
rather than discrete variables [4]. In addition, we shall also develop that under

every temperature(7), S, is replaced by V; as



V.=<& >1 (2.12)

where < S, > stands for average of the S, values at temperature T'. The state,
V., and the local field of each neuron is related by a hyperbolic tangent function

as follows:
Vi = tanh(U) (2.13)
The change rate (local field) of total energy (£(S)) in MFT networks become

_105(5)
T 85,

U, = (2.14)

The difference between Eq. 2.2 and 2.14 is the annealing temperature T'.

These MFT mathematical model and parameters are modified from Hopfield
model. After that, we anneal the system by lowering the temperature gradually,
with the expectation that undesired local minima can be avoided through the
stochastic mechanism discussed earlier, as in BM.

From Hopfield model, we can represent the relationship between neurons.
The energy function(F(S)) can also be set up. In BM model, the annealing
algorithm can be used to minimize and clamp the energy function. We use the
MFT that takes the advantages of these two models to solve the Task Schedul-
ing problem. The MFT algorithm along with simulation results on the task
scheduling problem will be discussed and presented in more details in Chapter

4 and 5.

10



Chapter 3

Neural Network Multiplexing
Encoding

3.1 Graph Bisection

Neural networks have shown great promise as heuristic for solving difficult op-
timization problems [1]. In their pioneering work, Hopfield and Tank [6] for-
mulated the Travelling Salesman Problem (TSP) on a highly interconnected
neural network and made exploratory numerical studies on modest-sized sam-
ples. Here, we are going to review how to apply Hopfield model to solve the
Graph Bisection (GB) problem [12] [18] [15].

The GB problem was used as a test for extensive numerical explorations,
using a neural network mean field theory method [12]. The problem is defined
as follows: Given a set of N nodes with a given connectivity, partition them into
two halves such that the net connectivity (cutsize) is minimal between the two
halves (Fig. 3.1). This problem is mapped onto a neural network by denoting
each node as a neuron. Each neuron, denoted by S;, is turned “on” or “off”
respectively, depending on which of the two halves node 7 belongs to.

Thus, S; is mathematically defined by:

11



L—z:: -).;1\56

3 ]

Figure 3.1: A Graph Bisection Problem

S = { 1 nodeiin the right side set, (3.1)

—1 otherwise.
The dynamics is governed by an appropriate choice of energy function to-
gether with the corresponding mean field theory equations.

The GB problem is mapped onto a Hopfield energy function by the following:

1
E(S) = -3 ZZT;,S;S,. (3.2)
t
For each node, assign a neuron S;, and for each pair of neurons, S,, S;, ¢ # j,

we also assign a value, T;;, which is defined below.

T, = { 1 ifnodei and j are connected, (3.3)

0 otherwise.

The product T};S5;S, is zero whenever nodes i and j are not connected. The
product is positive when nodes i and j are connected, and are in the same
partition, and is negative when they are in separate partitions. With this rep-
resentation, the minimization of Eq. 3.2, the energy function, will maximize
the connections within a partition while minimizing the connections between

partitions.

12



However, such minimization will force all nodes into one partition. Hence,
an addition of a “constraint term” to Eq. 3.2 must be introduced to penalize
situations where the nodes are not equally partitioned. Note that ¥£.5; = 0 when
the partitions are balanced. Hence, a term proportional to (£.5,)? will increase
the energy whenever the partition is unbalanced. Our neural network energy

function for graph bisection then takes the form [12]:

= T T555, + (55 (3.4)
i i
where the imbalance parameter « sets the relative strength between the cutsize
and the balancing term. This balancing term represents a global constraint.
The structure of Eq. 3.2 differs from that of Eq. 3.4 by the presence of the
second term describing the balancing term. The generic form of Eq. 3.4 is

E = “cost” + “global constraint.”

3.2 1-of-K Encoding; Neuron Multiplexing

The 1-of-K encoding problem is defined as follows. Given a set of N nodes with
a given connectivity, partition them into K sets such that the net connectivity
(cut size) is minimized among the K sets. To extend the neural network model
used for the graph bisection poblem to that for the 1-of-K encoding problem,

we first introduce a second index for the neurons

Se=0,1 (3.5)

where index i denotes the node (i = 1,...., N), and a the set (a = 1,....K). S,,
takes on 1 or 0 depending on whether node i belongs to set a or not. We use 0,

1 notation in order to get a more convenient form of the energy function which

13



is analogous to Eq. 3.2. The resulting energy function is thus written as [12],

1 N
=3 DD TiaipSiaSys + gz(z Sia — —E)2 (3.6)

i ab

As in the bisection case, the second term in Eq. 3.6 represents the global
constraint of equipartition; it is zero only if each of the K sets contains N/K
nodes. There is an additional syntax constraint term built into Tq; ensuring

that the 1-of-K encoding is satisfied.

Tiop = T + 73 (3.7)

The cutsize and syntax constraint terms, T() and T®, are defined [12] as

TO = Ti;(1 — 8a) (3.8)

and

T® = 6;,(1 — 64) (3.9)

respectively, where T, = 1 or 0 depending on whether the ith and jth node are
connected or not. The cutsize constraint (Eq. 3.8) is introduced to encourage
connected neurons into one same set, thus minimizing the connectivity among
the K sets. This constraint will, however, force all neuirons into one set. Hence,
the second term in Eq. 5.6 is introduced to enforce equipartition. The syntax
term (Eq. 3.9) is zero if each neuron is assigned to no more than one set. The

energy function shown in Eq. 3.6 now takes the form

1 N
E=35300 TySuSy+ gZESmS;b + g— S Sa-F)P  (310)

17 aFb 1 aFbd

14



In the 1-of-K encoding problem, the neurons take on 0 and 1 rather than -1
and 1 in the graph bisection problem. To solve this problem with in the frame-
work of MFT, we define the following mean field variables which are analogous

to those defined by Eqgs. 2.12, 2.13, and 2.14:

Vie =< Sia >1 (3.11)

Vie = =[1 + tanh(U,4)) (3.12)

DO |

where U,, = ——-jl—ﬁaFES—gl—S—l Thus,

Vi = 5[0+ tanhl(~ ST,V — B3 Vi = (XD Vs = 2)/T)) (3.13)

J b#a a#b J

In constrast to Egs. 2.12-2.14, the variables are indexed by double subscripts,
and take on [0,1] rather than [-1,1]. Since the variables take on [0,1], the state

and the local field of each neuron are related by Eq. 3.12.

3.3 Reduced 1-of-K Encoding; Graded Neu-

rons

In this section, we restrict the allowed states for the neurons such that exactly
one neuron at each set is on, and derive the corresponding K-state Potts glass

mean field theory equations [21].

3.3.1 The Potts Glass

The above restriction on the neurons can be compactly written as

Y Sa=1 (3.14)

15



Vit

Figure 3.2: The volume of solutions corresponding to the neuron multiplexing
for K = 3. The shaded plane corresponds to the solution space of the reduced

1-of-K encoding

For every i, S,, is one for only one value of a, and zero for the remaining values
of a. Therefore, the allowed values of the vector S; = (S;1, Sia,-..., S;x ) are the
principal unit vectors e, es, ...., ek in an obvious vector notation.

The number of states available at every node is thereby reduced from 2¥ to
K, and technically we have a K-state Potts model at our hands. In Fig. 3.2 [12]

we show the space of states at one node for the case K = 3.

The energy function of Eq. 3.10 can now be rewritten, using the constraint

of Eq. 3.13, as

1
R PN ACI S 3) ST RN 3) DM N CAL)
5] a t a $J a

or, in vector notation,

16



E= —% %:T,-Jsisj - g—ZS? + %(Z s;)? (3.16)
disregarding an unimportant constant term. Also note that the second term
can now be dropped since it is a constant. We will however keep it since it
will for some applications improve the solution quality. Also it turnouts to be
a convenient regulator for avoiding chaotic behavior in synchronous updating.
With 8 = 0, this expression has exactly the same structure as the energy (Eq.

3.4) for the graph bisection problem. Indeed, for K = 2, they are identical.

3.3.2 Mean Field Theory

As in the bisection case, we want to avoid getting stuck in local minima, by
applying the mean field technique. For this reason we now derive the MFT

equations corresponding to Eq. 2.12 for

Vi=< S, >r (3.17)

Consider the Potts model partition function [11]

Z =Y BT (3.18)
S

where the sum runs over all possible configurations satisfying the constraint of
Eq. 3.13, ie., S; = (1,0,0,...),(0,1,0,...),(0,0,1,...), etc. The mean field theory
trick is to rewrite this sum as an integral and to valuate its integrand at the
saddlepoint. For simplicity we here initially limit the discussion to one spin S;

= S. A sum over S = ey, €y, ...., ex can be rewritten in the following way:

) =Y /R AVE(S ~V)[(V)=C % /R av (V) /1 dUUE-V) (3,19
S S

17



Performing the sum, one obtains, for {(S) = e~ E®)T

T BONT - / aV / dU e~ EV)/T-U-V+log Zx(U) (3.20)
~ R JI

Where Z; is the “local” partition function given by

Zx(U) = ZgjeS-U =5 e (3.21)

For the partition function of Eq. 3.18 one then gets

7 = EGE(S;)/T - C'/ dVv; /dUie(-E(Vi)/T+E,(10SZK(Vi)—Ui-Vi)) (3.22)
S; R 1
The saddle points of Eq. 3.22 are given by dV; = 0 and dU; = 0, yielding

9E 1
ov;T

Vi = Fy(— (3:23)

where Fk is a vector generalization of sigmoid function, defined as the average

of S in the local partition function (Eq. 3.21):

_ ESeU‘S

FK(U) = W (324)
Writing this out in components,
ele

which for K = 2 gives rise to a tanh function. Note that this expression auto-

matically satisfies the constraint

S Fe(U) =1 (3.26)

18



Figure 3.3: Contour map for the generalized function F5 of Eq. 3.23

Thus, when integrating Eq. 3.23, the mean field variables, V; will be forced
to live in this (K - 1) - dimensional subspace of the original K - dimensional
unit hypercube, as shown in Fig. 3.3 for the case K = 3.

The interpretation of V;, as probabilities is obvious. In Fig. 3.3 we have
plotted a contour map of Fg for K = 3. For the graph partitioning problem we

now have the MFT equations:
V; =Fk(U;) (3.27)

OF l — [E(Tu _ a)v; + 'BV']% (3.28)

T TAVT
We note the following properties of the saddle point equations (Egs. 3.27, 28):

19



* 'V, automatically lies in the subspace £, V;, = 1.
* When interating Eqs. 3.27, 28 the component of V; orthogonal to this

subspace will be completely redundant.

20



Chapter 4

Multiprocessor Scheduling
Problem

4.1 Scheduling Problem

Multiprocessor scheduling [3] [5] has been a source of challenging problems for
researchers in the area of computer engineering. The general problem of mul-
tiprocessor scheduling can be stated as scheduling a set of partially ordered
computation tasks onto a multiprocessor system so that an objective function
will be optimized.

A task system can be represented by a directed acyclic task graph, TG,
consisting of a finite nonempty set of vertices, V. The collection of vertices V=
Ty, T, ...,Tm, and each connected pair, called Tj;. If T;, exists and ¢ < j, then
task 7, must be completed before T, can be initiated. A simple task graph with
8 tasks is illustrated in Fig. 4.1.

The problem of optimal scheduling a task graph and a multiprocessor system
with P processors is to assign the computation tasks to the processors in such
a way that the precedence relations are maintained and that all the tasks are
completed in the shortest possible time. That is we want the last task completed,

finish time, as short as possible. In this thesis, we are going to use the MFT
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Y

Figure 4.1: Mapping of Tasks T, onto processor-time slot (p,t)

algorithm to solve the TG problem.

The MFT equations are governed by the annealing temperature 7', and
coefficients associated with the energy function which is problem dependent,
such as o and # in the TSP problem. It is desirable to be able to estimate the
values for these parameter so that a “trial-and-error” process can be avoided
when applying the algorithm to different problems. Let us consider how to map
task scheduling problem onto the processor-time-slot space, as shown in Fig.

4.1.

4.2 The Procedure For Scheduling Tasks

The spinsystems onto which we have mapped the optimization problems typ-
ically have two phases; at large enough temperatures the system relaxes into
the trivial fixed point initial value of V;,(0) which is a completely symmetrical
state, where all V;, are equal [14]
Via(0) = = (4.1)
K

As the temperature is lowered, a phase transition is passed at T' = T, and
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as T — 0 fixed points Kg*) emerge representing specific decision made as to
the solution to the optimization problems in question. These fixed points are

characterized by

II= jlv- >y =1 (4.2)
where we have introduced the saturation [ [14] [18]. Let us now turn to the
parameters a and 3. The latter is redundant from the encoding point of view,
as is obvious from Eq. 3.13. However, it turns out that for TSP the presence
of the B-term has a constructive balancing effect in solving the MFT equations.
In general the quality of the solutions are far less sensitive to the choice of a
and 3 once T has been reliably estimated.

The parameter a governs the relative balance between “cost” and “rule” -
term. The choice of balance is of course up to the “programmer.” What are
the guidelines? For graph bisection @ = 1 means that both “cost” and “rule”

term are equally important, since the cost associated with an additional cut is
1
2
In [14], @ = 1 was chosen for graph partition.

¥T,,5.5, = 2 and the corresponding cost for an imbalance is —g(ES,)2 = 2a.

For TSP the situation is a little different since the “cost” is an analog num-
ber representing city distances and the absolute magnitude has to be chosen
accordingly. For TSP testbeds consisting of cities randomly chosen in a unit
square [ = 1 again turned out to be a good choice.

For our simulations at least two alternatives are at our proposal. One is
to use a fixed temperature approach as in Chapter 3 with T' chosen below T..
The other option is annealing where one chooses a temperature slightly above

T. and then anneals down to some value for the saturation [].
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We have chosen this alternative with [];,,, = 0.9. The reason for not choos-
ing [] = 1 is that the performance of the final greedy heuristic improve with a
not too “cold” solution.

As far as the number of sweeps per temperature goes, we have taken a
dynamical approach. At each temperature 7,, we interate the MFT equations

until the convergence criteria (NVsyeep(T))

1 0.004
i 2 | Vialt +1) = Via(t) |< = (4.3)

is fulfilled. In other words Nyyeep depends on T'. It turns out the Nyee,(T') stays
constant at a very small number before and after phase transition, whereas it
blows up around 7,.. In summary , algorithm is implemented in the following
manner in the case of serial updating [2][14}[{22]:

* For a given, determine T,,.

* Set the coeflicients of the respective energy function which will be discusses
later.

* Determine T, from linear expansion around trivial fixed point.
1
K
* Anneal with T}, perform Nyyeeps(T) according to Eq. 4.3.

* Initialize with V,, = = + 0.001 * rand [-1,1].

* After [T = 0.9 is reached, perform the greedy heuristic.

By following the Mean Field theory and the learning from the Boltzmann
Machine and approximation from the Hopfield Model, we know how to build
the energy function under the task scheduling environment and constraint. We
first consider the case in which task has the same execution time, and we shall
then consider cases where different tasks have different execution times.

Case (1): Each Task Has The Same Execution Time.

Constraints:
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1. Each task occupies one slot only.

2. There are P processors, and thus at most P tasks can be accomplished
in each unit-time.

3. Task ¢ and task j cannot be connected within one unit-time (set). If task
i and task j are connected in the task graph, there is a precedence relationship
between task ¢ and task j. That is, task 7 and task j cannot be executed
simultaneously. Thus, tasks carried out within the same unit time cannot be
connected.

4. Event (i,a) must be connected to at least one of the (j,a — 1),(j,a —
2),....,(j, 1) events, where a > 1. That is, a task executed at the current unit
time must be preceded by at least a task in one of preceding time slots.

Denote S,, = 0 and 1 if task 7 is not in set and in set a, respectively. Also,
¥,S5.. = 1 which means that each task is only allowed to occupy one time-slot.
The value of 643 equal to 1 only when a = b. We can map the above constraints

into the following respective energy functions:

1.E, = % SN 6,1 = 6a)SiaSn =20 S (4.4)

17 ab it a bia

2.Ey =Y > Siu—-PJ (4.5)

1
3.E; = 5 >SS TS5 (4.6)
iy a

a—1

4.FE, = % Z i E E(l —T:5)5:Sis (4.7)

i j=1 e b=1
The total energy of the Task Graph E7 is the sum of the E; to Ej.
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Er = aEy + BE; +7E3 + E, (4.8)
where «, 8,7, and ¢ are constants.
When we finally apply the mean field, we obtain the following MFT reduced
1-of-K encoding (Egs. 3.23, 25) equations for the mean field variable V;, :

Vie = Fn(Uia)
5E 1 (4.9)

ia — _a‘/m f
where the function of Fjy is defined in Eq. 3.22.

Case (2): Tasks Having Different Execution Time.

Constraints:

1. If the execution time(t,) for task ¢ is larger than one unit time, this task
will occupy the necessary number of time slots.

2. There are P processors, and thus at most P tasks can be accomplished
in each unit-time.

3. Task 7 and task j cannot be connected within one unit-time (set). If task
7 and task j are connected in the task graph, there is a precedence relationship
between task ¢ and task j. That is, task ¢ and task j cannot be executed
simultaneously. Thus, tasks carried out within the same unit time cannot be
connected.

4. Event (¢,a) must connected to at least one of the (j,a — 1), (j,a —
2),...,(3,1) events, where a > 1. That is a task executed at the current unit
time must be preceded by at least a task in one of the preceding time slots. The
energy functions corresponding to constraints (2) to (4) are the same as those in
case (1). Constraint (1) which is different from case (1) thus has the following

energy function:
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t,—-1

Ey=3] Zb &y (t: — kX% Sa(v—1))Sia Syt (4.10)
1] a =

The total energy of the Task Graph Er equals to the sum of E;, Ey, E3 and
E4:

ET = CYEl + IBE2 + ’)’Es -+ €E4 (411)

where a, 3,7, and £ are constants.
Thus, we can get Er from the constraint condition. For the result V.., we
shall follow the steps in Chapter 3. The whole procedure is illustrated by a flow

chart as shown in Fig. 4.2.
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“ ”
K:No. of Time—slot.

*
% N:No. of Task.
# E:Energy Function.
#* Uil: Initialize Vi.
#* Vil: Previous state.
#* Vi2: Present state.
vig=1/k .
#* #,”%:Constraint.
X= [RINP)+1,N] sy .
* Tc:Crltxal Temp.
% d :No. of predefine.
INITIALIZE
————ee—
traint
Uiz KE)
" Viz FUD)
¥
d-1)8
?
{1HIHI') Y 4‘%’!!!’} " |
]
End.

\

Figure 4.2: MFT Algorithm Flow Chart For Task Scheduling
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Chapter 5

Simulation Results and
Conclusions

5.1 Simulation Results

Consider the simple task graph, which consists of nine tasks, shown in Fig.
5.1. Following the algorithm procedure mentioned in Chapter 4, we can get
the results shown in Fig. 5.2-5.5. In Fig. 5.2, the energy function (F(S)) was
clamped in the right phase by the critical temperature (T¢). The local field
(U,.) versus the probability of each task (V;,) by reduced encoding is shown in
Fig. 5.3. The probability of each task (V;,) is shown in Fig. 5.4 and 5.5 which
are in same and different execution time. A more complicated task graph is
shown in Fig. 5.6. The relationship between energy versus temperature and V,,
versus U,, in the ninety tasks graph is shown in Fig. 5.7 and 5.8. Table 5.1
shows the finish time to complete the ninety tasks by using different number of
Processors.

The unit time in these examples is ﬁms, and the execution time for all

task is shown on the right side of each task in the TG.
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Figure 5.1: Nine Tasks Example.
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Figure 5.2: Energy versus Temperature
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Figure 5.3: V,, versus U,
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Figure 5.4: Same Execution Time Result
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Figure 5.5: Different Execution Time Result
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Figure 5.6: Ninety Tasks Example
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Figure 5.7: Energy versus Temperature
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Figure 5.8: V}, versus Uy,
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b |
Nunber of Processing Tine (ns)
Processars IFT solution  Optimal solution

2 14.21 12.42
3 1@.65 8.43
4q 8.45 6.59
S 7.11 5.86
6 7.39 9.73

Table 5.1: Comparison of MFT solution and optimal solution
5.2 Conclusions

In this thesis, we considered the problem of scheduling a task graph onto mi-
croprocessors system based on Mean Field Theory. The energy function, E(S),
was set up to satisfy the physical constraints of the problem. Thus, from this
the value of V;, was found. It showed the probability of which task belongs to
which time slot. We can get the simple results are the more accurate V,, we
got, the more efficient and reliable solutions we had and the more simple task
graph we tested, the closer to optimal result we achieved.

After the simulation result, we can summary this result for future study.
The constraint conditions, in Chapter 4, eliminated the precedence relations
between tasks. That causes some tasks connecting illegally. The precedence
of each task shall takes serious consideration. The other important condition
is the value of slot (K). The K shall encode into the temperature annealing

scheduling as a “cost” function.
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