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ABSTRACT 

Title of Thesis : 

Efficient Multiprocessor Scheduling by Mean Field Theory Neural Networks 

Name: 

Pei-Ken Yi 

Master of Science in Electrical Engineering 

Thesis Directed by : Dr. Nirwan Ansari 

In this thesis, we develop an optimization method based on Mean Field Theory 

(MFT) Neural Networks to solve the Task Scheduling problem. The MFT algorithm 

combines characteristics of the Simulated Annealing (SA) algorithm and the Hopfield 

neural network. MFT exhibits rapid convergence and at the same time it preserves 

the solution quality afforded by SA. Since MFT has been successfully used to solve 

the Traveling Salesman Problem (TSP), a new modification to MFT is also presented 

which supports Task Scheduling problem. The temperature behavior of MFT during 

Task Scheduling is approximately analyzed and shown to possess a critical tempera-

ture (71,) at which most of the optimization occurs. This temperature is analogous to 

the gain of the neurons in a neural network and may be used to tune such networks 

for better performance. 
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Chapter 1 

Introduction 

What is a Neural Network? Finding comprehensible answers has been difficult. 

Often expressed in technical jargon, many of the treatments assume a facility 

with branches of advanced mathematics that are seldom used in other special-

ties [10]. We can define it in this way, a neural network is a system composed of 

many simple processing elements, called neurons, operating in parallel[16][19]. 

The function of a neural network is determined by the network structure, inter-

connection strengths and the processing performed by the computing elements 

or nodes. 

Artificial neural networks are biologically inspired. The network configu-

rations and algorithms are usually derived from the organization of the brain 

[8]. The most important thing is that it can also be utilized to solve nonlinear 

problems. An artificial neural network is a computational structure modeled 

after the biological neural network. For example, they learn from experience, 

from previous examples to new ones, and abstract essential characteristics from 

inputs containing irrelevant data [9]. 

Despite these functional similarities between the artificial and biological, 

artificial neural networks will not duplicate the function like the biological's 

[20]. It is incorrect to ignore the surprisingly brainlike performance of certain 
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artificial neural networks. These abilities, however limited, hint that a deep 

understanding of human intelligence may lie close at hand, and along with it a 

host of revolutionary applications [17]. 

Artificial neural networks, as mentioned above, can adopt not only linear 

but also nonlinear systems. It is this factor, more than any other, that make 

many researchers interested in neural networks. Given a set of inputs, the neural 

network is initially trained to produce the predefined outputs. A wide variety 

of training algorithms have been developed, each with its own advantages and 

disadvantages. There are several existing models of neural networks such as 

Hopfield Nets (HN), Backpropagation (BP), Mean Field Theory (MFT), etc. 

They promise human-made devices that perform functions reserved for human 

beings. Dull, repetitive, or dangerous tasks can be performed by these machines 

and entirely new applications will arise as the technology matures. It is thus 

reasonable to expect that a rapid increase in our understanding of artificial 

neural networks lead to improved network paradigms and a host of application 

opportunities. We can also prove from the training that more neural networks 

are said to improve with experience. The more data they are fed, the more 

accurate or complete they will get [19]. 

In this thesis, we are going to focus on MFT. It has been shown that MFT 

exhibits better performance in pattern-recognition tasks than BP does [4]. The 

MFT algorithm combines characteristics of the simulated annealing [18] algo-

rithm and the Hopfield neural network. Since MFT model is bidirectional, 

rather than feed-forward as BP, it can represent a major extension of computa-

tion. 

MFT is an efficient algorithm, and it can be used to solve scheduling prob-

lems within the neural network paradigm. It was recently successfully applied to 
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solving the Traveling Salesman Problem (TSP) [12]. In this thesis, we consider 

optimizing the Task Scheduling problem by using MFT. MFT is an optimization 

technique that can be used to solve other combinatorial optimization problems. 

The detail of approximation and learning of MFT will be discussed later. 

We shall next proceed to Chapter 2 with the discussion on MFT. The mul-

tiplexing encoding will be reviewed in Chapter 3. The mapping of the task 

scheduling problem into a MFT framework will be discussed in Chapter 4. Sim-

ulation results and conclusions will be presented in Chapter 5. 
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Chapter 2 

Mean Field Theory 

2.1 Introduction To Mean Field Theory 

Since single layer networks proved severely limited in what they could represent 

and in what they could learn, the entire field went into virtual eclipse in the 60's 

and 70's. In contrast to single layer networks, multilayer networks have greater 

representational power. Present research efforts are geared towards multilayer 

networks [17][19]. MFT is a learning algorithm which can be incorporated in 

multilayer networks. 

The feedback of MFT networks have recurrent paths from their outputs back 

to their inputs. The response of such networks is dynamic; after applying a new 

input, the output is then recalculated, and the process is repeated again and 

again. For stable networks, successive iterations produce smaller and smaller 

output changes until eventually the outputs become constant. 

MFT was developed by "marrying" Hopfield Model (HM) and Boltzmann 

Machine (BM). In this thesis, we want to use the feature of MFT to optimize the 

Task Scheduling Problem. To solve the Task Scheduling problem by MFT, we 

need to map the problem into a neural network framework by encoding the tasks 

as neurons and modifying the Hopfield Model and the Boltzmann Machine. 
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In BM, learning takes place via two phases. First, the network is run with 

both the input and the output units clamped. Co-occurrence probabilities are 

measured after the system has reached a global energy minimum. This proce-

dure is then repeated with only the input units clamped. The weights are then 

adjusted according to gradient-descent in an information-theoretical measure. 

In order to reach a global energy minimum in each phase of this process, it is 

necessary to use the very time-consuming simulated annealing method. This, 

combined with measuring the co-occurrence statistics, makes the Boltzmann 

machine one or two orders of magnitude slower than MFT [4]. Consequently, 

there has been relatively little experimentation with the Boltzmann machine. 

In Hopfield model, all nodes in a network are fully connected. Consequently, 

it is worthwhile looking at the effects of limited connectivity. In addition, Hop-

field leads to symmetric connection. Each connective neurons will influence 

each other. In contrast, the connections between biological neurons are asym-

metric. Finally, learning rules are inadequate models for synaptic processes. It 

is known that only a restricted number of vesicles of neurotransmitter molecules 

are discharged at synaptic junctions, indicating that the synaptic efficacy can-

not have a very broad spectrum of values. We will now consider extensions of 

the Hopfield model incorporating some of these features. 

2.2 The Mean Field Theory Approximation 

A brief description of the mean field theory approximation is given here. For 

more detailed treatment, we refer the readers to [4] [12] [13]. Consider the 

Hopfield energy function(E(S)) [7] [14], 
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2.3 Mean Field Theory Learning 

2.3.1 Simulated Annealing 

Since SA is a probabilistic hill-climbing algorithm which finds a global mini-

mum of E(S) by combining gradient descent with a random process. Unlike 

traditional gradient descent method, SA allows, under certain conditions, move 

which causes an increase in E(S), thus avoiding getting stuck at a local minima. 

The probability of allowing such a move which causes an increase of AE follows 

a Boltzmann distribution: 

that depends on a parameter, T, the temperature. The temperature is lowered 

as the SA algorithm proceeds, thus lowering the probability of accepting uphill 

moves and attempting to force the system into a global optimum. 

Two conceptual operations are involved in SA. One is thermostatic opera-

tion which schedules a physical system decreasing in temperature. It takes a 

finite amount of time before thermal equilibrium is established. The other is 

relaxation operation which iteratively find the new equilibrium point at new 

temperature using the final state of the system at the previous temperature as 

a starting point. 

The above stochastic mechanism which has been applied in the Boltzman 
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Machine [16] is also used in MFT. We have analytically and experimentally 

investigated the effect of temperature on the behavior of MFT on the proposed 

task scheduling problem that will be discussed in Chapter 4. 

2.3.2 The Boltzmann Machine 

The Boltzmann Machine (BM) [22] is a learning algorithm for neural networks 

with or without hidden units. The dynamics are based on the Hopfield en-

ergy function. The model learns by making an internal representation of its 

environment. The learning procedure changes weights so as to minimize the 

distance between output and desired probability distributions, as measured by 

the so-called G-function [13], given by 

where Pc, is the probability that the visible units are collectively in state a 

when their states are determined by the environment. Pc, represents the desired 

probabilities for these states. The corresponding probabilities when the network 

runs freely are denoted Plc,. G is zero if and only if the distributions are 

identical; otherwise it is positive. 

The Boltzmann Machine recipe for changing TL3  such that G is minimized is 

as follows: 

1. Clamping Phase. The values of the input and output units of the network 

are clamped to a training pattern, and for a sequence of decreasing temperatures 

To, the energy of the network shown in of Eq. 2.1 is allowed to 

relax according to the Boltzmann distribution Eq. 2.4. At T = To, statistics 

are collected for the correlations [13][18] 
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The difference between Eq. 2.2 and 2.14 is the annealing temperature T. 

These MFT mathematical model and parameters are modified from Hopfield 

model. After that, we anneal the system by lowering the temperature gradually, 

with the expectation that undesired local minima can be avoided through the 

stochastic mechanism discussed earlier, as in BM. 

From Hopfield model, we can represent the relationship between neurons. 

The energy function(E(S)) can also be set up. In BM model, the annealing 

algorithm can be used to minimize and clamp the energy function. We use the 

MFT that takes the advantages of these two models to solve the Task Schedul-

ing problem. The MFT algorithm along with simulation results on the task 

scheduling problem will be discussed and presented in more details in Chapter 

4 and 5. 
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Chapter 3 

Neural Network Multiplexing 
Encoding 

3.1 Graph Bisection 

Neural networks have shown great promise as heuristic for solving difficult op-

timization problems [1]. In their pioneering work, Hopfield and Tank [6] for-

mulated the Travelling Salesman Problem (TSP) on a highly interconnected 

neural network and made exploratory numerical studies on modest-sized sam-

ples. Here, we are going to review how to apply Hopfield model to solve the 

Graph Bisection (GB) problem [12] [18] [15]. 

The GB problem was used as a test for extensive numerical explorations, 

using a neural network mean field theory method [12]. The problem is defined 

as follows: Given a set of N nodes with a given connectivity, partition them into 

two halves such that the net connectivity (cutsize) is minimal between the two 

halves (Fig. 3.1). This problem is mapped onto a neural network by denoting 

each node as a neuron. Each neuron, denoted by Si, is turned "on" or "off" 

respectively, depending on which of the two halves node i belongs to. 

Thus, Si  is mathematically defined by: 
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The product TiiSiSi  is zero whenever nodes i and j are not connected. The 

product is positive when nodes i and j are connected, and are in the same 

partition, and is negative when they are in separate partitions. With this rep-

resentation, the minimization of Eq. 3.2, the energy function, will maximize 

the connections within a partition while minimizing the connections between 

partitions. 
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where the imbalance parameter a sets the relative strength between the cutsize 

and the balancing term. This balancing term represents a global constraint. 

The structure of Eq. 3.2 differs from that of Eq. 3.4 by the presence of the 

second term describing the balancing term. The generic form of Eq. 3.4 is 

E = "cost" + "global constraint." 

3.2 1-of-K Encoding; Neuron Multiplexing 

The 1-of-K encoding problem is defined as follows. Given a set of N nodes with 

a given connectivity, partition them into K sets such that the net connectivity 

(cut size) is minimized among the K sets. To extend the neural network model 

used for the graph bisection poblem to that for the 1-of-K encoding problem, 

we first introduce a second index for the neurons 















* V, automatically lies in the subspace EaVa  = 1. 

* When interating Eqs. 3.27, 28 the component of Vi  orthogonal to this 

subspace will be completely redundant. 
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Chapter 4 

Multiprocessor Scheduling 
Problem 

4.1 Scheduling Problem 

Multiprocessor scheduling [3] [5] has been a source of challenging problems for 

researchers in the area of computer engineering. The general problem of mul-

tiprocessor scheduling can be stated as scheduling a set of partially ordered 

computation tasks onto a multiprocessor system so that an objective function 

will be optimized. 

A task system can be represented by a directed acyclic task graph, TG, 

consisting of a finite nonempty set of vertices, V. The collection of vertices V= 

T1, T2, ..., Tni, and each connected pair, called T13. If Ti3 exists and i < j, then 

task T, must be completed before T3 can be initiated. A simple task graph with 

8 tasks is illustrated in Fig. 4.1. 

The problem of optimal scheduling a task graph and a multiprocessor system 

with P processors is to assign the computation tasks to the processors in such 

a way that the precedence relations are maintained and that all the tasks are 

completed in the shortest possible time. That is we want the last task completed, 

finish time, as short as possible. In this thesis, we are going to use the MFT 
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algorithm to solve the TG problem. 

The MFT equations are governed by the annealing temperature T, and 

coefficients associated with the energy function which is problem dependent, 

such as a and /3 in the TSP problem. It is desirable to be able to estimate the 

values for these parameter so that a "trial-and-error" process can be avoided 

when applying the algorithm to different problems. Let us consider how to map 

task scheduling problem onto the processor-time-slot space, as shown in Fig. 

4.1. 

4.2 The Procedure For Scheduling Tasks 

The spinsystems onto which we have mapped the optimization problems typ-

ically have two phases; at large enough temperatures the system relaxes into 

the trivial fixed point initial value of Via(0) which is a completely symmetrical 

state, where all Via  are equal [14] 















Chapter 5 

Simulation Results and 
Conclusions 

5.1 Simulation Results 

Consider the simple task graph, which consists of nine tasks, shown in Fig. 

5.1. Following the algorithm procedure mentioned in Chapter 4, we can get 

the results shown in Fig. 5.2-5.5. In Fig. 5.2, the energy function (E(S)) was 

clamped in the right phase by the critical temperature (TO. The local field 

(Uia ) versus the probability of each task (Via) by reduced encoding is shown in 

Fig. 5.3. The probability of each task (Via ) is shown in Fig. 5.4 and 5.5 which 

are in same and different execution time. A more complicated task graph is 

shown in Fig. 5.6. The relationship between energy versus temperature and Via  

versus Uja  in the ninety tasks graph is shown in Fig. 5.7 and 5.8. Table 5.1 

shows the finish time to complete the ninety tasks by using different number of 

processors. 

The unit time in these examples is —
1 

100 
ms, and the execution time for all 

task is shown on the right side of each task in the TG. 
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limber of Processing Tine (Ns) 

Processors MFT solution Optimal solution 

2 i4.21 i2.42 

3 10.65 8.43 

4 8.45 6.59 

5 7.11 5.86 

6 7.35 5.73 

Table 5.1: Comparison of MFT solution and optimal solution 

5.2 Conclusions 

In this thesis, we considered the problem of scheduling a task graph onto mi-

croprocessors system based on Mean Field Theory. The energy function, E(S), 

was set up to satisfy the physical constraints of the problem. Thus, from this 

the value of Via  was found. It showed the probability of which task belongs to 

which time slot. We can get the simple results are the more accurate Via  we 

got, the more efficient and reliable solutions we had and the more simple task 

graph we tested, the closer to optimal result we achieved. 

After the simulation result, we can summary this result for future study. 

The constraint conditions, in Chapter 4, eliminated the precedence relations 

between tasks. That causes some tasks connecting illegally. The precedence 

of each task shall takes serious consideration. The other important condition 

is the value of slot (K). The K shall encode into the temperature annealing 

scheduling as a "cost" function. 
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