New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

6-30-1969

Hypothetical liquid fugacity coefficients

Douglas F. Patterson New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Patterson, Douglas F., "Hypothetical liquid fugacity coefficients" (1969). *Theses*. 2662. https://digitalcommons.njit.edu/theses/2662

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

HYPOTHETICAL LIQUID FUGACITY COEFFICIENTS

ΒY

DOUGLAS F. PATTERSON

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey

ABSTRACT

The object of this thesis was to derive values of the hypothetical liquid fugacity coefficient of carbon dioxide for various temperatures and pressures. Most of the temperatures studied were above the critical temperature of carbon dioxide and thus carbon dioxide could not truly exist as a pure liquid. Hence the prefix "hypothetical" was used to acknowledge this apparent discrepancy. Carbon dioxide was purposely chosen for this reason. Also, the necessary data for carbon dioxide were generally more available than for any other normally gaseous solute.

The hypothetical liquid fugacity coefficients were derived from the published binary vapor-liquid equilibrium data of carbon dioxide dissolved in various hydrocarbon solvents. The latest techniques for determining the vapor phase fugacity coefficients and the liquid phase activity coefficients were used. These two coefficients, together with the vaporization equilibrium ratios (K-values), enabled the liquid fugacity coefficients to be calculated.

The liquid fugacity coefficient is a pure liquid component property, and, at a given temperature and total pressure, its value should be independent of the solvent used. Based on the data and techniques used, this was found to be true. An excellent correlation of the liquid fugacity coefficient was found for propane-carbon dioxide and butane-carbon dioxide data, both systems published by different authors. The results for the n-decane-carbon dioxide system showed a small deviation from the other solvent results.

The derived liquid fugacity coefficients do not agree with those obtained from the generalized Chao-Seader correlation.

APPROVAL OF THESIS

HYPOTHETICAL LIQUID FUGACITY COEFFICIENTS

BY

DOUGLAS F. PATTERSON

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:_____

and an all and a state of the s

NEWARK, NEW JERSEY

JUNE, 1969

ACKNOWLEDGMENTS

The author wishes to thank Professor J. Joffe for his advice in the preparation of this thesis.

The author also wishes to thank Mr. S. B. Adler in particular, and the M. W. Kellogg Company in general, for the use of computer facilities. Also, for the use of the Redlich-Kwong-Chueh vapor fugacity coefficient program and the Chao-Seader liquid fugacity coefficient program. Without these programs, this thesis would have been impossible due to the enormity of the tedious hand calculations.

TABLE OF CONTENTS

Title Page	i
Abstract	ii
Approval Page	iv
Acknowledgment	v
List of Figures	vii
List of Tables	viii
Introduction	1
Procedure	3
1. Basic Equation	3
2. K-Values	3
3. Vapor Fugacity Coefficients	4
4. Liquid Phase Activity Coefficient	9
5. Chao-Seader Correlation	10
Results	11
Conclusions	16
Recommendations	18
Tables of Data and Derived Results	19
Nomenclature	50
References	52

Page

LIST OF FIGURES

Figure	Title	Page
1	Graph of $\Omega_{ m a}$ vs. Alkane Carbon No.	6
2	Graph of $\Omega_{ m b}$ vs. Alkane Carbon No.	7
3	Graph of Interaction Constant vs. Ratio of Critical Volumes for Alkane-CO ₂ Systems	8
4	CO ₂ Liquid Fugacity Coefficient vs. Pressure for 40°F, 100°F, and 220°F	12
5	CO, Liquid Fugacity Coefficient vs. Pressure for 80°F, 160°F, 280°F, and 460°F	13
6	CO2 Liquid Fugacity Coefficient vs. Pressure, Combined Data to 1000 PSIA.	14
7	CO ₂ Liquid Fugacity Coefficient vs. Pressure, above 1000 PSIA.	15
~		

viii

LIST OF TABLES

Table	Title	Page
1	Data for Figure 3	19
2	Component Properties	20
3	Carbon Dioxide Data Test	21
4	Propane Data Test	22
5	Butane Data Test	23
6	Decane Data Test	24
7	System (a): Propane-CO ₂ @ 40°F	25
8	System (a): Propane-CO ₂ @ 70°F	26
9	System (a): Propane-CO ₂ @ 100°F	27
10	System (a): Propane-CO ₂ @ 130°F	28
11	System (a): Propane-CO ₂ @ 160°F	29
12	System (b): Propane-CO ₂ @ 80°F	30
13	System (b): Propane-CO ₂ @ 100°F	31
14	System (b): Propane-CO ₂ @ 140°F	32
15	System (b): Propane-CO ₂ @ 180°F	33
16	System (c): Butane-CO ₂ @ 100°F	34
17	System (c): Butane-CO ₂ @ 160°F	35
18	System (c): Butane-CO ₂ @ 220°F	36
19	System (c): Butane-CO ₂ @ 280°F	37
20	System (d): Butane-CO ₂ @ 80°F	38
21	System (d): Butane-CO ₂ @ 120°F	39
22	System (d): Butane-CO ₂ @ 160°F	40

LIST OF TABLES

Table		Title			Page
23	System (d):	Butane-CO ₂	0	200°F	41
24	System (e):	Decane-CO ₂	9	40°F	42
25	System (e):	Decane-CO ₂	g	100°F	43
26	System (e):	Decane-CO ₂	Ø	160°F	44
27	System (e):	Decane-CO ₂	6	220°F	45
28	System (e):	Decane-CO ₂	6	280°F	46
29	System (e):	Decane-CO ₂	9	340°F	47
30	System (e):	Decane-CO ₂	9	400°F	48
31	System (e):	Decane-CO ₂	9	460°F	49

INTRODUCTION

Distillation equipment forms a necessary part of many chemical processes, and, in the author's experience, can account for a major portion of the capital costs of chemical plants. Distillation equipment must be adequate to meet the specified design conditions, for both overdesign and underdesign are uneconomic. The design of this equipment depends to a large extent on the availability of accurate vapor-liquid equilibrium data.

Vapor-liquid equilibrium data may be obtained either by experiment or by calculation. The experimental approach is difficult, time consuming, and costly. It also suffers from one important basic fault, namely, that so many compounds are involved that experiments on all possible combinations would be impossible. This one fact leads to the mathematical approach, and there are many persons at work in this field. These investigators study existing data and attempt to predict other data by mathematical and thermodynamic techniques. Generally, the required K-values can only be predicted to within certain tolerances. It then becomes a question of engineering judgment whether these derived K-values can be accepted or not. When these derived data are judged unreliable, and when the economics of the process justify the time and expense, the experimental approach is often used.

This thesis gives an example of the mathematical approach using the concept of the hypothetical liquid fugacity coefficient with carbon dioxide as the example. The results are presented in tabular and graphical forms, and are intended to be used to estimate K-values in other carbon dioxide systems using the techniques presented herein.

PROCEDURE

1. Basic Equation

The basic equation used was given by Prausnitz, et al., (11), for component i:

$$K_{i} = \frac{y_{i}}{x_{i}} = \frac{\gamma_{i} \mathcal{V}_{i}}{\phi_{i}}$$
(1)

For an ideal gas phase and an ideal liquid solution, $\gamma_i = \phi_i = 1.0$. Hence the ideal K-value would be equal to the pure liquid fugacity coefficient. For the more general non-ideal cases, the actual K-value would be the pure liquid fugacity coefficient modified by γ_i and ϕ_i . These two parameters would allow for the presence of other components in the system, and non-idealities.

Equation (1) may be rewritten:

$$V_2 = \frac{\kappa_2 \phi_2}{\gamma_2}$$
(2)

This was the equation used to derive \mathcal{V}_2 by calculating ϕ_2 and γ_2 and finding K₂ in the data. Suffix 2 refers to carbon dioxide as the solute.

2. K-Values

Vapor-liquid equilibrium data on the following saturated hydrocarbon and carbon dioxide binary systems were used for the K-values: For a series of temperatures and pressures, the values of K_2 , y_2 , and x_2 were abstracted from the data. The data of Reamer, et al., were always well presented in tabular form. The data of Poettmann and Katz were in graphical form and the required values were derived from these curves.

It was also desirable to have the measured molal volume V_{m} of the vapor mixture. Reamer, et al., included these volumes in their data, but Poettmann and Katz did not.

3. Vapor Fugacity Coefficients

The values of the vapor fugacity coefficient ϕ_2 were calculated using the Redlich-Kwong equation modified by Chueh and described fully in the paper by Chueh and Prausnitz (4). The necessary equations have been incorporated into a computer program by the M. W. Kellogg Company. This program was used to calculate the values of ϕ_2 .

The program called for the following data on punched cards:

- (a) Critical temperature, °F
- (b) Critical pressure, psia.
- (c) Acentric factor, ω .
- (d) Molecular weight
- (e) Dimensionless constant, Ω_{a}
- (f) Dimensionless constant, $\Omega_{
 m h}$
- (g) Interaction constant, k₁₂
- (h) Temperature, °F
- (j) Pressure, psia.
- (k) Mole fraction, y_1 , (= $1-y_2$)
- Items (a) through (f) were for each component.
- Items (h) through (k) were for each data point.

This program gave values of ϕ_1 , ϕ_2 , and V_{12} ; (the volume of the vapor mixture of the 1, 2, combination), for each data point. The program gave pure component values merely by putting the mole fraction $y_1 = 1.000$ or 0.000.

For n-decane, published values of Ω_a and Ω_b could not be found, so that it was necessary to estimate them. Graphs of Ω_a and Ω_b versus carbon number were plotted for saturated hydrocarbons, (Figures 1 and 2). The n-decane values were obtained by extrapolation.

																														1.1 . . + . .+						<u>+ </u> : .	
÷																																					
						\mathbf{X}																															
			1 1 1 3 1 1																														0				
									\mathbf{N}																												
										×			+ + - + + + + + + + + + + + + +																					C	4		
					Щ.	0					\smallsetminus																							d	1021		
-					Ц	Шí							X																				Ϋ́		5		
						2									\times																				4		
					U L L	12											\smallsetminus																	1			
						AF												\mathbb{N}															Ť		5		
					E.														\mathbf{i}																		
					RA	10														X															ςH		
					3	X															X																
																						\exists	X										-4-				
																								\mathbf{N}													
					U							Ħ													\parallel	S							-07-				
					11																					Ħ	N										
																												X									
																													N								
																														\mathbb{N}	U						
									Ш			0					FH¢			1										511			10				
			3 14			12			£S(17													7								42				
			ϕ			O			0			9		17	07	7																					

													ĦĦ															TEE						田田	邗
					0															b															
		6			0				10				0				10							R				0				詽			
			Q		223				β				3				4				K			00				<u>a</u> -					+++++		
																								1											
																																#]			
					Ň																														
						X																				##		VS.	Fig			间			
		-103					\mathbb{N}	ΪŦ																								ET			
																												\widehat{F}			TT.	Ē.		甘甘	
		4								\mathbb{R}																		S							
	-12-										\mathbb{N}																	2	GR			<u></u>			
		in-										X																	AP						
	0													\searrow														C) A	<u> </u>						
	Z														\mathbb{N}	8												R	0						
	Z																\mathbb{N}											ŏ							
	CZ																	\geq	\searrow									6	5						
	Ø																			\sum								No.	σ-			曲			
																																Ħ			
		- 00																				R								訷		計		Ħ	
				e verzeen				200 3.4000000 200 3.4000000																				1977 - 20 - 20 - 20 - 1977 - 20 - 20 - 20 - 1977 - 20 - 20 - 20 - 20 - 20 - 20							
		. .									1-1-1-1- 1-1-1-1-																								
																										\mathbb{N}									
		40.0																									$\langle \rangle$								
											H																						田		
																														扣					
																															誹				
1144			111-						HF		HHF	++			╞╋┥┿			++++	###		+++-				Нİ	111			111	田田	H		 HI	1	-

All pure component values of Ω_a and Ω_b were tested by comparing the experimental saturated vapor volumes with the Redlich-Kwong-Chueh calculated volumes, (tables 3, 4, 5, and 6). This served as a test of the ability of the equations to reproduce the experimental data. Little volumetric data on n-decane were found, however.

A value of k_{12} for the n-decane-CO₂ system could not be found, so that an estimate was needed here also. For saturated hydrocarbons, the ratio of critical volumes (v_{c1}/v_{c2}) , was plotted versus the known values of k_{12} , (table 1). A straight line was obtained in Figure 3, and was extrapolated to give a value of $k_{12} = 0.36$ for the n-decane-CO₂ system. This value was found to give a reasonable agreement with the experimental volumetric data. The values of k_{12} for the propane-CO₂ system (= 0.11), and for the n-butane-CO₂ system (= 0.14), were likewise found to give the best volumetric agreement.

4. Liquid Phase Activity Coefficient

The values of the liquid phase activity coefficient γ_2 were found by the method of Prausnitz and Shair (12), which is based on the Hildebrand-Scott regular solution theory (6).

The formula used was:

$$\ln \gamma_{2} = \frac{v_{2}(\delta_{1} - \delta_{2})^{2} \Theta_{1}^{2}}{RT}$$
(3)

where
$$\theta_1 = \frac{x_1 v_1}{x_1 v_1 + x_2 v_2}$$
 (4)

The symbol θ_1 was used for the volume fraction instead of the more usual ϕ_1 to avoid confusion with the vapor phase fugacity coefficient ϕ . The value of $v_2 = 62.0 \text{ cc./gm.}$ mole, the hypothetical liquid molal volume of CO₂, was taken from Yen and McKetta (18). The product $v_2(\delta_1-\delta_2)^2$ was assumed to be independent of temperature (12). Using the published values of δ_1 , δ_2 , and v_1 , the values of θ_1 were calculated. From these values, γ_2 was calculated for each data point. These calculations were done by hand using a Wang electronic calculator.

The values of \mathcal{V}_2 for each data point were finally calculated.

5. Chao-Seader Correlation for $\overline{\mathcal{V}}_2$

Chao and Seader have published a generalized correlation for V_2 . The correlation called for the critical pressure and temperature, the modified acentric factor $\overline{\omega}$, and the pressure and temperature of each data point. A value of $\overline{\omega} = 0.1768$ was used from Reid and Sherwood (15). These values of $\overline{V}_{\rm cs}$ were included in the tables.

RESULTS

The results of the calculations are presented in a series of tables grouped together towards the end of the thesis. Graphs were derived from the tables as indicated in Figures 4, 5, 6, and 7 adjacent.

To avoid the confusion caused by many points on one graph, two graphs, Figures 4 and 5, were plotted to give a sensible spread between temperatures. from these two graphs, Figure 6 was derived. The object in all these graphs was to combine the "lighter propane and butane data with the "heavier" n-decane data to give a continuous temperature range from 40°F to 460°F. The lines drawn represent the author's best attempt in this regard.

Figure 7 was drawn for n-decane data only for pressures above 1000 psia. to the limit of the data.

KEUFFEL & ESSER CO.

I N C I CICELD MAUCHUN.

KEUFFEL & ESSER CO.

I B TERMAN TOTOESO KEUFFEL & ESSER CO,

• 1

CONCLUSIONS

Based on the data and techniques used, unique values of the liquid fugacity coefficient for carbon dioxide were obtained as shown in the graphs. However, there is still room for improvement in correlating the results from the "lighter" solvents with those obtained from the "heavier" solvents.

The Redlich-Kwong-Chueh equations have been shown in the tables to give good volumetric predictions, except near the critical points of pure components and binaries. In figures 5 and 7, there are notable discrepancies near the critical points as shown by the dashed lines. These discrepancies were ignored in determining the overall graphs.

It may be seen from figure 6 that there is no discontinuity as the temperature lines pass the critical temperature of carbon dioxide. It was concluded from this observation that the concept of the "hypothetical" liquid fugacity coefficient was valid.

The values of the liquid fugacity coefficients did not agree with the Chao-Seader values. The value of $\overline{\omega}$ was changed over a range of values up to 0.225 in an effort to obtain an agreement. This effort was unsuccessful as it was found that the Chao-Seader correlation was not very

sensitive to changes in $\overline{\omega}$. For example, at 100 psia. and 100°F, a hand calculation showed that:

$$\log_{10} V_{\rm cs} = 0.85670 + 0.06306\,\omega \tag{5}$$

Clearly the second term has little overall value for $\overline{\omega}$ values from 0.0 to 1.0.

The Hildebrand-Scott equation (3) for the activity coefficient is used extensively in the literature cited, notably references (3) and (11). The necessary values of the solubility parameters have been adjusted by K. C. Chao and J. D. Seader (3), and later by R. H. Cavett (15), by data fitting using a computer. Thus the scope of the original equation for regular solutions has been extended to cover polar compounds, light gas mixtures, etc. There is no guarantee, however, that the equation will predict activity coefficients for all the possible binary systems which may be encountered. In fact, the equation can lead to unreliable values in certain cases (2).

Hence, a more reliable method of determining the activity coefficients would enhance the accuracy of the derived curves of the liquid fugacity coefficient. An alternative method has been suggested under the following "Recommendations".

RECOMMENDATIONS

Further work on the subject of this thesis should attempt to answer the following questions:

- 1. Can the techniques outlined be used on other light solutes, for example, H₂S and SO₂?
- 2. Can the graphs for CO₂ be used to predict other binary systems, for example, CO₂-olefin, and CO₂-aromatic?
- 3. An alternative method for calculating the activity coefficient has been suggested by G. M. Wilson (17), and later discussed by R. V. Orye and J. M.
 - Prausnitz (9). Can this method be used to calculate more accurate values of the activity coefficient and thus improve the accuracy of the liquid fugacity coefficient curves?

TABLES OF DATA AND DERIVED RESULTS

TABLE 1

```
DATA FOR FIGURE 3
```

Binary	k ₁₂	vcl	vcl/vc2
CO2-Methane	0.05	99.5	1.060
CO ₂ -Ethane	0.08	148.0	1.575
CO ₂ -Propane	0.11	200.0	2.130
CO ₂ -n-Butane	0.14	255.0	2.710
CO2-n-Pentane	0.18	311.0	3.310
CO2-n-Decane		602.0	6.400

For CO_2 , $v_{c2} = 94.0$ cc./gm. mole. Values for v_{c1} and v_{c2} from Reid and Sherwood (15). Values for k_{12} from Chueh and Prausnitz (4).

COMPONENT PROPERTIES

	co ₂	C _{3^H8}	C ₄ H ₁₀	C ₁₀ ^H 22
Molecular weight	44.01	44.10	58.12	142.28
Critical temp., °F	87.8	206.2	306.0	655.0
Critical press., psia	1071.6	617.4	550.4	304.0
Acentric factor	0.225	0.152	0.200	0.4885
Na	0.4470	0.4380	0.4450	0.4925*
$\Omega_{ m b}$	0.0911	0.0889	0.0906	0.1000*
k ₁₂	6036 <i>80</i> %	0.11	0.14	0.36*
y,cc./gm. mole	62.0	84.0	101.4	196.0
δ , (cal/cc.) ^{0.5}	6.00	6.40	6.73	7.72

All listed references were used for the above table, in particular, (1), (7), (15), and (16). * Indicates this thesis.

CARBON DIOXIDE DATA TEST

Sat. Temp. °F	Sat. Press.	Sat. Volume cu. ft./lb. mole	Calc. Volume cu. ft./lb. mole
0.0	305.5	12.78	12.98
10.0	360.2	10.73	10.87
20.0	421.8	9.02	9.12
30.0	490.8	7.58	7.65
40.0	567.8	6.36	6.39
50.0	653.6	5.30	5.30
60.0	748.6	4.37	4.34
70.0	853.4	3.54	3.43
80.0	968.7	2.67	1.43
87.8	1071.6	1.51	1.50

Data source: Matheson (7).

PROPANE DATA TEST

Sat. Temp. °F	Sat. Press. psia	Sat. Volume cu. ft./lb. mole	Calc. Volume cu. ft./lb. mole
0.0	37.81	120.8	122.2
20.0	55.00	85.11	85.78
40.0	77.80	58.65	61.50
60.0	106.90	43.39	45.06
80.0	143.60	32.85	33.49
100.0	188.70	24.61	25.20
120.0	243.40	18.79	19.08
140.0	308.40	14.11	14.48
160.0	385.50	10.58	10.89
180.0	473.20	7.94	7.99
200.0	575.0	4.98	5.05
206.2	617.4	3.21	3.14

Data source: Matheson (7).

BUTANE DATA TEST

Sat. Temp. °F	Sat. Press.	Sat. Volume cu. ft./lb. mole	Calc. Volume cu. ft./lb. mole
84.3	40.0	133.73	135.58
109.7	60.0	90.41	92.05
129.3	80.0	68.16	69.60
145.5	100.0	54.59	55.81
177.3	150.0	36.05	36.86
202.0	200.0	26.36	27.03
222.5	250.0	20.28	20.92
240.2	300.0	16.05	16.70
306.0	550.4	4.14	4.07

Data source: Matheson (7).

DECANE DATA TEST

Sat. Temp. °F	Sat. Press.	Sat. Volume cu. ft./lb. mole	Calc. Volume cu. ft./lb. mole
220.0	1.65	4340.0	4380.40
250.0	3.04	2433.0	2470.34
280.0	5.27	1451.0	1474.13
310.0	8.66	911.0	923.02
340.0	13.49	591.0	607.04
655.0	304.00	9.66	10.12

Data sources: Reamer et al., (13); Couch et al., (5).

SYSTEM (a): PROPANE-CO₂ @ 40°F

P	У2	×2	^K 2	V _m	V ₁₂	ϕ_2	γ_2	$\overline{V_2}$	Vcs
100.0	0.2056	0.0247	8.32	48.3	47.66	0.99170	1.01748	8.1092	4.1008
150.0	0,4676	0.0884	5.29	30.9	31.27	0.95888	1.01578	4.9937	2.7527
200.0	0.6036	0.1602	3.77	22.43	22.93	0.93174	1.01391	3.4647	2.0787
250.0	0.6864	0.2402	2.858	17.46	17.85	0.90708	1.01189	2.5620	1.6744
300.0	0.7431	0.3316	2.241	14.20	14.42	0.88362	1.00968	1.9610	1.4049
350.0	0.7876	0.4361	1.806	11.90	11.95	0.86058	1.00731	1.5429	1.2124
400.0	0.8309	0.5532	1.502	10.16	10.10	0.83731	1.00492	1.2515	1.0682
450.0	0.8688	0.6714	1.294	8.80	8.65	0.81427	1.00286	1.0507	0.9560
500.0	0.9102	0.7956	1.144	7.68	7.50	0.79105	1.00120	0.9038	0.8663
550.0	0.9702	0.9401	1.032	6.64	6.64	0.76762	1.00011	0.7921	0.7929
566.5	1.0000	1.0000	1.000	6.27	6.42	0.76023	1.00000	0.7602	0.7716

SYSTEM (a): PROPANE-CO₂ @ 70°F

P	¥2	×2	<u>K</u> 2	V _m	V ₁₂	ϕ_2	$\frac{\gamma_2}{\gamma_2}$	V_2	Vcs
150.0	0.1618	0.0245	6.60	31.8	32.05	0.99894	1.01649	6.4860	3.7675
200.0	0.3589	0.0742	4.84	23.33	23.71	0.96880	1.01524	4.6186	2.8398
250.0	0.4812	0.1274	3.78	18.27	18.60	0.94347	1.01392	3.5174	2.2833
300.0	0.5634	0.1834	3.07	14.89	15.14	0.92085	1.01256	2.7919	1.9124
350.0	0.6235	0.2423	2.573	12.47	12.62	0.89968	1.01117	2.2893	1.6476
400.0	0.6718	0.3048	2.204	10.64	10.72	0.87904	1.00973	1.9187	1.4490
450.0 500.0	0.7148	0.3727	1.918 1.692	9.22 8.08	9.24 8.05	0.85844 0.83812	1.00823 1.00673	1.6330 1.4086	1.2945 1.1710
550.0	0.7814	0.5178	1.509	· 7.14	7.04	0.81853	1.00529	1.2287	1.0701
600.0	0.8092	0.5937	1.363	6.35	6.18	0.79890	1.00393	1.0846	0.9859
650.0	0.8368	0 6722	1.245	5.67	5.45	0.77904	1.00269	0.9673	0.9148
700.0	0.8673	0.7516	1.155	5.07	4.82	0.75857	1.00162	0.8747	0.8538
750.0	0.9011	0.8275	1.089	4.52	4.28	0.73769	1.00082	0.8027	0.8011
800.0		0.9046	1.041	4.00	3.82	0.71643	1.00027	0.7456	0.7549
850.0	0.9874	0.9805	1.007	3.51	3.40	0.69566	1.00001	0.7005	0.7142
860.9	1.0000		1.000	3.40	3.32	0.69125	1.00000	0.6913	0.7059

SYSTEM (a): PROPANE-CO₂ @ 100°F

Р	У2	^x 2	^к 2	V _m	V ₁₂	ϕ_2	γ_2	V_2	V_{cs}
200.0	0.0472 0.2281	0.0081	5.827 4.608	23.12 18.33	23.72 18.87	1.02723 0.99434	1.01601 1.01502	5.8913 4.5141	3.7102 2.9772
300.0 350.0	0.3511 0.4370	0.0926 0.1361	3.792 3.211	15.12 12.78	15.53 13.06	0.96773 0.94539	1.01400 1.01298	3.6189 2.9967	2.4886 2.1397
400.0 450.0	0.4994 0.5481	0.1799 0.2248	2.776 2.439	10.99 9.55	11.16 9.65	0.92579 0.90751	1.01198 1.01097	2.5395 2.1893	1.8781 1.6747
500.0 550.0	0.5876 0.6213	0.2709 0.3191	2.169 1.947	8.38 7.39	8.42 7.40	0.89009 0.87314	1.00995 1.00891	1.9116 1.6850	1.5120 1.3790
600.0 650.0	0.6514 0.6781	0.3693 0.4212	1.764 1.610	6.55	6.54 5.79	0.85632 0.83980	1.00787 1.00683	1.4988 1.3429	1.2682 1.1745
700.0 750.0	0.7013 0.7238	0.4735	1.481 1.373	5.17 4.59	5.13 4.55	0.82383 0.80764	1.00582 1.00485	1.2130 1.1035	1.0942 1.0246
800.0 850.0	0.7448 0.7647	0.5814 0.6346	1.281 1.205	4.04	4.02 3.51	0.79168 0.77591	1.00393 1.00309	1.0102 0.9321	0.9638 0.9102
900.0 950.0	0.7801 0.7908	0.6861 0.7363	1.137 1.074	2.992 2.447	2.980 2.384	0.76231	1.00236 1.00172	0.8647 0.8059	0.8626
1000.0 1002.5	0.7973 0.7950	0.7902 0.7950	1.009	1.877 1.708	1.987 1.960	0.73624 0.73628	1.00113 1.00108	0.7420 0.7354	0.7817 0.7799

SYSTEM (a): PROPANE-CO₂ @ 130°F

P	¥2	<u>x</u> 2	<u>K</u> 2	V _m	<u>v₁₂</u>	¢2	γ_2	7/2	Vcs
300.0	0.0734 0.1873	0.0176 0.0526	4.17 3.56	14.82 12.60	15.18 12.87	1.04618 1.01909	1.01495 1.01416	4.2983 3.5773	3.1152 2.6726
400.0 450.0	0.2739 0.3425	0.0882 0.1246	3.10 2.749	10.90 9.55	11.08 9.65	0.99617 0.97588	1.01336 1.01256	3.0474 2.6494	2.3408
500.0 550.0	0.3980 0.4426	0.1618 0.1992	2.460 2.222	8.44 7.50	8.49 7.50	0.95750 0.94117	1.01174 1.01093	2.3281 2.0687	1.8765 1.7078
600.0 650.0	0.4804 0.5124	0.2376 0.2770	2.022 1.850	6.68 5.96	6.66 5.93	0.92585 0.91162	1.01012 1.00930	1.8533 1.6710	1.5673 1.4484
700.0	0.5394 0.5619	0.3171 0.3577	1.701 1.571	5.31 4.72	5.29 4.70	0.89857 0.88699	1.00849 1.00768	1.5156 1.3828	1.3466 1.2585
800.0 850.0	0.5806 0.5896	0.3996 0.4403	1.453 1.339	4.17 3.67	4.16 3.57	0.87715 0.87465	1.00688 1.00612	1.2658 1.1640	1.1814 1.1134
900.0 950.0	0.5968 0.5980	0.4840 0.5306	1.233 1.127	3.19 2.717	3.03 2.550	0.87492 0.87744	1.00533 1.00454	1.0731 0.9844	1.0531 0.9991
992.0	0.5880	0.5880	1.000	2.073	2.240	0.88061	1.00362	0.8774	0.9580

SYSTEM (a): PROPANE-CO₂ @ 160°F

P	¥2	<u>x</u> 2	^K 2	V _m	<u>v₁₂</u>	ϕ_2	γ_2	V_2	Vcs
400.0	0.0315	0.0099	3.182	10.22	10.48	1.10562	1.01439	3.4682	2.8189
450.0	0.1153	0.0409	2.818	8.92	9.17	1.08182	1.01372	3.0073	2.5023
500.0	0.1832	0.0726	2.523	7.85	8.09	1.06188	1.01304	2.6446	2.2492
550.0		0.1043	2.279	6.95	7.16	1.04623	1.01237	2.3552	2.0423
600.0	0.2840	0.1370	2.073	6.17	6.36	1.03239	1.01169	2.1154	1.8699
650.0	0.3218	0.1698	1.895	5.50	5.65	1.02203	1.01101	1.9157	1.7242
700.0	0.3513	0.2019	1.740	4.91	4.98	1.01713	1.01035	1.7517	1.5994
750.0	0.3743	0.2338	1.601	4.40	4.35	1.01800	1.00971	1.6141	1.4914
800.0	0.3930	0.2666	1.474	3.95	3.77	1.02315	1.00906	1.4946	1.3969
850.0	0.4068	0.2998		3.55	3.25	1.03168	1.00841	1.3883	1.3136
900.0	0.4162	0.3348	1.243	3.17	2.86	1.03575	1.00773	1.2776	1.2396
950.0	0.4202	0.3735	1.125	2.736	2.577	1.03362	1.00702	1.1547	1.1736
976.0	0.407	0.407	1.000	2.270	2.395	1.04779	1.00641	1.0411	1.1419

SYSTEM (b): PROPANE-CO₂ @ 80°F

P	¥2	×2	^K 2	ϕ_2	γ_2	V_2	Vcs
200.0	0.350	0.056	6.250	0.97130	1.01540	5.9786	3.1189
300.0	0.531	0.162	3.278	0.92939	1.01283	3.0079	2.0977
400.0	0.635	0.277	2.292	0.89063	1.01017	2.0208	1.5873
500.0	0.719	0.385	1.868	0.85113	1.00782	1.5776	1.2812
600.0	0.785	0.533	1.473	0.81262	1.00492	1.1911	1.0774
700.0	0.839	0.668	1.256	0.77490	1.00270	0.9707	0.9319
800.0	0.888	0.794	1.184	0.73727	1.00113	0.8719	0.8230
900.0	0.941	0.913	1.031	0.69861	1.00022	0.7201	0.7383
980.0	1.000	1.000	1.000	0.69861	1.00000	0.6986	0.6831

SYSTEM (b): PROPANE-CO₂ @ 100°F

P	<u>Y</u> 2	<u>x</u> 2	K ₂	ϕ_2	γ_2	V_2	Vcs
300.0	0.410	0.107	3.832	0.95530	1.01366	3.6113	2.4886
400.0	0.552	0.200	2.760	0.91452	1.01152	2.4953	1.8781
500.0	0.640	0.289	2.215	0.87831	1.00956	1.9270	1.5120
600.0	0.698	0.389	1.794	0.84508	1.00747	1.5048	1.2682
700.0	0.739	0.503	1.469	0.81368	1:00528	1.1890	1.0942
800.0	0.770	0.608	1.266	0.78376	1.00350	0.9888	0.9638
900.0	0.790	0.705	1.120	0.75777	1.00211	0.8469	0.8626
1000.0	0.800	0.800	1.000	0.73519	1.00103	0.7344	0.7817

 3^{1}

SYSTEM (b): PROPANE-CO₂ @ 140°F

P	У ₂	×2	к ₂	ϕ_2	γ_2	$\sqrt{2}$	Vcs
400.0	0.260	0.070	3.714	0.99799	1.01354	3.6570	2.4994
500.0	0.390	0.143	2.727	0.95896	1.01195	2.5842	2.0006
600.0	0.469	0.213	2.202	0.92971	1.01046	2.0260	1.6685
700.0	0.521	0.280	1.861	0.90627	1.00909	1.6714	1,4315
800.0	0.550	0.350	1.571	0.89203	1.00770	1.3907	1.2540
900.0	0.552	0.430	1.284	0.90293	1.00620	1.1522	1.1162
990.0	0.535	0.535	1.000	0.92404	1.00439	0.9200	1.0161

SYSTEM (b): PROPANE-CO₂ @ 180°F

P	У ₂	×2	^K 2	ϕ_2	<u> 1/2</u>	1/2	Vcs
500.0	0.066	0.016	4.125	1.13221	1.01381	4.6067	2.4941
600.0	0.185	0.080	2.313	1.09119	1.01248	2.4928	2.0667
700.0	0.240	0.142	1.690	1.11189	1.01122	1.8582	1.7620
800.0	0.276	0.207	1.333	1.16097	1.00992	1.5324	1.5339
900.0	0.294	0.275	1.069	1.17524	1.00861	1.2456	1.3569
930.0	0.295	0.295	1.000	1.17298	1.00823	1.1634	1.3114

SYSTEM (c): BUTANE-CO₂ @ 100°F

P	<u>У</u> 2	<u>x</u> 2	^K 2	V _m	V ₁₂	ϕ_2	γ_2	$\sqrt{2}$	Vcs
60.	0.132	0.006	20.83	90.2	91.77	1.02116	1.05459	20.1697	12.2647
80.	0.332	0.022	15.61	67.9	68.90	1.00615	1.05348	14.9087	9.2093
100.	0.454	0.036	12.49	54.2	54.98	0.99469	1.05251	11.8039	7.3762
125.	0.556	0.056	9.98	43.3	43.77	0.98243	1.05112	9.3278	5.9097
150.	0.628	0.076	8.31	36.0	36.25	0.97138	1.04973	7.6898	4.9321
175.	0.679	0.095	7.11	30.7	30.85	0.96139	1.04841	6.5199	4.2339
200.	0.714	0.115	6.21	26.64	26.75	0.95237	1.04702	5.6486	3.7102
250.	0.765	0.155	4.94	20.90	21.00	0.93508	1.04424	4.4236	2.9772
300.	0.798	0.196	4.07	17.04	17.14	0.91873	1.04139	3.5906	2.4886
350.	0.822	0.239	3.44	14.26	14.36	0.90282	1.03840	2.9909	2.1397
400.	0.840	0.284	2.96	12.18	12.27	0.88722	1.03519	2.5369	1.8781
450.	0.855	0.330	2.59	10.58	10.63	0.87175	1.03213	2.1867	1.6747
500.	0.867	0.378	2.29	9.29	9.31	0.85649	1.02887	1.9097	1.5120
600.	0.886	0.478	1.85	7.31	7.30	0.82629	1.02225	1.4970	1.2682
700.	0.900	0.584	1.54	5.79	5.81	0.79646	1.01562	1.2077	1.0942
800.	0.910	0.689	1.32	4.64	4.63	0.76708	1.00970	1.0036	0.9638
900.	0.925	0.786	1.18	3.74	3.69	0.73645	1.00510	0.8624	0.8626
1000.	0.944	0.871	1.08	2.985	2.88	0.70450	1.00204	0.7621	0.7817
1050.	0.949	0.908	1.05	2.517	2.41	0.68905	1.00108	0.7192	0.7471
1095.	0.940	0.940	1.00	1.530	1.88	0.67698	1.00048	0.6767	0.7187

SYSTEM (c): BUTANE-CO₂ @ 160°F

P	<u>У</u> 2	<u>x</u> 2	<u>K</u> 2	V _m	V ₁₂	ϕ_2	$\frac{\gamma_2}{\gamma_2}$	V_2	Vcs
125. 150.	0.030 0.173	0.002	12.51 10.43	43.9 36.8	44.65 37.39	1.06368 1.04439	1.04936 1.04843	12.6807 10.3898	9.0966 7.5741
175.	0.277	0.031	8.95	31.6	32.09	1.02914	1.04756	8.7926	6.4868
200.	0.355	0.045	7.84	27.63	28.03	1.01662	1.04669	7.6148	5.6713
250. 300.	0.462 0.536	0.074 0.103	6.27 5.23	22.00 18.18	22.22 18.30	0.99680 0.97970	1.04488 1.04307	5.9815 4.9126	4.5299
350.	0.592	0.132	4.48	15.39	15.49	0.96382	1.04126	4.1468	3.2261
400.	0.635	0.162	3.92	13.30	13.36	0.94912	1.03938	3.5796	2.8189
450.	0.668	0.192	3.48	11.66	11.68	0.93557	1.03751	3.1381	2.5023
500.	0.694	0.222	3.12	10.33	10.33	0.92278	1.03563	2.7800	2.2492
600.	0.732	0.283	2.583	8.29	8.27	0.89892	1.03184	2.2503	1.8699
700.	0.754	0.345	2.189	6.76	6.74	0.87798	1.02802	1.8696	1.5994
800. 900.	0.770 0.780	$0.409 \\ 0.474$	1.885 1.644	5.58 4.64	5.57 4.63	0.85806 0.83980	1.02413 1.02028	1.5793 1.3531	1.3969 1.2396
1000. 1100.	0.784 0.778	0.543	1.444 1.259	3.82 3.06	3.84 3.13	0.82415 0.81430	1.01633 1.01228	1.1710 1.0128	1.1141 1.0117
1150.	0.758	0.661	1.147	2.608	2.71	0.82163	1.01010	0.9330	0.9672
1184.	0.713	0.713	1.000	1.988	2.30	0.85329	1.00764	0.8468	0.9392

SYSTEM (c): BUTANE-CO₂ @ 220°F

P	<u>y</u> 2	×2	к ₂	V _m	V ₁₂	ϕ_2	γ_2	V_2	Vcs
250.	0.026	0.004	6.51	20.89	21.14	1.14223	1.04479	7.1171	6.1059
300.	0.150	0.028	5.45	17.43	17.66	1.11319	1.04348	5.8141	5.0532
350.	0.244	0.052	4.69	14.88	15.12	1.08887	1.04208	4.9006	4.3020
400.	0.313	0.076	4.12	12.95	13 12	1.07095	1.04072	4.2397	3.7390
450.	0.367	0.100	3.67	11.43	11.53	1.05600	1.03936	3.7288	3.3017
500.	0.411	0.124	3.31	10.20	10.25	1.04260	1.03800	3.3247	2.9522
600.	0.480	0.174	2.762	8.30	8.31	1.01819	1.03516	2.7167	2.4289
700.	0.524	0.223	2.347	6.86	6.84	1.00160	1.03238	2.2770	2.0562
800.	0.552	0.274	2.015	5.68	5.68	0.99125	1.02950	1.9401	1.7777
900.	0.568	0.328	1.732	4.73	4.74	0.98732	1.02646	1.6660	
1000.	0.568	0.393	1.445	3.83	3.89	0.99809	1.02286	1.4100	1.3899
1050.		0.434	1.272	3.31	3.42	1.02505	1.02062	1.2775	1.3164
1090.	0.498	0.498	1.000	2.61	2.83	1.11489	1.01721	1.0960	1,2626

SYSTEM (c): BUTANE-CO₂ @ 280°F

			SYSTEM (c): BUTANE-CO ₂ @ 280°F							
P 	<u>y</u> 2 0.019	×2 0.006	<u>K</u> 2 3.24	<u>V</u> m 9.26	$\frac{v_{12}}{9.17}$	<u>∳2</u> 1.40062	<u> </u>	<u>V2</u> 4.3594	<u>7/cs</u> 3.9251	
500.	0.077	0.027	2.856	8.22	8.16	1.38388	1.03990	3.8007	3.4884	
550.	0.124	0.049	2.518	7.38	7.27	1.37632	1.03876	3.3363	3.1320	
600.	0.161	0.073	2.206	6.63	6.47	1.38198	1.03751	2.9384	2.8358	
650.	0.191	0.100	1.910	5.87	5.73	1.39337	1.03611	2.5686	2.5859	
700.	0.210	0.131	1.603	5.10	4.98	1.43563	1.03450	2.2246	2.3723	
750.	0.205	0.169	1.213	3.98	3.99	1.58762	1.03252	1.8651	2.1878	
758.	0.188	0.188	1.000	3.44	3.63	1.69787	1.03153	1.6460	2,1606	

.

SYSTEM (d): BUTANE-CO₂ @ 80°F

P	<u>У</u> 2	×2	^K 2	ϕ_2	γ_2	V_2	V_{cs}
100.	0.650	0.054	12.037	0.97667	1.05314	11.1630	6.1836
200.	0.775	0.152	5.099	0.94096	1.04607	4,5866	3.1189
300.	0,830	0.263	3.156	0.90618	1.03808	2.7550	2.0977
400.	0.872	0.381	2.289	0.87096	1.02971	1.9361	1.5873
500.	0.903	0.520	1.737	0.83612	1.02027	1.4325	1.2812
600.	0.930	0.652	1.426	0.80134	1.01212	1.1290	1.0774
700.	0.951	0.765	1.243	0.76687	1.00622	0.9473	0.9319
800.	0.970	0.871	1.114	0.73208	1.00211	0.8138	0.8230
900.	0.988	0.950	1.040	0.69651	1.00035	0.7241	0.7383
970.	1.000	1.000	1.000	0.69651	1.00000	0.6965	0.6895

SYSTEM (d): BUTANE-CO₂ @ 120°F

P	У ₂	×2	K ₂	ϕ_2	γ_2	V_2	Vcs
100.	0.310	0.020	15.500	1.01077	1.05165	14.8975	8.6517
200.	0.625	0.090	6.944	0.96689	1.04698	6.4128	4.3391
300.	0.730	0.162	4.506	0.93473	1.04215	4.0415	2.9021
400.	0.774	0.244	3.172	0.90697	1.03667	2.7751	2.1839
500.	0.806	0.330	2.442	0.87934	1.03096	2.0829	1.7533
600.	0.832	0.416	2.000	0.85170	1.02537	1.6613	1.4665
700.	0.852	0.509	1.674	0.82450	1.01953	1.3538	1.2618
800.	0.869	0.606	1.434	0.79748	1.01381	1.1280	1.1086
900.	0.873	0.692	1.262	0.77351	1.00920	0.9673	0.9895
1000.	0.873	0.772	1.131	0.75177	1.00549	0.8456	0.8944
1100.	0.862	0.843	1.023	0.73579	1.00282	0.7506	0.8168
1120.	0.846	0.846	1.000	0.73874	1.00272	0.7367	0.8029

SYSTEM (d): BUTANE-CO₂ @ 160°F

P	У ₂	<u>x</u> 2	<u>к</u> 2	ϕ_2	γ_2	V_2	Vcs
200.	0.354	0.046	7.696	1.01686	1.04662	7.4772	5.6713
300.	0.540	0.108	5.000	0.97871	1.04276	4.6929	3.7692
400.	0.638	0.170	3.753	0.94838	1.03888	3.4261	2.8189
500.	0.700	0.235	2.979	0.92121	1.03482	2.6519	2.2492
600.	0.737	0.304	2.424	0.89751	1.03054	2.1111	1.8699
700.	0.756	0.369	2.049	0.87736	1.02655	1.7512	1.5994
800.	0.767	0.435	1.763	0.85916	1.02258	1.4813	1.3969
900.	0.770	0.505	1.525	0.84432	1.01849	1.2642	1.2396
1000.	0.767	0,580	1.322	0.83380	1.01430	1.0867	1.1141
1100.	0.755	0.655	1.153	0.83104	1.01040	0.9483	1.0117
1180.	0.735	0.735	1.000	0.83520	1.00667	0.8297	0.9424

SYSTEM (d): BUTANE-CO₂ @ 200°F

P	¥2	×2	K ₂	ϕ_2	γ_2	$\overline{V_2}$	Vcs
300.	0.290	0.053	5.472	1.05417	1.04333	5.5289	4.6385
400.	0.429	0.107	4.009	1.01922	1.04017	3.9283	3,4450
500.	0.525	0.162	3.241	0.98719	1.03695	3.0855	2.7301
600.	0.590	0.220	2.682	0.96037	1.03355	2.4921	2.2544
700.	0.630	0.280	2.250	0.93995	1.03005	2.0532	1.9154
800.	0.650	0.339	1.917	0.92641	1.02664	1.7298	1.6618
900.	0.652	0.396	1.646	0.92286	1.02339	1.4843	1.4652
1000.	0.642	0.456	1.408	0.93130	1.02003	1.2855	1.3084
1100.	0.622	0.535	1.163	0,95375	1.01576	1.0920	1.1806
1150.	0.605	0.605	1.000.	0.97166	1.01217	0.9600	1.1252

SYSTEM (e): DECANE-CO₂ @ 40°F

١,

P	У2	^x 2	^K 2	Vm	v ₁₂	ϕ_2	γ_2	\mathcal{V}_2	Vcs
50.	0.9998	0.0545	18.340	aning pang work that your	104.89	0.97852	1.37810	13.0223	8.1456
100.	0.9999	0.1086	9.210	متخاف وتشتره ميدمه مترشير فلواف	51.23	0.95717	1.36109	6.4768	4:1008
150.	0.9999	0.1627	6.146	Quara acom acam alama alama	33.32	0.93594	1.34328	4.2823	2.7527
200.	0.9999	0.2178	4.590	24.0	24.34	0.91480	1.32426	3.1708	2.0787
250.	0.9999	0.2747	3.640	18.6	18.92	0.89375	1.30365	2.4955	1.6744
300.	0.9999	0.3355	2.980	15.04	15.29	0.87276	1.28048	2.0311	1.4049
350.	0.9999	0.4046	2.471	12.46	12.68	0.85180	1.25265	1.6803	1.2124
400.	0.9999	0.4765	2.098	10.52	10.70	0.83083	1.22196	1.4265	1.0682
450.	0.9999	0.5685	1.758	8.97	9.12	0.80981	1.18017	1.2063	0.9560
500.	0.9999	0.7117	1.404	7.71	7.84	0.78868	1.11053	0.9971	0.8663
550.	0.9999	0.9135	1.095	6.61	6.75	0.76735	1.01780	0.8256	0.7929
566.5	1.0000	1.0000	1.000	0.78	6.42	0.76023	1.00000	0.7602	0.7716

SYSTEM (e); DECANE-CO₂ @ 100°F

P 100.	<u>У₂</u> 0.9986		<u>K2</u> 13.68		<u>V₁₂</u> 58.14	<u> </u>	<u>72</u> 1.32657	<u>72</u> 9.9929	<u>Vcs</u> 7.3762
200.	0.9990	0.1437	6.950	dented immer strange strande strande	28.08	0.93844	1.30693	4.9904	3.7102
300.	0.9991	0.2129	4.693	anan danan kasan sakan danan	18.02	0.90816	1.28647	3.3129	2,4886
400.	0.9992	0.2816	3.548	13.0	12.97	0.87819	1.26487	2.4634	1.8781
500.	0,9993	0.3513	2.845	9.48	9.91	0.84845	1.24157	1.9442	1.5120
600.	0.9993	0.4220	2.368	7.37	7.84	0.81890	1.21642	1.5941	1.2682
700.	0.9993	0.4950	2.019	5.82	6.33	0.78943	1.18882	1.3407	1.0942
800.	0.9993	0.5712	1.750	4.60	5.17	0.75995	1.14290	1.1636	0.9638
900.	0.9993	0.6510	1.534	3.58	4.21	0.73025	1.12459	0.9961	0.8626
1000.	0.9993	0.7430	1.345	2.748	3.37	0.69997	1.08436	0.8682	0.7817
1100.	0.9992	0.8641	1.156	2.004	2.53	0.66849	1.03328	0.7479	0.7157
1160.	0.9946	0.9946	1.000	1.506	2.05	0.64859	1.00008	0.6485	0 6816

SYSTEM (e): DECANE-CO₂ @ 160°F

P	¥2	<u>×2</u>	^K 2	V _m	V ₁₂	ϕ_2	γ_2	$\overline{V_2}$	Vcs
200.	0.9961	0,1118	8.910	43874 watati galang 65559 silipak	31.66	0.95439	1.28143	6.6360	5.6713
400.	0,9972	0.2127	4.688	Andrik angga azarat kitnini galargi	15.00	0.90985	1.25553	3.3972	2.8189
600.	0.9975	0.3077	3.242	9.5	9.42	0.86633	1.22887	2.2856	1.8699
800.	0.9976	0.3988	2.501	6.65	6.60	0.82379	1.20103	1.7154	1.3969
1000.	0.9976	0.4876	2.046	4.91	4.890	0.78213	1.17164	1.3658	1.1141
1250.	0.9972	0.6000	1.662	3.50	3.494	0.73131	1.13125	1.0744	0.8892
1500.	0.9942	0.7132	1.394	2.532	2.572	0.68233	1.08761	0.8745	0.7403
1750.	0.9822	0.8295	1.184	1.834	2.059	0.68836	1.04247	0.7250	0.6350
1860.	0.9477	0.9477	1.000	1.537	2.034	0.63716	1.00593	0.6334	0.5979

SYSTEM (e): DECANE-CO₂ @ 220°F

P	¥2	×2	K2	V _m	V ₁₂	¢2	γ_2	$\overline{V_2}$	Vcs
200.	0.9892	0.0931	10.62	1000 x000 analy (r-A) (000	35.15	0.96564	1,25774	8.1536	7.6859
400.	0.9926	0.1774	5.595	10000 40000 40090 5000, 60000 .	16.91	0.93202	1.23890	4.2091	3.7390
600.	0.9933	0.2549	3.897	11.0	10.83	0.89927	1.22023	2.8720	2.4289
800.	0.9938	0.3273	3.036	7.94	7.78	0.86737	1.20152	2.1917	1.7777
1000.	0.9938	0.3964	2.507	6.08	5.95	0.83637	1.18245	1.7733	1.3899
1250.	0.9931	0.4798	2.070	4.59	4.49	0.79899	1.15777	1.4285	1.0827
1500.	0.9912	0.5602	1.769	3.60	3.53	0.76331	1,13224	1.1926	0.8806
1750.	0.9877	0.6394	1,545	2.886	2.869	0.72981	1.10554	1.0199	0.7384
2000.	0.9789	0.7173	1.365	2.354	2.433	0.70002	1.07813	0.8863	0.6335
2250.	0.9640	0.7968	1.210	1.937	2.170	0.67668	1.04991	0.7799	0.5534
2392.	0.9046	0.9046	1.000	1.685	2.184	0.70555	1.01540	0.6948	0.5160

SYSTEM (e): DECANE-CO₂ @ 280°F

P	У ₂	×2	^K 2	Vm	V ₁₂	ϕ_2	γ_2	$\overline{V_2}$	Vcs	
200.	0.9677	0.0796	12.16	wanad direft agang partie	38.52	0.97433	1.23715	9.5767	9.4226	
400.	0.9797	0.1548	6.33	anderak strettel agestel agestel	18.73	0.94841	1.22224	4.9118	4.4722	
600.	0.9830	0.2240	4.388	49647 43937 amon Ashot	12.13	0.92335	1.20756	3.3552	2.8358	
800.	0.9848	0.2879	3.421	9.0	8.83	0.89900	1.19311	2.5777	2.0269	
1000.	0.9850	0.3476	2.834	6.98	6.86	0.87544	1.17880	2.1047	1.5484	
1250.	0.9849	0.4183	2.354	5.37	5.29	0.84707	1.16077	1.7178	1.1726	
1500.	0.9831	0.4878	2.015	4.30	4.26	0.82017	1.14185	1.4473	0.9279	
1750.	0.9804	0.5576	1.758	3.53	3.54	0.79487	1.12166	1.2458	0.7576	
2000.	0.9748	0.6277	1.553	2.959	3.03	0.77188	1.10025	1.0895	0.6334	
2250.	0.9633	0.6954	1.385	2.511	2.67	0.75312	1.07867	0.9670	0.5396	
2500.	0.9436	0.7635	1.236	2.152	2.43	0.74222	1.05652	0.8683	0.4669	
2692.	0.8705	0.8705	1.000	1.865	2.40	0.79105	1.02325	0.7731	0.4216	

,

SYSTEM (e): DECANE-CO₂ @ 340°F

P	У ₂	×2	^K 2	Vm	V ₁₂	ϕ_2	γ_2	V_2	Vcs
200.	0.9182	0.0683	13.44	onisia dinisi findi muun	41.73	0.98346	1.21952	10.8384	10.5662
400.	0.9517	0.1372	6.938	enunte spunju senant gelatij	20.45	0.96227	1.20724	5.5302	4.8770
600.	0.9617	0.2018	4.765	tanta energi elekti (gang	13.35	0.94266	1.19498	3.7589	3.0090
800.	0.9657	0.2623	3.681	9.8	9.81	0.92391	1.18279	2.8753	2.0937
1000.	0.9672	0.3195	3.027	7.66	7.69	0.90591	1.17059	2.3426	1.5578
1250.	0,9674	0.3865	2.503	5.96	6.00	0.88441	1.15541	1.9159	1.1423
1500.	0.9652	0.4510	2.140	4.82	4.89	0.86438	1.13985	1.6228	0.8759
1750.	0.9614	0.5156	1.865	4.01	4.12	0.84592	1.12331	1.4045	0.6935
2000.	0.9548	0.5795	1.648	3.39	3.56	0.82979	1.10601	1.2364	0.5627
2250.	0.9427	0.6461	1.459	2.910	3.15	0.81800	1.08707	1.0979	0.4657
2500.	0.9220	0.7170	1.286	2.520	2.85	0.81445	1.06612	0.9824	0.3917
2732.	0.8430	0.8430	1.000	2.139	2.72	0.87512	1.02894	0.8505	0.3378

SYSTEM (e): DECANE-CO₂ @ 400°F

P	<u>У</u> 2	×2	^K 2	V _m	V ₁₂	ϕ_2	γ_2	V_2	Vcs
200.	0.8231	0.0578	14.24		44.50	0.99959	1.20439	11.8185	10.8938
400.	0.9017	0.1238	7.282	स्तुवच्च जन्मन्ते भंडवंक्ष झाळात्र ,	22.04	0.97776	1.19373	5.9645	4.8743
600,	0.9255	0.1861	4.972	12555 28660 \$0055 \$1050	14.49	0.96114	1.18302	4,0395	2.9166
800.	0.9346	0.2445	3.822	water anne anne anne	10.71	0.94646	1.17238	3.0855	1.9693
1000.	0.9377	0.2993	3.133	8.2	8.44	0.93301	1.16183	2.5160	1.4225
1250.	0.9379	0.3650	2.570	6.46	6.64	0.91752	1,14840	2.0533	1.0059
1500.	0.9353	0.4304	2.173	5.26	5.46	0.90364	1.13416	1.7313	0.7445
1750.	0.9292	0.4952	1.877	4.38	4.63	0.89217	1.11914	1.4963	0.5694
2000.	0.9177	0.5605	1.638	3.72	4.02	0.88499	1.10310	1.3141	0.4466
2250.	0.8978	0.6287	1.428	3.22	3.57	0.88591	1.08541	1.1655	0.3575
2500.	0.8545	0.7178	1.190	2.764	3.25	0.91284	1.06114	1.0237	0.2912
2587.	0.8050	0.8050	1.000	2.544	3.18	0.96534	1.03702	0.9309	0.2721

SYSTEM (e): DECANE-CO₂ @ 460°F

P	У2	×2	^K 2	V _m	V ₁₂	ϕ_2	γ_2	V_2	V_{cs}
200.	0.6548	0.0450	14.55	4044 4750 Digit 9000	46.04	1.04069	1.19173	12.7059	10.3385
400.	0.8116	0.1104	7,35	4000 8000 8000 1999	23.29	1.00488	1.18209	6.2481	4.4698
600.	0.8578	0.1730	4.958	armini dividit sasaja armini	15.44	0.98782	1.17227	4.1779	2.5857
800.	0.8684	0.2308	3.762	Salata Komma antaria manjaa	11.44	0.97902	1.16266	3.1678	1.6886
1000.	0.8724	0.2868	3.042	8.7	9.04	0.97168	1.15280	2.5641	1.1805
1250.	0.8739	0.3550	2.462	6.85	7.15	0.96349	1.14004	2.0807	0.8018
1500.	0.8706	0.4206	2.070	5.58	5.90	0.95778	1.12693	1.7593	0.5704
1750.	0.8608	0.4880	1.764	4.66	5.03	0.95769	1.11256	1.5184	0.4197
2000.	0.8347	0.5717	1.460	3.93	4.37	0.97386	1.09343	1.3003	0.3169
2224.	0.7280	0.7280	1.000	3.17	3.88	1.10344	1.05441	1.0465	0.2510

NOMENCLATURE

fi	= fugacity of i in the vapor phase							
f _{iL}	<pre>= fugacity of i in the liquid phase, (f_i = f_{iL} at equilibrium)</pre>							
f_{iL}^{O}	= fugacity of pure liquid i at system conditions							
k	= interaction constant of the R-K-C equation							
K	= vaporization equilibrium constant							
Р	= total system pressure, psia.							
R	= gas constant, (1.9872 cal./ gmmole-°K)							
t	= system temperature, °F							
Т	system temperature, °K							
v	liquid molal volume, cc./gm. mole							
V	= vapor molal volume, cc./gm. mole							
v ₁₂	molal volume of vapor mixture calculated by the R-K-C equation, cu. ft./lb. mole							
v _m	experimental molal volume of vapor mixture, cu. ft./lb mole							
x	= mole fraction in liquid phase							
У	= mole fraction in vapor phase							

Greek Letters

,

 γ_i = activity coefficient of component i in the liquid phase,

$$\gamma_{i} = \frac{f_{iL}}{x_{i} f_{iL}^{o}}$$

δ = solubility parameter, (cal./cc.)^{0.5} θ = volume fraction as defined by equation 4

= fugacity coefficient of pure liquid i at system conditions,

$$V = \frac{f_{iL}^{o}}{P}$$

V_{cs} = fugacity coefficient of pure liquid i as calculated from the Chao-Seader correlation

$$\phi_i$$
 = fugacity coefficient of component i in the vapor mixture,

$$\phi_{i} = \frac{f_{i}}{y_{i}}$$

 ω = acentric factor in the R-K-C equation

 $\overline{\omega}$ = modified acentric factor in the Chao-Seader equation

$$\Omega_a$$
 = dimensionless constant in the R-K-C equation
 Ω_b = dimensionless constant in the R-K-C equation

Suffixes

V

c = critical

i = any component i

1 = solvent, saturated hydrocarbon

2 = solute, carbon dioxide

REFERENCES

- 1. <u>A. P. I. Technical Data Book</u>. New York: American Petroleum Institute, 1966.
- 2. Black, C., Derr, E. L., and Papadopoulos, M. N., "Systematic Prediction of Separation Factors," <u>Ind. and Eng. Chem</u>.,vol. 55, No. 8, August, 1963, p. 40.
- 3. Chao, K. C., and Seader, J. D., "A General Correlation of Vapor-Liquid Equilibria in Hydrocarbon Mixtures," A. I. Ch. E. Journal, vol. 7, No. 4, December, 1961, p. 598.
- 4. Chueh, P. L., and Prausnitz, J. M., "Vapor-Phase Fugacity Coefficients in Non-Polar and Quantum Gas Mixtures," <u>I. & E. C. Fundamentals</u>, vol. 6, No. 4, November, 1967, p. 492.
- 5. Couch, H. T., Kozicki, W., and Sage, B. H., "Latent Heat of Vaporization of n-Decane," Journal of Chem. and Eng. Data, vol. 8, No. 3, July, 1963, p. 346.
- 6. Hildebrand, J. H., and Scott, R. L., <u>The Solubility of</u> <u>Nonelectrolytes</u>. New York: Reinhold Publishing <u>Corporation</u>, 1950.
- 7. <u>Matheson Gas Data Book</u>. East Rutherford, N. J.: <u>Matheson Company Inc.</u>, 1966.
 - 8. Olds, R. H., Reamer, H. H., Sage, B. H., and Lacey, W. N., "The n-Butane-Carbon Dioxide System," <u>Ind. and</u> Eng. Chem., vol. 41, No. 3, March, 1949, p. 475.
 - 9. Orye, R. V., and Prausnitz, J. M., "Multicomponent Equilibria with the Wilson Equation," Ind. and Eng. Chem., vol. 57, No. 5, May, 1965, p.18.
- 10. Poettmann, F. H., and Katz, D. L., "Phase Behavior of Binary Carbon Dioxide-Paraffin Systems," <u>Ind. and Eng. Chem.</u>, vol.37, No. 9, September, 1945, p. 847.
- 11. Prausnitz, J. M., Edmister, W. C., and Chao, K. C., "Hydrocarbon Vapor-Liquid Equilibria and Solubility Parameter," A. I. Ch. E. Journal, vol. 6, No. 2, June, 1960, p. 214.

- 12. Prausnitz, J. M., and Shair, F. H., "A Thermodynamic Correlation of Gas Solubilities," <u>A. I. Ch. E.</u> Journal, vol. 7, No. 4, December, 1961, p. 682.
- 13. Reamer, H. H., and Sage, B. H., "Volumetric and Phase Behavior of the n-Decane-CO₂ System," <u>Journal</u> of Chem. and Eng. Data, vol. 8, No. 4, October, 1963, p. 508.
- 14. Reamer, H. H., Sage, B. H., and Lacey, W. N., "Volumetric and Phase Behavior of the Propane-Carbon Dioxide System," <u>Ind. and Eng. Chem.</u>, vol. 43, No. 11, November, 1951, p. 2515.
- 15. Reid, R. C., and Sherwood, T. K., <u>The Properties of</u> <u>Gases and Liquids</u>. New York: <u>McGraw-Hill Book</u> <u>Company</u>, 1966.
- 16. Sage, B. H., and Lacey, W. N., Monograph on A. P. I. <u>Research Project 37</u>. New York: American <u>Petroleum Institute</u>, 1955.
- 17. Wilson, G. M., "A New Expression for the Excess Free Energy of Mixing," Journal Am. Chem. Soc., vol. 86, January, 1964, p. 127.
- 18. Yen, L. C., and McKetta, J. J., "A Thermodynamic Correlation of Non-Polar Gas Solubilities in Polar, Nonassociated Liquids," A. I. Ch. E. Journal, vol. 8, No. 4, September, 1962, p. 501.