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Hermean Wong 

ABSTRACT  

The application of the genetic algorithm for solving the 

planning problems for various printed circuit board assembly 

machines is presented. The genetic algorithm finds the sequence of 

component placement/insertion and arrangement of feeders 

simultaneously, for achieving the shortest assembly time. Three 

types of assembly planning problems are modeled such that they can 

be solved by the genetic algorithm. The algorithm uses links 

(parents) to represent possible solutions and applies genetic 

operators to generate new links (offspring) in an iterative procedure 

to obtain the optimal solution. Some examples are provided to 

illustrate the solutions generated by the genetic algorithm, and these 

solutions are compared with those from other planning methods. A 

changing operation rate method is presented for the algorithm 

improvement. 
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Chapter 1 

Introduction 

Rapid development in electronics products, especially in the 

consumer electronics area, makes the manufacturing productivity of 

printed circuit boards (PCB) an important issue. Manufacturing of 

printed circuit boards involves a series of processes including board 

preparation, component placement/insertion, soldering, and 

inspection. The planning of placement/insertion of PCB components is 

the problem focused on in this thesis study. 

Components used in printed circuit boards vary from resistors, 

capacitors, operational amplifiers, integrated circuits (IC), very large 

scale integrated circuits (VLSI) to all kinds of odd components. 

Nowadays, more and more efficient machines of different assembly 

operations are being designed for diversified components. 

1.1 Literature Survey 

Several mathematical models have been developed for some 

assembly operations. Ball and Magazine [1] modeled the component 

sequencing problem for a given feeder arrangement as a rural 

postman problem. They solved it with a heuristic which guarantees 
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the solution to be optimum if the assembly head movement is 

rectilinear. Realizing that devising an optimal arrangement for both 

feeder assignment and component placement/insertion sequence 

simultaneously is very difficult, they used the heuristic to separate 

the problems into two decoupled problems and solve each of them 

individually. 

Leipala and Nevalainen [2] studied the PCB assembly 

movement optimization problem for an insertion machine which 

inserts components sequentially on a PC board fixed to a moving X-Y 

table, with the components supplied by a moving feeder carriage. 

The tool head picks up components from a fixed location and places 

them at another fixed location. They modeled the components 

sequencing problem as a traveling salesperson problem and the 

permutation of components in feeders problem as a quadratic 

assignment problem. The quadratic assignment problem was NP-

hard, therefore, a sub-optimal solution was solved with a heuristic 

approach. 

Bard, Clayton and Feo [3] modeled the feeder setup and 

component placement problem for the Fuji CP II machine, whose 

operation is similar to that of the Panasert RH, except that the Fuji 

machine is used for surface mount components. They divided the 

problem into three sub-problems. One is the movement of the table 

which is solved with a traveling salesperson heuristic. The other two, 

the problem of assigning components to feeders and the problem of 

part retrieval sequence, are solved jointly with a Lagrangian 

2 



relaxation scheme for a given placement sequence. 

Ji, Leu and Wong [4] decomposed the PCB assembly planning 

problem with fixed board and feeders into two assignment problems, 

each solved with the reduced matrix method (Hungarian method). 

Although the problem solved is similar to that solved by Ball and 

Magazine [1], the assembly head movement here is not limited to 

rectilinear. 

A common drawback in all of the above algorithms is that each 

of these algorithms is applicable to only one type of PCB assembly 

planning problems (for one type of assembly machines). It is very 

desirable to have one algorithm capable of solving many types of PCB 

assembly planning problems. An excellent candidate for this purpose 

is applying the genetic algorithm approach - the focus of this thesis 

study. 

A genetic algorithm uses a stochastic selection process to 

generate better solutions iteratively from a set of random solutions 

[5-7]. This approach is effective for solving complex optimization 

problems, and it is particularly attractive when no conventional 

techniques are available to solve a given problem. It has been used 

successfully to solve many difficult problems in job scheduling, 

machine learning, and pattern recognition [8-12]. 

1.2 Thesis Structure 

The presentation of this thesis will include the following. A 
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brief overview of assembly of PCB components will first be 

presented. This will include characteristics of placement/insertion 

processes, components of various types, assembly machines to 

accommodate different components and board types. The discussion 

will lead to the main problem of this thesis study: planning the 

sequence of component placement/insertion and arrangement of 

feeders. The implementation of the genetic algorithm for planning 

PCB assembly for various types of assembly machines will be 

discussed in detail, with numerical results presented. 
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Chapter 2 

Assembly of Printed Circuit 
Board Components 

The components used in a printed circuit board can be divided 

mainly into through-hole components (THC) and surface mount 

components (SMC). In the insertion of through-hole components, the 

leads of the components are first bent on a special grid, then inserted 

through the holes into a PCB, and then bent again to prevent falling 

out during transport of the PCB. In the assembly of surface mount 

components, the components are placed on a PCB and then are 

secured to the board by using adhesive or soldering paste. 

Leicht, Schraft and Wolf [13] classified the PCB components into 

ten different types based on shape of component housing; see Table 

1. The second column in this table shows the delivery methods for 

the different types of components. 

The assembly equipment for component placement/insertion 

may be flexible enough to handle many types of components, or may 

be dedicated to a particular type of components. Low-flexiblility 

assembly machines, with either single or multiple heads, are 
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Table 1. Component type for THI*1  and SMT*2  

Type of Component Method of Delivery 
1 Axial Belt 
2 Radial Belt 
3 DIP*3/SIP*4  Stick Magazine 
4 Plug, Pins Roll of Wire, Punch Strips 
5 Special Components Special Means 
6 Chip, MELF*5  Belt, Loose Material 
7 SOT*6  Belt 
8 SOIC*7/SO*8/VSO*9  Belt, Stick Magazine 
9 Chip carrier Belt, Stick Magazine or Surface 

1 0 Micro-Pack (TAB*10) Film 
*1 THI is acronym of Through-Hole Insertion 
*2 SMT is acronym of Surface Mount Technique 
*3 DIP is acronym of Dual In-line Package 
*4 SIP is acronym of Single In-line Package 
*5 MELF is acronym of Metal Electrode Leadless Faces 
*6 SOT is acronym of Small Outline Transistor 
*7 SOIC is acronym of Small Outline Integrated Circuit 
*8 SO is acronym of Small Outline 
*9 VSO is acronym of Very Small Outline 
*10 TAB is acronym of Tape Automated Bonding 

generally arranged in a series to form a line of placement stations. 

Each station places the components designated to it as the PCB moves 

down the assembly line. These machines are more suitable for 

products of large quantities. High-flexibility assembly machines often 

operate as stand-alone machines, with the board components 

placed/inserted sequentially by a same machine which uses either a 

moving X-Y table or a moving head system. Detailed information on 

various commercial assembly machines can be found in the assembly 

equipment directory publication [13]. 
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When placing surface mount components with a moving X-Y 

table system, the tackiness of the adhesive or soldering paste may 

not be sufficient to hold components in place if the table motion is 

not properly controlled. In general, there are less incidents of 

component misalignment in stationary board machines, especially in 

the placement of fine-pitch surface mount components. The 

components are fed directly to the assembly tool head or picked up 

by the tool head from feeders at fixed locations. 

An important problem in PCB assembly planning is to decide 

the order in which the components should be placed or inserted. In 

the case the components are directly fed to the assembly head with a 

time delay shorter than the traveling time of the PCB, the problem 

can be formulated as the traveling salesperson problem, because the 

head visits each component location once (see Figure 1). Most of the 

assembly machines for the through-hole components belong to this 

category; for example, Amistar AI-6448, Panasonic Panasert RT, 

Universal 6287A, and Universal 6241B. The planning problem in this 

case is to decide the sequence of the assembly head in visiting all 

component locations such that the total traveling distance or 

traveling time is minimized. This will be called the traveling 

salesperson problem (TSP) or the type one problem in the later 

chapters. 
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In the case the components are supplied by feeders at fixed 

locations, the assembly tool needs to pick up components from 

different feeders and place them on the board. Many of the assembly 

machines for surface mount components belong to this category, such 

as Amistar FA-2001, Automelec Autoplace, Fuji EP-20, and Panasonic 

Panasert MPA. Figure 2 is a schematic for this type of machines. In 

the bapartite graph shown in Figure 3, c i (i=1,...,n) represents a 

component location on a PCB, and fj (j=1,...,m) represents a feeder 

location from which a certain type of components is supplied. A line 

a ij connecting ci and fj denotes that the component ci matches with 

the feeder fj. This problem can not be directly modeled as the 

traveling salesperson problem since the mounting head often needs 

to visit a feeder location more than once. It was previously modeled 

as a rural postman problem [1] and recently as an assignment 

problem [4]. In addition to planning the sequence of 

placing/inserting components on the board, the planning problem 

also includes assigning components to feeders. The problem will be 

called the pick-and-place problem (PPP) or the type two problem in 

the later chapters. 
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In the case the components are directly fed to the assembly 

head, but with possible time delay longer than the PCB traveling time 

between two successive components in the sequence, the problem 

can not be modeled as a traveling salesperson problem. The Panasert 

RH in [2] and Universal Onserter II 4712B are two commercial 

machines which belong to this category. Figure 4 shows a schematic 

for this type of problems. The traveling time of the PCB, or the 

shifting time of the tool head (the indexing time of the turret in 

Figure 4), or the traveling time of the moving feeder carrier will be 

the dominating time of the assembly, depending on which is longer. 

The summation of the dominating times in the assembly of all board 

components is the shortest total assembly time needed for a printed 

circuit board. The problem here is the combination of determining 

the sequence of the assembly head visiting all components and 
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assigning the components to the feeders such that the total assembly 

time is minimized. This will be called the moving board with time 

delay problem (MBTDP) or the type three problem in the later 

chapters. Table 2 shows the relation between the characteristics of 

assembly machines and the corresponding planning problem types. 

Examples of commercial assembly machines are also given. 

Table 2. Relation between assembly machine characteristics and 
planning problem types 

Problem Type Assembly Station Characteristics Examples of Commercial 
Machines 

1 Traveling 
Salesperson 

Problem 

Stationary head, X-Y table, direct 
feeding of components to assembly 

head 

Amistar AI-6448, Panasonic 
Panasert RT, Universal 

6287A, Universal 6241B 
2 Pick-and- 

Place Problem 
moving head, stationary table, 

stationary feeders 
Amistar FA-2001, 

Automelec Autoplace, Fuji 
EP-20, Panasonic Panasert 

MPA 
3 Moving Board 

with Time 
Delay Problem 

X-Y table, moving feeders, supply of 
components with a multi-head turret 
or a moving head between two fixed 

locations 

Fuji CP-II, Panasonic 
Panasert MQ1, Universal 

Onserter II 4712B 



Chapter 3 

Genetic algorithm 

Motivated by the success of the genetic algorithm approach in 

solving difficult optimization problems [8-12], we decided to explore 

the possibility of developing a genetic algorithm for determining the 

sequence of component placement/insertion and arrangement of 

feeders. A new operator called the rotation operator was created for 

use with this algorithm. This chapter will give an overview of genetic 

algorithm, including the various genetic operators. 

3.1 Overview of Genetic Algorithm 

First introduced by John Holland [5] at 1975, a genetic 

algorithm [5-7] is a general-purpose stochastic optimization 

algorithm which uses a process similar to biological evolution to 

improve an initial set of feasible solutions through an iteration 

process. The metaphor underlying the genetic algorithm is the 

natural evolution. The building block of a genetic algorithm is the 

gene which represents a certain permutation of the basic elements in 

solving a problem. A sequence of the genes that represents certain 
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physical meaning of the problem is one of the solutions and is called 

a link. The first step in developing a genetic algorithm is to identify 

genes and with which to establish links for a given the problem. 

For the particular assembly planning problems of our study, for 

example, the genes are formed by components and feeders. A link is 

a sequence that indicates an order in which the components are 

placed or inserted or a permutation that refers to the order of 

assigning component types to feeders. 

The second step in developing a genetic algorithm is to 

generate some initial links randomly. These links are used as the 

parents on which various genetic operators (to be discussed in 

chapter 3.2) are applied to generate the offspring (new links). The 

offspring, together with their parents, are evaluated by an objective 

function. The good ones are collected as new parents. This process is 

iterated until a certain criterion, such as a specified number of 

iterations, is reached. During the iterative process, the genes in the 

parent links are adaptively recombined by the genetic operators. 

The number of offspring generated by each operator is 

measured by the operation rate, which is the ratio between the 

number of parents and their offspring to the number of parents. That 

is, if the number of parents is m and the number of offspring is n, 
+ n 

then the operation rate is 
m 

 m . Due to the stochastic nature of the 

selection process, the fitter parents are likely to produce more 

offspring, and the less fit parents are likely to produce less offspring. 
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Thus, the fitness of parents is expected to improve from generation 

to generation. This is the basic mechanism of optimization in the 

genetic algorithm. It provides a near-optimal solution in a complex 

search space. 

Generally speaking, a genetic algorithm has the following 

components: 

1. a representation of problem solution in the form of links, 

2. a way of creating initial solutions, 

3. an evaluation function which rates solutions in terms of their 

"fitness", 

4. a way of applying genetic operators for generating new 

solutions in the iterative process. 

The main structure of the genetic algorithm used in this thesis 

is shown in Figure 5. It uses four operators: crossover operator, 

mutation operator, inversion operator, and rotation operator. 

3 . 2 Genetic Operators 

3.2.1 Crossover Operator 

The most important genetic operator is the crossover operator. 

This operator is a key to genetic algorithm's power. It operates on 

16 



two parent links and generates an offspring link by combining 

partial links of the parents. A way to achieve a crossover is to choose 

a cut point randomly anywhere in the two parent links, then merge 

them using the first portion of one parent link and the second 

portion of another parent link to form the offspring. A simple 

merged link in this way, however, produces some repeated genes 

and some missing genes in the offspring for the assembly planning 

application. Therefore, the crossover rule is adjusted so that proper 

link structure is preserved. Depending on how the merge is 

performed, there can be different crossover operators. The crossover 

operator used in this thesis is the "order crossover" [14]. Figure 6 

illustrates how this operator works. A cut point is chosen at random 
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location (e.g. the middle as shown in Figure 6). The left segment of 

the first parent link is then copied to the offspring. The remaining 

part of the offspring is filled with genes that are not already in the 

offspring from the second parent link, thus maintaining their relative 

order in the original link. 

3.2.2 Mutation Operator 

The mutation operator provides the background variation and 

it occasionally introduces benefit to an offspring link. This can be 

done by exchanging two genes in a parent link. An example is 

illustrated in Figure 7. 

18 



3.2.3 Inversion Operator 

The inversion operator takes a segment from a parent link and 

flips it to form a new link, as shown in Figure 8. This operation 

increases the probability of moving together certain genes that are 

co-adapted to cluster during the crossover operation. Therefore, it 

provides a better chance to have some advantageous properties 

inheriting to the offspring. 



3.2.4 Rotation Operator 

The rotation operator rotates a segment of a parent link to the 

right or left to create an offspring. An example is shown in Figure 9, 

where offspring 1 is obtained through a right rotation of the middle 

segment of the parent, while offspring 2 is obtained through a left 

rotation of the same segment of the parent. This rotation operator is 

created from the observation that the rotation of a middle portion of 

an assembly sequence might generate a better one. 



3 . 3 Determining When to Stop Iterations 

Although the genetic algorithm approach has been developed 

for more than ten years, there exists no good method for deciding 

when to stop iterations. Due to the random process in the algorithm, 

there is no guarantee for progress in each iteration. Sometimes there 

may be no progress for hundreds of iterations but then it starts to 

converge again. Terminating the iteration if the progress stands still 

for some small number of iterations is not a suitable criterion. One 

way to stop iteration is to keep monitoring the results, and if it 

seems to converge very slowly then terminate the iterations. 

Another way is to terminate the iterative process when "a number of 

iterations have been achieved." A better way might be to use a cost 

reduction associated with each iteration. If a genetic approach starts 

from a random generation of parent links, the former iterations 

should have better progress than the latter iterations. This means 

that the cost reduction for a former iteration should be better than 

that for a latter iteration. If we can find a way to evaluate the cost of 

each iteration, we can terminate the iteration if the cost is less than 

some value based on a certain criterion. 

3 . 4 Operation Rates 

Another important issue in using a genetic algorithm is about 

operation rates. What operation rates should be used so that the 
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genetic algorithm can perform well? It is a problem to consider when 

starting the genetic approach. Grefenstte [15] digitized all genetic 

parameters, including the operation rates, into some distinct values. 

He used a binary link to choose the parameter values from these 

values and used the genetic algorithm itself to optimize the binary 

link. 

In the thesis, an easy way was devised to search better sets of 

operation rates beside using the fixed rates approach. We always fix 

the number of parent links and the number of offspring links in each 

iteration. With a given set of operation rates, the times of each 

operator's effect in some iterations are counted during the 

calculation. If the times of effect counted of an operator is greater 

than other operators at the end of these iterations, the operation rate 

of that operator is raised so that hopefully it will act better in the 

latter iterations. If some operation rates are raised, other operation 

rates will be reduced since the total number of offspring is fixed. 

Chapter 8 will discuss more in detail. 

22 



Chapter 4 

Application of Genetic 
Algorithm to PCB Assembly 
Planning 

The planning problems associated with most of PCB assembly 

machines fall into two categories. One is the sequence of components 

assembly, and the other is the assignment of components to feeders. 

If we consider several machines in an assembly line, we also need to 

consider which machine to assign to for each board component. The 

components assembly sequence can be represented as a link. The 

feeder assignment can also be represented as a link. It is obvious 

that the genetic algorithm is a good candidate for solving this kind of 

problems. 

To implement a genetic algorithm for planning of PCB 

assembly, the link representation needs to be first established. All 

the three types of problems described in Chapter 2 involve the 

planning of components assembly sequence. For a PCB having n 

components, a link is a list of n component numbers, each between 1 

and n , representing the placement/insertion sequence of 

components. In the example shown in Figure 10, the number "8" in 
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the third position of the link means that the component number 8 on 

the PCB is the third component in the assembly sequence, after 

component numbers 2 and 6. 

In both type two and type three problems, instead of using the 

usual single-link method, a multi-link method is developed for the 

combined component placement/insertion and feeder arrangement 

problem. Each feeder is assigned with either one type of components 

or empty. Another link is thus created for the feeder assignment. For 

the problem with m feeders and p types of components, where m p, 

the second link is a list of feeders, each between 1 and m , 

representing the assignment of component types to feeders. The 
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feeders assigned with a number larger than p will not be used. The 

above two links can be combined together as a group and optimized 

simultaneously. In the optimization process the genetic operators are 

applied to each link separately, but the two links are evaluated 

together. 

The initial estimates of solutions in the iterative process are 

randomly generated to provide a goodness test of the 

implementation. For actual application, however, it may be more 

expedient to initialize with more directed methods [2]. For example, 

we can find the initial estimate from the setup of a professional 

technician. Combined with some random initial estimates, we can 

improve the solution. 

The evaluation functions for different types of problems may 

be different. The objective of PCB assembly planning is usually to 

minimize the total assembly time. The total assembly distance can be 

used as the objective instead of total assembly time, if the speed of 

assembly head is constant. 

The movements of the assembly head or boards may have 

different patterns for different assembly machines. For the machines 

which control the X direction motion and Y direction motion 

separately without coordination (the Chebyshev metric), the 

evaluation function for traveling distance is max(Ixi- x21, ly i - y21) 

where max(a, b) is the larger of a and b, and (xi, y1), (x2, y2) are the 

locations of these two components. For the machines which move 
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from one location to another in a straight line, the evaluation 

function for traveling distance between two component locations is 

AI'xi- x212  + lyi - y212  (the Euclidean metric)• If the assembly head 

is a robot with revolute joints, instead of using assembly distance as 

the evaluation function, we should consider the assembly time whose 

evaluation needs to involve the robot's kinematics. 
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Chapter 5 

Genetic Algorithm for Traveling 
Salesperson Problem 

5.1 Representation of PCB Assembly Planning problem 

As described in Chapter 2, in this problem the assembly head 

visits each component location once. This problem is to determine the 

assembly sequence so as to minimize the total traveling distance. For 

a PCB having n components, the assembly sequence is represented 

by a link with n genes. Figure 11 is an illustration of this problem. 

The link designated by 5-4-2-1-3-6 represents an assembly 

sequence in which the assembly head goes through the sequence of 

component 5 = component 4 component 2 component 1 

component 3 component 6 = component 5. After the sequence 

ends, it repeats again and again. 
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Figure 11. Link representation for type one problem 

which is the total traveling distance, i.e. the total distance of visiting 

each component once. 

The above travel distance formulation can be extended 

straightforwardly to solve minimal travel time problems. 
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5.2 Results and Discussion 

A PCB of thirty components is used as an example in solving 

the traveling salesperson problem. The locations of the components 

are listed in Table 3. Thirty links are generated randomly as the 

initial estimates. Only Euclidean metric is assumed in the assembly 

process of this PCB. Fixed operation rates are used and they are listed 

in Table 4. The assembly process produced after solving the problem 

is illustrated in Figure 12. The total traveling distance is 256.8 mm. 

The computation time is 75 seconds for 200 iterations on the Compaq 

386/20e PC. 

Table 3. Locations of components (mm) 

X Y X Y X Y 
1 16.0 18.1 11 78.3 41.2  21 60.7 18.1 
2 8.3 41.2 1 2 77.5 35.6 22 9.7 26.8 
3 4.4 16.0 13 13.5 40.8 23 28.7 24.0 
4 81.0 41.2 14 86.1 28.9 24 3.5 35.8 
5 1.8 23.8 15 87.1 41.2 25 7.8 35.6 
6 5.7 41.2 16 17.6 29.8 26 36.3 35.0 
7 11.2 35.6 17 40.135.5 27 20.8 29.4 
8 55.2 41.2 18 32.3 41.2 28 74.8 41.8 
9 80.7 22.7 1 9 84.2 41.2 29 86.4 22.3 
10 63.9 27.3 20 34.3 18.1 30 17.7 24.0 

Table 4. Operation rates 

Operator Operation Rate 
Crossover Operator 1.50 
Inversion Operator 1.22 

Rotation Operator 1.22 
Mutation Operator 1.54 
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Figure 12. Optimal assembly sequence based on genetic algorithm 

Several trials had been made to start each iteration from a 

different random initial guess. Figure 13 shows the results of total 

travel distance reduction for five different randomly generated 

initial estimates, each having 200 iterations. 
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Figure 13. Solutions from genetic algorithm with different initial 
guesses 

There is an heuristic based solution algorithm from STORM [16], 

which is an optimal scheduling software package run on the IBM 

PC/XT/AT. The algorithm used by STORM to solve the traveling 

salesperson problem is based on least distance insertion or maximum 

angle insertion to determine the travel sequence. The total assembly 

distance obtained by STORM for this problem is 268.2 mm, which is 

4.4% worse than the result of the genetic algorithm. The computer 

time used is 285 seconds which is almost three times larger than the 

result from the genetic algorithm. The solution obtained from STORM 

is shown in Figure 14. 
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Chapter 6 

Genetic Algorithm for Pick and 
Place Problem 

6.1 Representation of PCB Assembly Planning Problems 

For a pick-and-place machine, the assembly tool picks up 

components from feeders and place them on the board. The 

optimization problem needs to determine the minimum traveling 

distance; however, in addition to the assembly sequence, it also 

needs to determine the assignment of components to feeders. We 

assume that the PCB has n components in p types, and the 

components are provided by m feeders, where m p. In applying the 

genetic algorithm approach to solve this problem we used two links: 

one is the link of assembly sequence, with n genes, and the other is 

the link of feeder assignment, with m genes. 

We assume that the assembly head will rest at a particular 

location in the transition between two printed circuit boards. The 

rest location is the "starting point" and also the "end point" in 

assembling each board since the assembly process will start at this 

point and the assembly head will go back to this point after a PCB 
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has been assembled. In the following the rest location will be called 

the "starting point." 

Figure 15 is an illustration of this problem. The component 

sequence and feeder arrangement are designated by link 1 and link 

2, respectively. In this illustration, the assembly head goes through 

the following locations: starting point = feeder 2 = component 3 

feeder 3 = component 5 = feeder 3 = component 6 feeder 2 

component 2 = feeder 1 = component 1 = feeder 1 = component 4 

starting point. 

The assembly distance between feeder i (xi, yi) and component 





6.2 Results and Discussion 

A sample PCB with 200 components in 10 different types, as in 

Figure 16, is used as an example in solving the pick-and-place 

problem. Figure 16 (a) shows the locations of the components and 

feeders, and Figure 16 (b) gives the types of the components. 

The starting point for this process is (0, 0). One hundred links 

are generated randomly as the initial estimates. Fixed operation rates 

are used and they are listed in Table 5. Figure 17 shows the 

assembly distance versus the number of iterations. The total 

assembly distance is reduced by 11.84% in 6,150 iterations and is 

still decreasing. 

Table 5. Operation rates 

Operator Operation Rate 
Crossover Operator 1.5 
Inversion Operator 1.3 

Rotation Operator 1.3 
Mutation Operator 1.3 
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The feeder locations and assembly sequence obtained after the 

6,150 iterations are illustrated in Figure 18. The total assembly 

distance is 61,861 mm. The squares on the bottom row and the left 

column represent the locations of the feeders. All the others 

represent the locations of the components. The number to the right 

of each feeder designates the type of components assigned to the 

feeder. The number to the right of each component designates the 

order of the assembly sequence for the component. Figure 19 shows 

the trajectory for assembling the components for the whole board, 

and Figure 20 shows the trajectory for assembling the first 20 

components. 
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Another PCB which has fifty components was tested to compare 

the result with that from the dual reduced matrix method in [4]. The 

location and type of each component are listed in Table 6. Also listed 

in Table 6 are the locations of the feeders. The starting point of this 

assembly process is (0,0). Fifty groups, each having two links, are 

generated randomly as the initial estimates. The first link has fifty 

genes representing the assembly sequence. The second link has ten 

genes representing the feeder assignment. 
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Table 6. Locations of components and feeders and type of 
components (mm). The feeders are designated by F 1 -F10. 

X Y Type X Y Type X Y Type 

1 100 60 6 21 160 180 4 41 240 40 10 
2 100 90 3 22 160 220 9 42 240 60 9 
3 100 130 2 23 180 60 9 43 240 80 4 
4 100 180 10 24 180 100 5 44 240 100 8 
5 100 230 4 25 180 140 8 45 240 120 1 
6 120 50 4 26 180 180 4 46 240 140 10 
7 120 90 10 27 180 220 8 47 240 180 7 
8 120 130 6 28 200 60 8 48 240 200 6 
9 120 150 9 29 200 100 9 49 240 210 7 
10 120 190 5 30 200 130 9 50 240 220 2 
11 120 230 9 31 200 140 3 Fl 60 10 
12 140 40 9 32 200 170 7 F2 100 10 
13 140 80 2 33 200 180 10 F3 140 10 
14 140 100 9 34 200 220 4 F4 180 10 
15 140 140 4 35 220 40 9 F5 220 10 
16 140 180 10 36 220 60 9 F6 70 30 
17 140 220 7 37 220 100 10 F7 70 70 
18 160 60 5 38 220 160 9 F8 70 110 
18 160 100 2 39 220 200 7 F9 70 190 
20 160 140 5 40 220 220 5 F10 70 150 

The operation rates used are listed in Table 7. Fifty links are 

generated as the initial estimates. The result produced is illustrated 

in Figure 21. The total distance resulted from the genetic algorithm is 

11,324.6 mm. The computation time is 9 hours 10 minutes for 

10,000 iterations on the Compaq 386/20e PC. The optimal value was 

achieved at iteration 7,841. The total assembly distance at iteration 

1,000 is 11,390 mm, which took about 55 minutes of computer time 

and the total assembly distance of iteration 100 is 11,549.6 mm, 

which took only 6 minutes of computer time. Figure 22 shows the 

travel distance as a function of iteration numbers. 

Table 7. Operation rates 
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Operator Operation Rate 
Crossover Operator 1.72 
Inversion Operator 1.52 

Rotation Operator 1.52 
Mutation Operator 1.55 



The optimal solution from [4] for the first board tested above 

and the same feeder locations has a total distance as 61,847 mm. The 

optimal solution from [4] of the second PCB and the same feeder 

locations is 13,010.7 mm, see Figure 23. The computation time was 

less than one second on the Compaq 386/20e PC for the second 

board. The method of [4] solved the assignment problem concerning 

the place movements only and neglecting the pick up movements. It 

solved only three fourths of the problems. The genetic approach 

solves both the sequencing problem and the assignment problem 

simultaneously but take a lot of random trials. The solutions of the 

two algorithms are both sub-optimal solutions. This explains why the 
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genetic approach took more calculation time but had a worse solution 

for the first board and a better solution for the second board. 



Chapter 7 

Genetic Algorithm for Moving 
Board with Time Delay Problem 

7.1 Representation of PCB Assembly Planning Problems 

The assembly machine of this type usually has a moving feeder 

carrier, a X-Y table for carrying the PCB, and a turret having multiple 

assembly heads. Unlike the above two types of problems, we must 

consider assembly time directly instead of travel distance in this 

problem. Considered in this type of problems are three different 

times: one is the traveling time of the PCB, another is the shifting 

time of the pick-up-head (i.e. the indexing time of the turret in 

multi-head assembly machines), and the other is the moving time of 

the feeder carrier. The longest time of the three is the time neck in 

the assembly of one component. The next movements of the other 

two will keep waiting until the neck movement has been completed. 

All the movements are considered as constant speed movements in 

order to simplify the problem. 

We assume an n-component PCB having p types of components 

supplied by m feeders, where m p . As in the pick-and-place 
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problem, we represent the problem by two links: one is the link for 

the assembly sequence, with n genes, and the other is the link for the 

feeder assignment, with m genes. 

Another consideration is needed when the machine uses a 

turret carrying multi-assembly heads (for example, Panasert MQ1 

NM-8257). The traveling time between two components is compared 

with the moving time of the feeder carrier for picking up a different 

component. For the first few components assembled in a batch of 

PCB's, there are only pick-up movements without any placement 

movement. For the last few components of the same batch, there are 

only placement movements without pick-up movements. If the 

quantity of PCB's is very large in a batch we can neglect these 

boundary effects and consider all components of this batch as a 

string of nearly infinite components. 

Figure 24 shows an example of this problem. There is a "gap" of 

four components between the component being picked-up and the 

component being placed. For the first PCB of a batch, the machine 

will start at a rest location and pick up a component from a feeder 

having the type of component. Then the turret indexes to the next 

head, picks up the next component, and then the turret indexes again 

to pick up the third component. In the meantime, the PCB moves to 

the location and the first component is placed on the PCB. After the 

third component is picked up and the first component is placed, the 

turret indexes again to the next location, the feeder carrier moves to 

the next component, and the PCB moves to the next location. 
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At the assembly of the last four components of a board, there is 

no need for picking up components for this board. Instead of wasting 

time to wait for the next board, the next movements can pick up the 

first four components for the next PCB. 
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Let g be the "gap" between the pick-up component and the 

place component, vi denote the speed of the X-Y table linear motion, 

vx  denote the x-direction speed of X-Y the table motion, vy  denote 

the y-direction speed of the X-Y table motion, vf denote the moving 

speed of the feeder carrier, a[k] denote the feeder to which type k 

components are assigned and b[j] denote the component type number 

for component j, where 1 5_ k and 1 b[j] _13 and 1  a[k] __. m. 

The assembly time from component i (xi, yi) to component i+/ 

(xi+/, Yi+/) is 

The indexing time of the pick-up head is denoted as t2. 

The traveling time of the feeder carrier from the feeder of 

component i+g (Xa[b[i4-0], Ya[b[i+g]]) to feeder i+g+1 (xa[b[i+g+1]1, 

Ya[b[i+g+1]]) is 

where 1 i 5_ n. If i+g > n, then component i+g actually represents 

component i+g-n of the next PCB in the batch. 
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7 . 2 Results and Discussion 

The same PCB of fifty components as that used in the type 2 

problem study was tested for the type three problem. The feeder 

locations are in Table 8. The assembly time versus the iterations 

generated by the genetic algorithm is shown in Figure 25. The turret 

carries only one assembly head, so the "gap" here is 0. The X 

direction speed is 60 mm/second. The Y direction speed is 60 

mm/second. The feeder speed is 60 mm/second. The turret rotates at 

one second/revolution. The optimal solution is shown in Figure 26. 

The solution is reached in iteration 7,204, and it has 51 seconds of 

total assembly time. Another solution obtained with a different set of 

initial estimates, shown in Figure 27, has an optimal total assembly 

time as 54 seconds reached in 204 iterations. The improvement 

during these 204 iterations is 26%. In comparison, the same 

improvement takes 490 iterations with the set of initial estimates 

used to obtain Figure 25. It is easy to see that if both the PCB and the 

feeder carrier move fast enough, the least assembly time will be 50 

seconds, since there are 50 components and the turret indexing time 

is 1 second. 
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Table 8. Component locations and types and feeder locations. The 
feeders are designated by F1-F10. 

X Y Type X Y Type X Y Type 
1 100 60 6 21 160 180 4 41 240 40 10 
2 100 90 3 22 160 220 9 42 240 60 9 
3 100 130 2 23 180 60 9 43 240 80 4 
4 100 180 10 24 180 100 5 44 240 100 8 
5 100 230 4 25 180 140 8 45 240 120 1 
6 120 50 4 26 180 180 4 46 240 140 10 
7 120 90 10 27 180 220 8 47 240 180 7 
8 120 130 6 28 200 60 8 48 240 200 6 
9 120 150 9 29 200 100 9 49 240 210 7 
10 120 190 5 30 200 130 9 50 240 220 
11 120 230 9 31 200 140 3 Fl 100 10 
12 140 40 9 32 200 170 7 F2 115 10 
13 140 80 2 33 200 180 10 F3 130 10 
14 140 100 9 34 200 220 4 F4 145 10 
15 140 140 4 35 220 40 9 F5 160 10 
16 140 180 10 36 220 60 9 F6 175 10 
17 140 220 7 37 220 100 10 F7 190 10 
18 160 60 5 38 220 160 9 F8 205 10 
18 160 100 2 39 220 200 7 F9 220 10 
20 160 140 5 40 220 220 5 F10 235 10 





Chapter 8 

Effect of Changing Operation 
Rates 

8.1 Method 

The meta-genetic method was introduced by Grefenstte, et al, 

to find optimal operation rates for a genetic algorithm [15]. In the 

meta-genetic method, a binary link is used to represent the rate of 

each operator; for example, a two-genes link is used to represent the 

rate of each operator; for example, a two-gene link for an operator 

can be setup as : "0-0" for 1.1, "0-1" for 1.2, "1-0" for 1.3, and "1-1" 

for 1.4. By combining the binary links of all operators as one link, the 

genetic algorithm method itself can be used to determine optimal 

operation rates together with other parameters. This may be 

computational intensive, however. 

We device an easier way to find the operation rates for our 

genetic algorithm application. As discussed in Section 3.4, the 

changing operation rate method quantifies the effect of each operator 

in a certain number of iterations and adjusts its rate accordingly. The 

main idea of the changing operation rate approach is to increase or 
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decrease the rate of an operator depending on whether this operator 

has more or less effect than the other operators at some time during 

the process of iteration. 

We define the "effect number" of operator i, Ni, for a specified 

number of iterations as the total number of times this operator is 

involved in generating the links serving as the parents in the 

iteration after the specified number of iterations. Also, let ri be the 

operation rate of operator i. To adjust the operation rate in the next 

period of iterations, it is quite logical to have 

where ri' is the operation rate of operator i in the next period of 

iterations. The proportional factor in the above relationship should 

be such that the number of offspring generated in each iteration 

remains unchanged. For this condition to hold, it is required that 



Another consideration in the varying operation rate method as 

described above is that some of the operation rates may keep 

decreasing to a point that they may no longer effect the iterative 

process. Theoretically an operator can not effect in generating 

offspring if the operation rate is smaller or equal to 1. So the 

operation rate of each operator should be given a lower bound which 

is larger than one, i.e. Ii > 1, where ii is the lower bound of operation 

rate of operator i. 

The process of changing operation rates is thus as follows: 

0. Set operation rates ri, r2, r3 and r4. 

1. Let m =1 and m indexes each pre-specified number of 

iterations. 

2. Let Ni=0 for i=1, 2, 3 and 4. 

3. Apply the genetic algorithm to generate offspring from a set of 

parents and determine the most fit offspring as the set of 

parents for the next iteration. Increment Ni, i=1,2,3 and 4, by 1 

if operator i is involved in generating one of parents used in 

the next operation, considering all of the parents. 

4. Repeat step 3 for the number of iterations specified. 
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Repeat this step until the new operation rates satisfy the lower 

bound requirement. 

7. Increment m by 1 and repeat steps 2 to 6. 

8.2 Results 

The type two problem in Section 6.2 was used for comparing 

fixed operation rate versus changing operation rate in implementing 

the genetic algorithm. Figure 28 shows the results of 1,000 iterations, 

of which the first 100 iterations are repeated in Figure 29 for clarity. 
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Case (1) is a fixed operation rate approach. Cases (2), (3), and (4) 

have the same initial operation rates but different initial estimates of 

the solution. Case (5) is another changing operation rate approach 

which has different initial operation from case (2), (3) and (4). The 

fixed operation rates are listed in Table 9, and the two sets of initial 

rates of changing operation rates are listed in Table 10. The 

operation rates in all of the variable cases are updated each 20 

iterations. 



Table 9. Fixed operation rates 

Operator Operation Rate 
Crossover Operator 1.72 
Inversion Operator 1.52 

Rotation Operator 1.52 
Mutation Operator 1 .5 5 
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Table 10. Initial rates of variable operation rates. The operation rate 
1 corresponds to cases (2), (3) and (4) and operation rate 2 
corresponds to case (5) in Figures 28 and 29. 

Operator Operation Rate 1 Operation Rate 2 
Crossover Operator 1.5 3.0 
Inversion Operator 1.2 1.2 

Rotation Operator 1.2 1.2 
Mutation Operator 1.5 1.5 

The results of all the changing rate operations are better than 

the result of the fixed rate operation after a large number of 

iterations. Figures 30, 31, 32 and 33 show the change of operation 

rates for cases (2), (3), (4) and (5) in Figures 28 and 29. In all four 

cases the crossover rate is the highest in the beginning of the 

iterative process and goes down after some iterations for these four 

calculations. Since the initial estimates are all randomly generated, 

this observation indicates that the crossover operator is more 

effective when the links are more distinct from one another. In other 

words, the crossover operator has a better chance than the other 

operators to generate good offspring if the parents are quite 

different in pattern. After many iterations the better offspring may 

be similar in pattern, and thus the crossover operator becomes less 

effective. The same observation, i.e. the crossover rate is the highest 

in the beginning of iteration but decreases afterwards, is made in the 

study of type 1 and type 3 problems. 
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Another interesting observation is found from comparing the 

effectiveness of each operator. We use ri to represent the operation 

rate of operator i as above. Let Ni represent the effect number of 

operator i for the whole iterative process. We define the 

effectiveness index of operator i as 

Ni r 1 - 1  
1" Ni ri- 1 ' 

By this definition 11 1 =1 serves the reference for comparison. We let 

i=1 represent the crossover operator. Table 11 shows the 

effectiveness indices for the four operators calculated from their 

average operation rates and effect numbers for case (2) in Figure 28. 

Table 12 lists the effectiveness indices for the four operators for all 

of the five cases in Figure 28. It clearly shows that the crossover rate 

is the most effective among the four operators. The inversion 

operator is the second most effective in all the cases where the 

operation rates are allowed to vary during the iteration. 
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Table 11. Calculation of effectiveness indices of operators for case (2) 
in Figure 28. 

Operator Average Operation 
Rate 

Effect 
numbers 

Effectiveness 
index 

Crossover Operator 1.66 36416 1 
Inversion Operator 1.26 5 236 0.363 

Rotation Operator 1.45 5 072 0.205 
Mutation Operator 1.87 11211 0.233 

Table 12. Effectiveness indices of operators for the five cases in 
Figure 28. 

Crossover Inversion Rotation Mutation 
Case 1 (fixed) 1 0.255 0.381 0.405 
Case 2 (var.) 1 0.363 0.205 0.233 
Case 3 (var.) 1 0.409 0.209 0.126 
Case 4 (var.) 1 0.464 0.155 0.380 
Case 5 (var.) 1 0.424 0.158 0.161 
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Chapter 9 

Conclusion 

Described in this thesis is a genetic algorithm and its 

application to solve scheduling and assignment problems in PCB 

assembly. Three types of PCB assembly planning problems have been 

studied: the traveling salesperson problem, the pick-and-place 

problem, and the moving board with time delay problem. All the 

problems are represented in the form such that the genetic algorithm 

can be applied to minimize assembly time. Four genetic operators are 

used: order crossover operator, inversion operator, rotation operator, 

and mutation operator. 

The major contributions of this thesis study are as follows: 

1) A new application of the genetic algorithm approach is 

introduced to solve PCB assembly planning problems. 

2) The planning problems in various types of PCB assembly 

machines are properly modeled such that they can be solved 

using the genetic algorithm approach. 

3) The approach is shown to be beneficial over other methods for 

solving PCB assembly planning problems, i.e. it is capable of 

solving the planning problem for many classes of assembly 

machines instead of just one class of assembly machines. 
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4) A multi-link genetic algorithm is introduced for dealing with 

the complexity of the assembly planning problem encounted in 

some types of assembly machines. 

5) A varying operation rate technique is devised and is shown to 

generate better results than the fixed rate method on algorithm 

efficiency. 

6) A rotation operator is introduced for the genetic algorithm and 

is shown to contribute to solving the PCB planning problems. 

7) A quantitative study of relative effectiveness among the 

various genetic operators is performed. The crossover operator 

is shown to be the most effective. 
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