New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

6-30-1966

Fugacity and activity coefficients for the N-butane-nitrogen system

Richard E. Walter New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Walter, Richard E., "Fugacity and activity coefficients for the N-butane-nitrogen system" (1966). *Theses*. 2635.

https://digitalcommons.njit.edu/theses/2635

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

FUGACITY AND ACTIVITY COEFFICIENTS FOR THE N-BUTANE-NITROGEN SYSTEM

ΒŸ

RICHARD E. WALTER

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1966

ABSTRACT

Fugacity and activity coefficients were calculated for the nitrogen-n-butane system at 310°, 340°, 370°, and 400°F. in 100 atmosphere pressure intervals from 100 to 700 atmospheres for the pure components and mixtures of 10, 30, 50, 70, and 90 mol% n-butane. Calculations were based on a method proposed by Van Ness. This calculation procedure combines an analytical solution utilizing the Redlich and Kwong equation of state with a graphically obtained correction factor.

APPROVAL OF THESIS

FUGACITY AND ACTIVITY COEFFICIENTS

FOR THE N-BUTANE-NITROGEN SYSTEM

ΒY

RICHARD E. WALTER

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

ΒY

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY

JUNE, 1966

ACKNOWLEDGMENT

The author would like to thank Dr. Joseph Joffe of the Chemical Engineering Department, Newark College of Engineering, for making this work possible. Thanks are also extended to the Esso Research and Engineering Company for providing assistance in computer programming and in providing the necessary time on their computing facilities to carry out portions of the calculations required.

TABLE OF CONTENTS

TEXT	
INTRODUCTION	2
CALCULATIONS	4
RESULTS	11
CONCLUSIONS	12
RECOMMENDATIONS	13
APPENDIX I - TABLES AND FIGURES	14
TABLES	
1 - 4 EXPERIMENTAL COMPRESSIBILITY DATA	15
5 CONSTANTS FOR THE REDLICH AND KWONG EQUATION	27
6 -13 CALCULATED VALUES	29
FIGURES	
1 - 7 CURVES FOR GRAPHICAL INTEGRATION	53
8 -11 CURVES FOR GRAPHICAL DIFFERENTIATIONS	60
12 -19 ACTIVITY COEFFICIENTS VS PRESSURE	64
20 -46 TEST FOR THERMODYNAMIC CONSISTENCY	72
APPENDIX II - COMPUTER PROGRAMS	99
CALCULATION OF A ² /B CONSTANT	X
FORTRAN IV STATEMENTS	100
BLOCK FLOW DIAGRAM	101
SAMPLE PRINTOUT	102
CALCULATION OF Z' AND APPROX LN ϕ	
FORTRAN IV STATEMENTS	103
BLOCK FLOW DIAGRAM	105
SAMPLE PRINTOUT	107
APPENDIX III - DETAILED SAMPLE CALCULATION	110
NOMENC LATURE	120
REFERENCES	121

LIST OF FIGURES

FIGURE	TITLE	Page
1	Curve for Graphical Integration, 100%N ₂ @ 310°F	53
2	Curve for Graphical Integration, 10%C ₄ @ 310°F	54
3	Curve for Graphical Integration, 30%C ₄ @ 310°F	55
4	Curve for Graphical Integration, 50%C ₄ @ 310°F	56
5	Curve for Graphical Integration, 70% C $_4$ @ 310 °F	57
6	Curve for Graphical Integration, 90%C ₄ @ 310°F	58
7	Curve for Graphical Integration, 100%C ₄ @ 310°F	59
8	Curve for Graphical Differentiation, 310°F	60
9	Curve for Graphical Differentiation, 340°F	61
10	Curve for Graphical Differentiation, 370°F	62
11	Curve for Graphical Differentiation, 400°F	63
12	Activity Coefficients for n-Butane at 310°F	64
13	Activity Coefficients for Nitrogen at 310°F	65
14	Activity Coefficients for n-Butane at 340°F	66
15	Activity Coefficients for Nitrogen at 340°F	67
16	Activity Coefficients for n-Butane at 370°F	68
17	Activity Coefficients for Nitrogen at 370°F	69
18	Activity Coefficients for n-Butane at 400°F	7.0
19	Activity Coefficients for Nitrogen at 400°F	71
20	Test for Thermodynamic Consistency, 310°F and 100 Atm	72
21	Test for Thermodynamic Consistency, <u>310°F and 200 Atm</u>	73
22	Test for Thermodynamic Consistency, 310°F and 300 Atm	74
23	Test for Thermodynamic Consistency, 310°F and 400 Atm	75

vi

FIGURE	TITLE				- - 			Page	
24	Test for The	rmodynamic	Consistency,	310°F	and	500	Atm	76	
25	Test for The	rmodynamic	Consistency,	310°F	and	600	Atm	77	•
26	Test for The	rmodynamic	Consistency,	310°F	and	700	Atm	78	
27	Test for The	rmodynamic	Consistency,	340°F	and	100	Atm	79	
28	Test for The	rmodynamic	Consistency,	340°F	and	200	Atm	80	
29	Test for The	rmodynamic	Consistency,	340°F	and	300	Atm	81	
30	Test for The	rmodynamic	Consistency,	340°F	and	400	Atm	82	
31	Test for The	rmodynamic	Consistency,	340°F	and	500	Atm	83	
.32	Test for The	rmodynamic	Consistency,	340°F	and	600	Atm	84	
33	Test for The	rmodynamic	Consistency,	370°F	and	100	Atm	85	
34	Test for The	rmodynamic	Consistency,	370°F	and	200	Atm	86	
35	Test for The	rmodynamic	Consistency,	370°F	and	300	Atm	87	
36	Test for The	rmodynamic	Consistency,	370°F	and	400	Atm	88	
37	Test for The	rmodynamic	Consistency,	370°F	and	500	Atm	89	
38	Test for The	rmodynamic	Consistency,	370°F	and	600	Atm	90	
39	Test for The	rmodynamic	Consistency,	370°F	and	700	Atm	91	
40	Test for The	rmodynamic	Consistency,	400°F	and	100	Atm	92	
41	Test for The	rmodynamic	Consistency,	400°F	and	200	Atm	93	
42	Test for The	rmodynamic	Consistency,	400°F	and	300	Atm	94	
43	Test for The	rmodynamic	Consistency,	400°F	and	400	Atm	95	
44	Test for The	rmodynamic	Consistency,	400°F	and	500	Atm	96	
45	Test for The	rmodynamic	Consistency,	400°F	and	600	Atm	97	
46	Test for The	rmodynamic	Consistency,	400°F	and	700	Atm	98	
							· · · .		

LIST OF TABLES

TABLE	CONTENT	Page
1	Compressibility Factors at 310°F	15
.2	Compressibility Factors at 340°F	18
3	Compressibility Factors at 370°F	21
4	Compressibility Factors at 400°F	24
5	Summary of Constants for Redlich and Kwong Equation	27
6	Calculated Fugacity and Activity Coefficients for n-Butane at 310°F	29
7	Calculated Fugacity and Activity Coefficients for Nitrogen at 310°F	32
8	Calculated Fugacity and Activity Coefficients for n-Butane at 340°F	35
9	Calculated Fugacity and Activity Coefficients for Nitrogen at 340°F	38
10	Calculated Fugacity and Activity Coefficients for n-Butane at 370°F	41
11	Calculated Fugacity and Activity Coefficients for Nitrogen at 370°F	44
12	Calculated Fugacity and Activity Coefficients for n-Butane at 400°F	47
13	Calculated Fugacity and Activity Coefficients for Nitrogen at 400°F	50

TEXT

INTRODUCTION

The fugacity of a component is very important for the determination of chemical equilibrium and vapor-liquid equilibrium.

The most widely used technique for calculating approximate fungacities of components in gas mixtures employs the Lewis and Randall fugacity rule. This is based on the assumption that the gas mixture is an ideal solution. However, if the temperature and pressure of the system under study are far removed from conditions which approximate an ideal solution, the Lewis and Randall approximation fails. Fugacities calculated from experimental compressibility factor data do not agree with those calculated which assume that the gas mixture is an ideal solution.

There are three methods by which experimental compressibility data can be employed to calculate fugacities, fugacity coefficients, or activity coefficients. First, the required integrations and differentiations can be performed entirely by graphical techniques. However, this technique is inherently inaccurate and exceedingly large and unwieldy graphs are required to obtain any kind of accuracy.

A second method involves the use of an equation of state to represent the components over a wide range of temperature and pressure. The calculations can therefore be performed entirely by analytical means. However, no such equations of state are available which are sufficiently accurate.

It has been proposed that both of the above methods be combined, therefore combining the advantages of both. A relatively simple equation of state can be utilized to calculate, by analytical techniques, an approximate solution. Then by employing a residual compressibility for graphical calculations, a small correction factor can be added to the approximate solution.

It is the purpose of this paper to calculate fugacity and activity coefficients for the n-butane-nitrogen system between 310 and 400 °F and up to 700 atmospheres pressure. The method used is that proposed by Van Ness (10) which combines analytical and graphical techniques. The Redlich and Kwong equation of state was utilized for the analytical approximations and a graphical correction based on residuals was added to the analytical approximation.

Experimental compressibility data are available from the literature for pure n-butane and nitrogen (6) and for mixtures of these two components (4).

This method has been applied previously to the methane- CO₂ system (1,7) and the ethylene-nitrogen system (10) with satisfactory results.

CALCULATIONS

The general equation relating the compressibility of a gas to the fugacity is given by

$$\ln(f/p) = \int_{P^*}^{P} (Z-1) \frac{dP}{P}$$
(1)

To utilize the calculation procedure outlined by Van Ness (1) we define a residual, Z, as

$$\triangle z = z - z' \tag{2}$$

i.e., the difference between the experimental compressibility and compressibility as calculated by an equation of state.

Substituting equation 2 into equation 1 gives

$$\ln(f/p) = \int_{P^*}^{P} (Z'-1) \frac{dP}{P} + \int_{P^*}^{P} \Delta Z \frac{dP}{P}$$
(3)

Since Z' is defined by an equation of state, the Redlich and Kwong equation for this particular investigation, the first part of equation 3 can be solved analytically. The second part of equation is normally determined by performing the integration graphically. Utilizing an equation of state which successfully approximates actual behavior while being simple facilitates an easy analytical solution and reduces the graphically prepared part to a minor correction.

Redlich and Kwong (9) have developed an equation of state for gases which is a compromise between simplicity and high accuracy. This equation is given as:

$$Z' = \left(\frac{1}{1-h}\right) - \left(\frac{A^2}{B}\right) \quad \left(\frac{h}{1+h}\right) \tag{4}$$
where $h = \frac{Bp}{Z'}$
(5)

The constants for this equation, A and B, are dependent on temperature only. When used for a gas mixture, the constants are calculated by:

$$A_{mix} = x_a A_a + x_b A_b + \dots$$
 (6)

$$B_{\text{mix}} = x_a B_a + x_b B_b + \dots$$
 (7)

The substitution of equation 4 into equation 3 and the subsequent integration of this expression has been performed by Redlich and Kwong. This reduces equation 3 to the following:

$$\ln(\frac{f}{p}) = (Z'_{-1}) - \ln(Z'_{-Z'h}) - (\frac{A^2}{B})\ln(1+h) + \Delta\ln(f/p)$$
(8)

where
$$\Delta \ln(f/p) = \int_{P^*}^{P} \Delta Z \frac{dP}{P}$$
 (9)

Therefore, using this expression, one can solve directly for the fugacity of a pure gas.

Obtaining values for the fugacity and activity coefficients for the components of a gas mixture is more difficult than the calculation of the fugacity. Fugacity coefficients are defined by the equation:

$$\emptyset_{i} = \frac{\overline{f}_{i}}{\overline{x}_{i}P}$$
(10)

It has been shown that

÷

$$\ln \frac{f}{P} = x_a \ln \phi_a + x_b \ln \phi_b + \dots$$
(11)

The terms $\ln \phi_a$ and $\ln \phi_6$ are related to $\ln \frac{f}{P}$ exactly as partial molal properties are related to the total property (2). Therefore, using the equations for the partial molal properties and solving for $\ln \phi_i$, we obtain (4)

$$\ln \phi_{i} = \ln \frac{f}{p} - x_{a} \left[\frac{\partial \ln(f/p)}{\partial x_{a}} \right] x_{b} + x_{b} \left[\frac{\partial \ln(f/p)}{\partial x_{a}} \right] x_{b}$$
(12)

5

Substitution of the analytical solution-of-equation 8 into equation 12 and solving for the ith component in the mixture yields (9).

$$\ln\phi_{i} = \text{approx. } \ln\phi_{i} + \Delta\ln\phi_{i}$$
(13)

where approx.
$$\ln \phi_i = (\frac{B}{B}i) \quad (Z'-1) - \ln (Z'-Z'h)$$

- $(\frac{A^2}{B}) \quad (\frac{2A}{A}i - \frac{B}{B}i) \quad \ln (1+h) \quad (14)$

and
$$\Delta \ln \phi_{i} = \ln(f/P) - x_{a} \left[\frac{\partial (\Delta \ln f/P)}{\partial x_{a}} \right]_{x_{b}}$$

- $x_{b} \left[\frac{\partial (\Delta \ln f/P)}{\partial x_{b}} \right]_{x_{a}}$ (15)

The value of $\Delta \ln f/P$ is obtained by graphical integration and the differentiations of equation 15 are performed graphically by the method of intercepts.(5).

Activity coefficients are then obtained from the fugacity coefficients by employing the following relationship:

$$\chi_{i} = \frac{\varphi_{i}}{f_{i}/P}$$
(16)

To apply equations 8 and 13 values of the constants A and B must be determined for the pure components of the gas mixture under investigation. Redlich and Kwong proposed that (9)

$$B = 0.0867 \frac{T}{P_{c}T}$$
(17)

$$A^{2} = 0.4278 \frac{T_{c}^{2.5}}{P_{c}T^{2.5}}$$
(18)

However, Van Ness proposes (10) that greater accuracy can be obtained if the values for the constants are selected by a trial procedure. His method involves the arbitrary selection of a value for B; a good initial approximation is the value calculated from equation 17. Then for a given temperature a series of values of pressure along with the corresponding experimental compressibilities for the pure components being considered are substituted into equation 4, rearranged below, to calculate values for A^2/B .

$$\frac{A^2}{B} = (\frac{1}{1-h} - Z) \frac{1+h}{h}$$
(19)

The optimum result would be the value of B which produces a very nearly constant A^2/B . Van Ness proposed that a better procedure would be to use a B which leads to a very nearly constant A^2/B at low pressures with increasing deviation at higher pressures. This procedure is suggested to minimize the correction applied to the analytical solution by graphically integrating $\Delta Z/P$. By having ΔZ small at low pressure and increasing with pressure $\Delta Z/P$ will always remain reasonably small.

The trial procedure for the calculation of the constants for the Redlich and Kwong equation was programmed for the IBM 7094 computer using Fortran IV language. The Fortran statements for this program are presented on page 100, a block flow plan of the program is given on page 101, and a sample printout is given on page 103. Initial values of B were calcualated by equation 17. Using this B values of A^2/B were calculated at each pressure for which experimental compressibility factor data were available. After calculating A^2/B for the pressure range under consideration, a small increment arbitrarily chosen, was added to the

initial B and the procedure repeated. The number of trials was controlled by the computer input. Therefore, with the computer to perform the trial calculations, it was possible to select values of B and A^2/B which closely approximated the optimum.

The value of the B constant for the pure components was chosen as the value which produced the minimum variation in the A^2/B term over the pressure range considered. The value of A^2/B was chosen arbitrarily from the range predicted by the trial procedure. At each temperature considered, the value of A^2/B for pure nitrogen was selected as the value calculated at 100 atm. and for n-butane the value of A^2/B was selected as the value calculated at 13 atm. The constants used for subsequent calculations are presented in Table 5.

Once having determined values of B and A^2/B for the pure components at the temperature levels to be considered, values of Z', the compressibility calculated by the equation of state, were then calculated. Again, this calculation procedure and the subsequent solution of the analytical portions of the equations for the determination of the fugacity coefficient were programmed for the IBM 7094 computer. The Fortran IV statements for this program are presented on pages 103 and 104, a block flow diagram of the calculation procedure is presented on pages 105 and 106 and a sample of the printout from this program is given on pages 107, 108, and 109.

8

The experimental compressibility is given by equations 4 and 5 which can be combined and simplified to yield the following expression:

$$Z'^{3} - Z'^{2} + \left[\frac{A^{2}}{B}(Bp) - Bp - (Bp)^{2}\right] Z' - \frac{A^{2}}{B}(Bp)^{2} = 0$$
 (20)

This expression can be solved directly for the compressibility at any given temperature and pressure by using the general solution for a cubic equation. The use of this technique is possible since there is only one unique solution applicable; i.e., a positive real number at each temperature, pressure, and composition.

The solution of the analytical portion of equation 13 is straight forward once the value of Z' is calculated. The analytical solution was incorporated into the program. A sample of the printout obtained from this program is given for a 50 mol% n-butane, 50 mol% nitrogen mixture at 400 °F on pages 107, 108, and 109.

Values of $\Delta Z/P$ were plotted versus P, Figures 1-7 are representative of the plots obtained. These curves were graphically integrated using a compensating polar planimeter to obtain values of $\Delta \ln(f/p)$ at 100, 200, 300, 400, 500, 600, and 700 atm. Values of $\Delta \ln(f/P)$ were then plotted versus mol fraction of n-butane with parameters of pressure at each temperature, Figures 8-11. Using the method of intercepts (5) values of $\Delta \ln \emptyset_i$ were determined for the nitrogen and n-butane at each pressure, mol fraction, and temperature. These graphically obtained values were added to the analytical approximations to determine the fugacity coefficients. Activity coefficients were then calculated for the n-butane and nitrogen according to equation 16. The calculated values of the fugacity and activity coefficients are presented in Tables 6 - 13 for nitrogen and n-butane in mixtures of 0, 10, 30, 50, 70, 90, and 100 mol% n-butane for temperatures of 310, 340, 370, and 400°F.

Redlich and Kister (8) have proposed a technique for evaluating the thermodynamic consistency of the activity coefficients. This involves a graphical method in which $\ln \frac{\& C}{\& N_2}$ is plotted versus composition. The criteria for thermodynamic consistency maintains that equal area segments be obtained above and below the ordinate; i.e., the area under the curve from 0 to 100 mol% should be zero. Figures 20 - 46 illustrate this method.

RESULTS

Fugacity and activity coefficients have been calculated for n-butane and nitrogen in mixtures at 310, 370, and 400 °F for 100 atmosphere increments from 100 to 700 atmospheres. The calculated fugacity and activity coefficients are listed in Tables 6 through 13. The activity coefficients are also presented as plots of $\&C_4$ and $\&N_2$ versus pressure with parameters of composition for each temperature; Figures 12 through 19.

The calculated activity coefficients were checked for thermodynamic consistency using the method of Redlich and Kister. Plots of $\ln \frac{\langle C_4}{N_2}$ versus mol% n-butane in the gas mixture are presented in Figures 20 through 46. The average deviation between the positive and negative area segments for all tests using this method was 1.6% with the greatest deviation being 3.2% for the gas mixtures at 400 °F. The largest single deviation was of 10% for the gas mixture at 400 °F and 400 ATM pressure.

CONCLUSIONS

Based on experimental compressibility factor data and a calculation method proposed by Van Ness, fugacity and activity coefficients were determined for the components in the n-butane-nitrogen system. The method combines an analytical approximation using the Redlich and Kwong equation of state with a graphically obtained correction factor.

For the most part, the graphical portion of the solution was normally between 1 and 10% of the analytical portion. However, when calculating the fugacity coefficient of either n-butane in 100% nitrogen or of nitrogen in 100% n-butane, the graphical part of the solution ranged for 20 to 600% of the analytical solution for the n-butane and from 20 to 120% for the nitrogen.

Greater accuracy could be obtained by selecting different values of the constants A and B, primarily those chosen for n-butane. The calculated residual compressibility for nitrogen was never greater than 0.0089 while the residual for n-butane was as high as 0.0619.

RECOMMENDATIONS

An initial step has been made to improve the accuracy of the calculation of fugacity and activity coefficients for the components of a gas mixture by utilizing the digital computer to perform the trial and analytical calculations required to implement the method proposed by Van Ness. Presently the trial calculations to obtain the constants for the Redlich and Kwong equation are performed with one program and then though a visual evaluation of the variations in A^2/B with pressure for various values of B_2 constants are selected for each component. Next, these constants and the experimental compressibility data are submitted to a second program to calculate the analytical approximations of the fugacity coefficient and values of $\Delta Z/P$. The values of $\Delta Z/P$ must be plotted and graphically integrated, and then the graphical integrations are plotted versus composition. These latter plots are graphically differentiated to obtain the correction which must be applied to the analytical solution to obtain the value of $\ln \emptyset_4$.

All of these operations could be incorporated into a single computer program by utilizing sufficient logic and curve fitting techniques. The results of this paper and those of Sievering (7), Capik (1) and Van Ness (10) are available to guide and test such a project. With such a tool, the graphical portion of the solution could be maintained at a minimum and thus improve the overall accuracy of the technique.

APPENDIX I

TABLES AND FIGURES

TABLE 1

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 310°F

	Mol% n-Butane						
Pressure, psia	0	10		50			
0	1.000	1.000	1,000	1.000			
200	1.00525	1.002	0.989	0.969			
400	1.01075	1.004	0.978	0.938			
600	1.01645	1.007	0.970	0.908			
800	1.02225	1.010	0.962	0.882			
1,000	1.0282	1.014	0.958	0.858			
1,250	1.0358	1.019	0.952	0.833			
1,500	1.0434	1.025	0.951	0.815			
1,750	1.0522	1.032	0.952	0.810			
2,000	1.0600	1.040	0.956	0.811			
2,250	1.0693	1.048	0.963	0.819			
2,500	1.0792	1.058	0.972	0.834			
2,750	1.0897	1.068	0.983	0.853			
3,000	1.1003	1.079	0.994	0.875			
3,500	1.1238	1.102	1.025	0.925			
4,000	1.1471	1.127	1.059	0.982			
4,500	1.1710	1.153	1.097	1.040			
5,000	1.1952	1.181	1.139	1.096			
5,500	-	1.211	1.183	1.159			
6,000	1.2443	1.244	1.229	1.222			
6,500	-	1.276	1.277	1.285			
	21 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						

TABLE 1 (Cont'd)

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 310°F

		Mol% n-Butane					
<u>Pressure, psia</u>	0	10	30	50			
7,000	1.2976	1.309	1.325	1.348			
7,500	-	1.342	1.372	1.411			
8,000	1.3510	1.376	1.421	1.473			
8,500	-	1.409	1.469	1.534			
9,000	1.4070	1.442	1.516	1.595			
9,500	-	1.474	1.564	1.657			
10,000	1.4642	1.508	1.610	1.718			
	1	Mol% n-Butane		e Antonio de la composición Antonio de la composición de la composición de la composición de la composición de la			

· .	Мс	1% n-Butane	
<u>Pressure, psia</u>	70	90	100
0	1.000	1.000	1.0000
200	0.937	0.895	0.8636
400	0.868	0.766	0.6887
600	0.796	0.600	0.2194
800	0.736	0.404	0.2424
1,000	0.674	0.356	0.2860
1,250	0.626	0.376	0.3414
1,500	0.609	0.424	0.3970
1,750	0.614	0.474	0.4507
2,000	0.635	0.522	0.5042
2,250	0.661	0.570	0.5578
2,500	0.692	0.618	0.6097
2,750	0.726	0.665	0.6614
· · ·			

1

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 310°F

	Mol% n-Butane				
<u>Pressure, psia</u>	70	<u>90</u>	100		
3,000	0.765	0.711	0.7131		
3,500	0.843	0.806	0.8134		
4,000	0.920	0.899	0.9130		
4,500	0.996	0.993	1.0113		
5,000	1.074	1.083	1.1075		
5,500	1.153	1.173			
6,000	1.231	1.262	1.2969		
6,500	1.308	1.350	-		
7,000	1.383	1.437	1.4816		
7,500	1.460	1.522	• 		
8,000	1.535	1.609	1.6639		
8,500	1.610	1.696			
9,000	1.684	1.781	1.8428		
9,500	1.757	1.865	- -		
10,000	1.827	1.948	2.0166		

TABLE 2

COMPRESSIBILITY FACTORS

<u>n-BUTANE - NITROGEN MIXTURES AT 340°F</u>

		Mol% n-		
Pressure, psia	0		30	50
0	1.0000	1.000	1.000	1.000
200	1.0054	1.003	0,991	0.974
400	1.0112	1.005	0.982	0.947
600	1.0172	1.008	0.975	0.922
800	1.0233	1.012	0.970	0.899
1,000	1.0297	1.016	0.966	0.880
1,250	1.0374	1.021	0.964	0.860
1,500	1.0452	1.028	0.963	0.848
1,750	1.0532	1.035	0.966	0.842
2,000	1.0616	1.043	0.970	0.844
2,250	1.0705	1.051	0.976	0.850
2,500	1.0803	1.061	0.985	0.861
2,750	1.0907	1.071	0.996	0.875
3,000	1.1013	1.982	1.007	0.894
3,500	1.1238	1.104	1.035	0.939
4,000	1.1474	1.128	1.068	0.991
4,500	1.1705	1.154	1.103	1.045
5,000	1.1936	1.180	1.143	1.098
5,500	-	1.209	1.184	1.158
6,000	1.2410	1.240	1.228	1.217
6,500	-	1.271	1.273	1.277
7,000	1.2920	1.302	1.319	1.337

TABLE 2 (Cont'd)

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 340°F

1 () () () () () () () () () (
		· · ·	Mo1%	% n-Butane	
Pressure, psia	0	10		50	
7,500			1.334	1.365	1.396
8,000		1.3439	1.366	1.410	1.456
8,500		-	1.399	1.456	1.516
9,000		1.3969	1.430	1.502	1.574
9,500		-	1.462	1.546	1.632
10,000		1.4517	1.494	1.591	1.689
		•			

	·	Mol% n-Butane				
Pressure, psia		/0	90	100		
0	1.0	0000	1.0000	1.0000		
200	0.9	945	0.908	0.8828		
400	0.8	388	0.804	0.7422		
600	0.8	329	0.678	0.5445		
800	0.7	75	0.541	0.3007		
1,000	0.7	28	0.437	0.3142		
1,250	0.6	86	0.428	0.3596		
1,500	0.6	63	0.457	0.4098		
1,750	0.6	60	0.496	0.4613		
2,000	0.6	72	0.539	0.5125		
2,250	0.6	93	0.583	0.5636		
2,500	0.7	19	0.629	0.6142		
2,750	0.7	49	0.674	0.6645		

.

TABLE 2 (Cont'd)

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 340°F

		Mol% n-Butane	
Pressure, psia	70	90	100
3,000	0.782	0.720	0.7139
3,500	0.853	0.810	0.8118
4,000	0.926	0.900	0.9075
4,500	0.998	0.989	1.0026
5,000	1.148	1.076	1.0958
5,500	1.148	1.161	-
6,000	1.222	1.247	1.2792
6,500	1.296	1.332	.
7,000	1.396	1.416	1.4582
7,500	1.441	1.500	—
8,000	1.513	1.583	1.6356
8,500	1.584	1.666	-
9,000	1.657	1.749	1.8084
9,500	1.727	1.830	-
10,000	1.794	1.909	1.9768

TABLE 3

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 370%F

			Mol% n-Butane		
<u>Pressure, psia</u>	0	10	30	50	
0	1.0000	1.0000	1.000	1.000	
200	1.0058	1.003	0.993	0.978	
400	1.0117	1.006	0.986	0.955	
600	1.0177	1.009	0.981	0.934	
800	1.0238	1.013	0.978	0.914	
1,000	1.0303	1.018	0.975	0.899	
1,250	1.0378	1.024	0.974	0.884	
1,500	1.0460	1.030	0.974	0.874	
1,750	1.0540	1.037	0.977	0.868	
2,000	1.0626	1.045	0.982	0.871	
2,250	1.0717	1.054	0.989	0.876	
2,500	1.0812	1.064	0.997	0.886	
2,750	1.0913	1.074	1.007	0.898	
3,000	1.1018	1.085	1.018	0.914	
3,500	1.1245	1.106	1.046	0.954	
4,000	1.1469	1.129	1.076	1.000	
• 4,500	1.1690	1.154	1.109	1.051	
5,000	1.1917	1.180	1.146	1.101	
5,500	~	1.207	1.186	1.158	
6,000	1.2377	1.236	1.228	1.215	
6,500	÷.	1.265	1.270	1.272	
7,000	1.2869	1.295	1.314	1.328	
7,500	-	1.326	1.357	1.385	

TABLE 3 (Cont'd)

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 370°F

		,					
		Mol% n-Butane					
Pressure, psia		0	10	30	50		
8,000		1.3369	1.357	1.400	1.441		
8,500		-	1.388	1.443	1.408		
9,000		1.3885	1.419	1.487	1.555		
9,500		-	1.450	1.529	1.610		
10,000	s' ''	1.4408	1.481	1.572	1.665		

		2	
Pressure, psia	70	90	100
0	1.000	1.000	1.0000
200	0.953	0.919	0.8984
400	0.904	0.828	0.7817
600	0.855	0.730	0.6838
800	0.808	0.628	0.4544
1;000	0.770	0.541	0.3698
1,250	0.732	0.482	0.3902
1,500	0.710	0.496	0.4312
1,750	0.704	0.524	0.4776
2,000	0.710	0.561	0.5258
2,250	0.725	0.600	0.5744
2,500	0.747	0.643	0.6227
2,750	0.773	0.686	0.6708
3,000	0.802	0.729	0.7183
3,500	0.865	0.815	0.8129

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 370°F

	Mol% n-Butane			
Pressure, psia	70	90	100	
4,000	0.934	0.902	0,9055	
4,500	1.002	0.986	0.9975	
5,000	1.072	1.069	1.0878	
5,500	1.144	1.152	-	
6,000	1.215	1.236	1.2650	
6,500	1.286	1.319	<u>, s</u>	
7,000	1.356	1.400	1.4384	
7,500	1.425	1.481	-	
8,000	1.494	1.561	1.6110	
8,500	1.563	1.640		
9,000	1.632	1.721	1.7783	
9,500	1.700	1.800	· • •	
10,000	1.766	1.877	1.9412	

TABLE 4

COMPRESSIBILITY FACTORS

		Mo1% n-1	Butane	
<u>Pressure, psia</u>	0	10	30	_50
0	1.0000	1.000	1.000	1.000
200	1.0060	1.004	0.995	0.982
400	1.0121	1.007	0,990	0.962
600	1.0182	1.0011	0.986	0.945
800	1.0244	1.015	0.985	0.929
1,000	1.0307	1.020	0.984	0.916
1,250	1,0382	1.026	0.983	0.904
1,500	1.0469	1.032	0.985	0.896
1,750	1.0550	1.040	0.988	0.892
2,000	1.0634	1.048	0.993	0.893
2,250	1.0726	1.058	1.000	0.898
2,500	1.0820	1.067	1.009	0.908
2,750	1.0919	1.077	1.018	0.919
3,000	1.1022	1.087	1.029	0.933
3,500	1.1240	1.108	1.055	0.968
4,000	1.1464	1.130	1.084	1.009
4,500	1.1682	1.154	1.116	1.056
5,000	1.1900	1.179	1.149	1.103
5,500	-	1.205	1.187	1.158
6,000	1.2343	1.232	1.227	1.213
6,500	-	1.260	1.267	1.268
7,000	1.2823	1.280	1.308	1.322

n-BUTANE - NITROGEN MIXTURES AT 400°F

TABLE 4 (Cont'd)

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 400°F

•		Mol% n-Butane			
<u>Pressure, psia</u>	0			50	
7,500	-	1.318	1.348	1.375	
8,000	1.3299	1.348	1.389	1.429	
8,500	-	1.378	1.430	1.483	
9,000	1.3800	1.408	1.471	1.537	
9,500	-	1.437	1.511	1.591	
10,000	1.4301	1.467	1.552	1.643	

	`v		Mo1% n-Butane	
Pressure, psia		70	_90	100
0		1.000	1.000	1.0000
200	3	0.960	0.929	0.9116
400		0.919	0.858	0.8132
600		0.878	0.773	0.7012
800		0.839	0.700	0.5770
1,000		0.806	0.630	0.4725
1,250	·	0.772	0.569	0.4394
1,500		0.752	0.538	0.4630
1,750		0.744	0.555	0.5009
2,000		0.747	0.583	0.5442
2,250		0.757	0.617	0.5886
2,500	х	0.774	0.655	0.6345
2,750		0.796	0.696	0.6795
3,000		0.821	0.740	0.7255

25

TABLE 4 (Cont'd)

COMPRESSIBILITY FACTORS

n-BUTANE - NITROGEN MIXTURES AT 400°F

		Mol% n-Butane	· .
Pressure, psia	70	90	100
3,500	0.879	0.822	0.8167
4,000	0.943	0.905	0.9061
4,500	1.007	0.983	0.9947
5,000	1.071	1.064	1,0820
5,500	1.142	1.144	- -
6,000	1.210	1.226	1.2541
6,500	1.278	1.307	· . .
7,000	1.345	1.387	1.4221
7,500	1.412	1.465	й. Ц
8,000	1.480	1.541	1.5895
8,500	1.545	1.619	-
9,000	1.610	1.695	1.7525
9,500	1.676	1.774	
10,000	1.742	1.848	1.9107
1			ч. С

.

TABLE 5

SUMMARY OF CONSTANTS FOR REDLICH AND KWONG EQUATION

.

n-BUTANE - NITROGEN_MIXTURES

.

Temperature = $310^{\circ}F$

<u>Mol% n-C4</u>	A	<u> </u>	A ² /B
0	0.021995	0.000820	0.590000
10	0.030475	0.000965	0.962395
30	0.047433	0.001255	1.792770
50	0.064392	0.001545	2.683710
70	0.081351	0.001835	3.606499
90	0.098309	0.002125	4.548099
100	0.106789	0.002270	5.023700

Temperature = $340^{\circ}F$

<u>Mo1% n-C</u> 4	A	<u>B</u>	A ² /B
. 0	0.020894	-0-00800	-0-54570
10	0.028893	0.000937	0.89092
30	0.044890	0.001211	1.664027
50	0.060888	0.001485	2.496512
70	0.076885	0.001759	3.360628
90	0.092883	0.002033	4.243586
100	0.100882	0.002170	4.689900

SUMMARY OF CONSTANTS FOR REDLICH AND KWONG EQUATION

n-BUTANE - NITROGEN MIXTURES

Temperature = $370^{\circ}F$

<u>Mol% n-C</u> 4	A	B	A ² /B
0	0.02031	0.000780	0.514400
10	0.027604	0.000913	0.834601
30	0.042751	0.001179	1.550167
50	0.057898	0.001445	2.319831
70	0.073045	0.001711	3.118361
90	0.088191	0.001977	3.934106
100	0.095765	0.002110	4.346400

Temperature = $400^{\circ}F$

 A^2/B Mol% n-C, В A 0.018765 0.469500 0 0.000750 0.000881 0.025966 0.765301 10 0.001143 30 0.040368 1.425688 0.054770 0.001405 50 2.135034 70 0.069172 0.001667 2.870253 90 0.083573 0.001929 3.620803 100 0.090774 0.002060 4.000000

Approx. <u>×</u>_____ $1n\emptyset_{C4}$ Mo1% n-C, $\ln f/p$ ∆lnØ 100 ATM 0 0.0021 0.0355 0.8868 -0.15460 2.770 10 0.0054 -0.28075 0.0295 0.7780 2.430 0.0098 30 -0.51374 0.0360 0.6200 1.938 50 0.0205 -0.73955 0.250 0.4900 1.531 70 0.0188 -0.97335 0.0140 0.3840 1.200 90 0.0094 -1.1068 -0.0035 0.3300 1.031 -0.0228 -1.1175 100 -0.0228 0.3200 1.000 200 ATM 0 0.0013 -0.23067 0.0615 0.8450 3.640 10 0.0076 -0.44680 0.0585 0.6780 2.920 30 0.0171 -0.83153 0.0630 0.4640 1.998 50 0.0294 -1.1479 0.0294 0.3270 1.410 · 70 0.0201 -1.3426 -0.0005 0.2610 1.124 90 -0.0086 -1.4116 -0.0335 0.2360 1.018 100 -0.0428 -1.4176 -0.0428 0.2320 1.000 ٠. 300 ATM 0 0.0016 -0.24281 0.0775 0.8478 3.870 10 0.0092 -0.51597 0.0785 0.6460 2.950 0.0229 30 -0.96060 0.0670 0.4100 1.871

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR n-BUTANE

n-BUTANE - NITROGEN MIXTURES AT 310°F

29

• •

50

0.0369

-1.2596

0.0320

0.2940

1.341

<u>Mol% n-C4</u>	<u>ln f/p</u>	Approx. <u>1nØ</u> C4-	<u>∆lnø</u> _{C4−}	C4	<u>لا</u>
300 ATM					
70	0.0204	-1.4109	-0.0220	0.2380	1.088
90	-0.0183	-1.4623	-0.0435	0.2220	1.012
100	-0.0535	-1.4670	-0.0535	0.2190	1.000
400 ATM		•		• 2 •	• •
0	0.0020	-0.20689	0.095	0.8940	3.910
10	0.0105	-0.51362	0.088	0.6540	2.860
30	0.0283	-0.97317	0.102	0.4190	1.830
50	0.0436	-1.2448	0.046	0.3020	1.320
70	0.0219	-1.3720	-0.037	0.2450	1.071
90	-0.0240	-1.4147	-0.053	0.2310	1.010
100	-0.0592	-1.4186	-0.0592	0.2285	1.000
<u>500 ATM</u>					
0	0.0024	-0.14324	0.1015	0.9592	3.865
10	0.0128	-0.46779	0.1045	0.6955	2.805
30	0.0348	-0.92545	0.1290	0.4510	1.820
50	0.0510	-1.1762	0.0390	0.3220	1.299
70	0.0253	-1.2895	-0.0360	0.2660	1.072
90	-0.0269	-1.3274	-0.0605	0.2500	1.008
100	-0.0628	-1.3309	-0.0628	0.2480	1.000
· ·					

•

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR n-BUTANE

		•			
Mol% n-C4	ln f/p	Approx. $\frac{\ln \emptyset}{C4}$	<u>∆lnø</u> C4	C4	<u>¥</u> _{C4-}
600 ATM				1	
0	0.0031	-0.04795	0.1185	1.0720	3.840
10	0.0156	-0.38385	0.1250	0.7720	2.760
30	0.0417	-0.83325	0.1510	0.5060	1.810
50	0.0587	-1.0659	0.0850	0.3760	1.342
70	0.0298	-1.1684	-0.0315	0.3015	1.078
90	-0.0277	-1.2026	-0.0660	0.2815	1.007
100	-0.0664	-1.2057	-0.0664	0.2800	1.000
700 ATM					
0	0.0040	0.06832	0.1420	1.2340	3.810
10	0.0180	-0.27377	0.1420	0.8768	2.705
30	0.0484	-0.71282	0.1735	0.5840	1.800
50	0.0661	-0.93097	0.0395	0.4105	1.268
70	0.0346	-1.0255	-0.0360	0.3460	1.068
90	-0.0277	-1.0570	-0.0680	0.3250	1.002
100	-0.692	-1.0599	-0.06921	0.3240	1.000

	Approx.				1n 8c,
<u>Mol% n-C</u> 4	<u>1nØN_2</u>	$\Delta ln \emptyset N_2$	2	<u>×_{N2-}</u>	$\frac{111 302}{ 8N_2}$
<u>100 ATM</u>				· ·	
0	0.03901	0.0021	1.042	1.000	1.020
10	0.04567	0.0020	1.049	1.005	0.874
30	0.10494	-0.0015	1.109	1.061	0.601
50	0.25922	0.0155	1.275	1.222	0.234
70	0.62184	0.0305	1.920	1.841	-0.430
90	1.1321	0.1225	3.51	3.36	-1.180
100	1.3238	0.627	7.03	6.75	-1.910
	• *				•
200 ATM					
* 0	0.08620	0.00130	1.092	1.000	1.290
10	0.09761	0.0015	1.104	1.011	1.060
30	0.19477	-0.0020	1.212	1.110	0.588
50	0.40638	0.0294	1.547	1.423	-0.0105
70	0.69326	0.0690	2.143	1.965	-0.560
90	0.95669	0.2135	3.220	2.950	-1.065
100	1.0670	0.383	4.260	3.900	-1.363
				• •	
300 ATM					
0	0.13986	0.0016	1.152	1.000	1.352
10	0.15415	0.0015	1.168	1.012	1.096
30	0.26466	-0.0040	1_298_	1.126	0.509
50	0.46131	0.0420	1.655	1.436	-0.0673
			•		

n-BUTANE - NITROGEN MIXTURES AT 310°F

<u>Mol% n-C</u> 4	Approx. <u>lnØ</u> N2	<u>∆lnø</u> _{N2−}	N2	<u>¥</u> _ <u>N2</u> -	1n <u>6</u> <u>N</u> 2
<u>400 ATM</u>		•			
0	0.19856	0.0020	1.222	1.000	1.362
10	0.21448	0.0020	1.242	1.017	1.034
30	0.32716	-0.0030	1.383	1.131	0.481
50	0.50435	0.0415	1.727	1.140	-0.066
70	0.68994	0.1605	2.340	1.911	-0.580
90	0.85405	0.2360	2.980	2.440	-0.884
100	0.92587	0.375	3.670	3.000	-1.100
<u>500 ATM</u>					
0	0.25470	0.0024	1.293	1.000	1.352
10	0.27143	0.0020	1.314	1.017	1.015
30	0.38262	-0.0055	1.458	1.126	0.481
50	0.54558	0.0635	1.839	0.915	-0.0889
70	0.71068	0.1680	2.410	1.862	-0.554
90	0.85634	0.2715	3.085	2.385	-0.864
100	0.92046	0.299	3.650	2.820	-1.037
600 ATM		• • • •			
0	0.31879	0.0031	1.380	1.000	1.346
10	0.33600	0.0030	1.404	1.019	0.996
30	0.44437	-0.0050	1.552	1.127	0.475
50	0.59513	0.0320	1.872	1.358	-0.0101

<i>.</i> 4	n-BUTANE	- NITROGEN	MIXTUREŠ AT	310°F	
<u>Mol% n-C</u> 4	Approx. <u>lnØ</u> N2—	<u>∆lnØ</u> N2-	<u>Ø</u> _{N2} -	<u>×</u>	1n 8C 8N2
600 ATM		•	· .		
70	0.74451	0.1735	2.500	1.812	-0.524
90	0.87605	0.312	3.280	2.380	-0.861
100	0.93418	0.326	3.525	2.560	-0.940
700 ATM					ζ
0	0.38532	0.0040	1.476	1.000	1.338
10	0.40274	0.0040	1.502	1.020	0.975
30	0.50803	-0.0050	1.655	1.121	0.396
50	0.64917	0.0925	2.100	1.422	-0.1145
70	0.78694	0.1990	2.680	1.818	-0.531
90	0.90807	0.326	3.440	2.330	-0.845
100	0.96172	0.341	3.680	2.495	-0.915

<u>Mol% n-C4</u>	ln f/p	Approx. <u> </u>	<u>∆lnØ</u> C4−		<u>8</u> _c4-
100 ATM					
0	0.0016	-0.1252	0.0555	0.9326	2.460
10	0.0036	-0.2368	0.0085	0.788	2.080
30	0.0063	-0.4399	0.0305	0.664	1.750
50	0.0164	-0.6289	0.0180	9.543	1.432
70	0.0112	-0.8145	0.0005	0.444	1.170
90	0.0024	-0.9393	-0.0065	0.3985	1.050
100	-0.0186	-0.9513	-0.0186	0.3795	1.000
200 ATM		· .	·		
0	0.0004	-0.1806	0.0610	0.8872	3.220
10	0.0041	-0.3728	0.0330	0.7120	2.580
30	0.0111	-0.7111	0.0675	0.5260	1.910
50	0.0235	-0.9895	0.0190	0.3890	1.410
70	0.0117	-1.1708	-0.0165	0.3050	1.105
90	-0.0150	-1.2400	-0.0345	0.280	1.013
100	-0.0395	-1.2463	-0.0395	0.276	1.000
300 ATM			· ·		
0	0.0001	-0.1805	0.0580	0.8848	3.400
10	0.0042	-0.4247	0.0405	0.6810	2.620
30	0.0150	-0.8227	0.0775	0.4750	1.828
50	0.0288	-1.0968	0.0135	0.3380	1.300
	100 ATM 0 10 30 50 70 90 100 200 ATM 0 10 30 50 70 90 100 300 300 300 10 300 100 300 100 300 100 300 100 300	100 ATM 0 0.0016 10 0.0036 30 0.0063 50 0.0164 70 0.0112 90 0.0024 100 -0.0186 200 ATM 0 0 0.00041 30 0.0111 50 0.0235 70 0.0117 90 -0.0150 100 -0.0395 300 ATM 0.0001 10 0.0001 10 0.0001 10 0.0001 300 ATM 0.0150 30 0.0150	Mo1% n-C4In f/p In \emptyset_{C4} -100 ATM00.0016-0.1252100.0036-0.2368300.0063-0.4399500.0164-0.6289700.0112-0.8145900.0024-0.9393100-0.0186-0.9513200 ATM00.000400.0011-0.1806100.0011-0.7111500.0235-0.9895700.0117-1.170890-0.0150-1.2400100-0.0395-1.2463300 ATM00.000100.0001-0.1805100.0042-0.4247300.0150-0.8227	Mol% n-C4In f/pIn \emptyset_{C4-} $\Delta ln \emptyset_{C4-}$ 100 ATM00.0016-0.12520.0555100.0036-0.23680.0085300.0063-0.43990.0305500.0164-0.62890.0180700.0112-0.81450.0005900.0024-0.9393-0.0065100-0.0186-0.9513-0.0186200 ATM00.0004-0.18060.0610100.0011-0.37280.0330300.0111-0.71110.0675500.0235-0.98950.0190700.0117-1.1708-0.016590-0.0395-1.2400-0.0345100-0.0395-1.2463-0.0395300 ATM00.0001-0.18050.0580100.0042-0.42470.0405300.0150-0.82270.0775	Mol% n-C4In f/pIn \emptyset_{C4} $\Delta ln \emptyset_{C4}$ \emptyset_{C4} 100 ATM00.0016-0.12520.05550.9326100.0036-0.23680.00850.788300.0063-0.43990.03050.664500.0164-0.62890.01809.543700.0112-0.81450.00050.444900.0024-0.9393-0.00650.3985100-0.0186-0.9513-0.01860.3795200 ATM00.0004-0.18060.06100.8872100.0011-0.37280.03300.7120300.0111-0.71110.06750.5260500.0235-0.98950.01900.3890700.0117-1.1708-0.01650.305090-0.0150-1.2400-0.03450.280100-0.0395-1.2463-0.03950.276300 ATM-0.18050.05800.8848100.0042-0.42470.04050.6810300.0150-0.82270.07750.4750

.

	<u>H DOIM</u>	<u> </u>		<u> </u>	
<u>Mol% n-C</u> 4	<u>ln f/p</u>	Approx. C4-	<u>∆lnØ</u> c4-	C4	<u>४</u> -с4-
300 ATM		· ·			
70	0.0111	-1.2423	-0.0320	0.2800	1.078
90	-0.0233	-1.2938	-0.0460	0.262	1.008
100	-0.0487	-1.2985	-0.0487	0.260	1.000
400 ATM			· •		
0	-0.0008	0.02429	0.0600	1.0880	3.605
10	0.0081	-0.2816	0.0820	0.8190	2.485
30	0.0357	-0.6974	0.1720	0.5920	1.796
50	0.0556	-0.9189	0.0270	0.4100	1.243
70	0.0256	-1.0192	-0.0475	0.3440	1.042
90	-0.0270	-1.0534	-0.0535	0.3310	1.002
100	-0.0530	1.0565	-0.0538	0.3295	1.000
500 ATM			, .		
0	-0.0005	-0.07128	-0.057	0.9856	3.365
10	0.0053	-0.3652	0.066	0.7420	2.530
30	0.0242	-0.7852	0.113	0.5110	、1.745
50	0.0411	-1.0223	0.020	0.3660	1.250
70	0.0163	-1.1328	-0.037	0.3100	1.059
90	-0.0287	-1.1707	-0.053	0.2940	1.002
100	-0.0538	-1.1742	-0.0538	0.2930	1.000

<u>Mo1% N-C</u> 4	<u>ln f/p</u>	Approx. nøc4-	<u>∆lnø</u> C4–	0	<u>४</u> _c4-
0	-0.0008	0.02429	0.0600	1.0880	3.605
10	0.0081	-0.2816	0.0820	0.8190	2.485
30	0.0357	-0.6974	0.1720	0.5920	1.796
50	0.0556	-0.9189	0.0270	0.4100	1.243
70	0.0256	-1.0192	-0.0475	0.3440	1.042
90	-0.0270	-1.0534	-0.0535	0.3310	1.002
100	-0.0530	1.0565	-0.0538	0.3295	1.000

<u>Mo1% n-C4</u>	Approx. <u>lnØ</u> N2-	<u>∆1nØ</u> N2−	N2	<u>¥</u> _N2-	$\frac{\ln \sqrt[6]{C_4}}{\sqrt[6]{N_2}}$
100 ATM	• . • .			- - -	
0	0.04129	0.0016	1.0438	1.000	0.900
10	0.04718	0.0030	1.0515	1.009	0.722
30	0.0970	-0.0045	1.0989	1.050	0.511
50	0.2273	0.0145	1.2740	1,220	0.161
70	0,5150	0.0360	1.6800	1.610	-1.006
90	1.0084	0.0820	2.9800	2.855	-1.006
100	1.2232	0.287	4.5200	4.320	-1.462
<u>200 ATM</u>		•			
0	0.08686	0.0004	1.0911	1.000	1.170
10	0.09998	0.0020	1.1073	1.014	0.932
30	0.1853	-0.0130	1.1880	1.088	0.564
50	0.3718	0.0280	1.4920	1.368	0.305
70	0.6406	0.0780	2.0520	1.880	-0.530
90	0.9064	0.167	2.9250	2.680	-0.972
100	1.0209	0.290	3.7000	3.390	-1.220
300 ATM					
0°	0.1442	0.0001	1.155 .	1.000	1.223
10	0.1570	0.0005	1.171	1.013	0.948
30	0.2560	-0.0120	1.276	1.104	0.504
50	0.4368	0.0440	1.618	1.400	-0.074
70	0.6504	0.0117	2.155	1.866	-0.549

<u>Mol% n-C</u> 4	Approx. <u>N2</u> -	$\Delta \ln \theta_{N2}$ -	<u></u> N2	<u>¥</u>	$\frac{\ln \sqrt[4]{C_4}}{\sqrt[4]{N_2}}$
300 ATM					•
90	0.8481	0.178	2.790	2.420	-0.879
100	0.9349	0.241	3.240	2.800	-1.030
400 ATM					
0	0.2030	-0.0001	1.225	1.000	1.223
10	0.2173	-0.0001	1.242	1.014	0.932
30	0.3199	-0.0150	1.356	1.107	0.476
50	0.4862	0.0580	1.720	1.402	-0.101
70	0.6670	0.117	2.190	1.708	-0.467
90	0.8313	0.177	2.740	2.240	-0.799
100	0.9041	0.208	3.050	2.490	-0.912
500 ATM		•			
0	0.2589	-0.0005	1.295	1.000	1.214
10	0.2741	-0.0015	1.316	1.016	0.912
30	0.3764	-0.0145	1.457	1.124	0.412
[*] 50	0.5308	0.0620	1.810	1.398	-0.111
70	0.6923	0.105	2.220	1.639	-0.437
90	0.8379	0.199	2.820	2.180	-0.777
100	0.9027	0.199	3.010	2.325	-0.845

	<u> </u>		DA HIMIORED A	<u>1 540 F</u>	
<u>Mo1% n-C</u> 4	Approx. <u>lnØ</u> N2-	<u>∆lnØ_{N2-}</u>	Ø _{N2}	<u>لا</u> _N2-	$\frac{\ln \sqrt{C_4}}{\sqrt{N_2}}$
600 ATM					
0	0.3224	-0.0008	1.379	1.000	1.282
10	0.3381	-0.0020	1.400	1.046	0.866
30	0.4387	-0.0300	1.505	1.091	0.496
50	0.5826	0.0700	1.920	1.392	-0.112
70	0.7290	0.180	2.480	1.799	-0-54 5
90	0.8603	0.194	2.870	2.080	-0.701
100	0.9190	0.198	3.060	2.220	-0.799

n-BUTANE - NITROGEN MIXTURES AT 340°F

<u>n-BUTANE - NITROGEN MIXTURES AT 370°F</u>								
<u>Mo1% n-C</u> 4	<u>ln f/p</u>	Approx. 	<u>_∆lnØC</u> 4_		<u>×c4</u>			
100 ATM								
0	0.0019	-0.09996	0.0030	0.9076	2.075			
10	0.0021	-0.19944	0.0040	0.8228	1.880			
30	0.0043	-0.37787	0.0275	0.7040	1.610			
50	0.0152	-0.53783	0.0230	0.5980	1.368			
70	0.0084	-0.68489	-0.0105	0:4990	1.140			
90	-0.0137	-0.79833	-0.0275	0.4420	1.010			
100	-0.0252	-0.80167	-0.0252	0.4380	1.000			
<u>200 ATM</u>								
0	0.0008	-0.13746	0.0050	0.8760	2.725			
10	0.0016	-0.30867	0.0130	0.7445	2.310			
30	0.0071	-0.60621	0.0450	0.5710	1.787			
50	0.0224	-0.84757	0.0315	0.4425	1.377			
70	0.0047	-1.0089	-0.0550	0.3450	1.074			
90	-0.0390	-1.0746	-0.0560	0.3230	1.005			
100	-0.0538	-1.0808	-0.0538	0.3220	1.000			
300 ATM				. .				
0	0.0005	-0.12510	0.0035	0.8860	2.935			
10	0.0011	-0.34329	0.0180	0.7230	2.395			
30	0.0092	-0.69681	0.0575	0.5280	1.750			
50	0.0277	-0.94154	0.0280	0.4020	1.330			

n-BUTANE - NITROGEN MIXTURES AT 370°F

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR n-BUTANE

n-BUTANE - NITROGEN MIXTURES AT 370°F								
<u>Mo1% n-C</u> 4	<u>ln f/p</u>	Approx <u>lnØ</u> C4	$\Delta \ln \phi_{C_4}$	ØC4	C			
300 ATM	i. T							
70	0.0009	-1.0755	-0.0960	0.3100	1.028			
90	-0.0516	-1.1244	-0.0700	0.3030	1.002			
100	-0.0672	-1.290	-0.0672	0.3020	1.000			
400 ATM								
0	0.0001	-0.07438	0.0030	0.9312	2.975			
10	0.0003	-0.32206	0.0155	0.7360	2.350			
30	0.0112	-0.69628	0.1230	0.5640	1.800			
50	0.0334	-0.92627	0.0225	0.4055	1.298			
70	0.0005	-1.0415	-0.0121	0.3130	1.000			
90	-0.0598	-1.0821	-0.0790	0.3130	1.000			
100	-0.0749	-1.0859	-0.0749	0.3130	1.000			
500 ATM								
0	-9.0005	-0.00361	0.0007	1.0034	2.970			
10	0.0001	-0.26804	0.0220	0.7820	2.310			
30	0.0146	-0.64672	0.1180	0.5900	1.746			
50	0.0399	-0.86334	0.0190	0.4310	1.275			
70	0.0026	-0.96630	-0.1220	0.3380	1.000			
90	-0.0635	-1.0022	-0.0840	0.3390	1.001			
100	-0.0803	-1.0055	-0.803	0.3380	1.000			
			•					

				and the second	
		Approx			.*
<u>Mo1% n-C</u> 4	<u>ln f/p</u>	<u></u> C ₄	$\Delta \ln \phi_{C_4}$	Ø _C	
600 ATM		4	4	· · · 4	. 4
0	-0.0010	0.09461	0.0050	1.1050	2.850
10	0.0003	-0.18138	0.0310	0.8605	2.220
30	0.0185	- 0.55804.	0.1580	0.6710	1.730
50	0.0469	-0.76137	0.0470	0.4900	1.263
70	0.0054	-0.85469	-0.1250	0.3860	0.995
90	-0.0652	-0.88722	-0.0860	0.3880	1.000
100	-0.0832	-0.89023	-0.0832	0.3880	1.000

n-BUTANE - NITROGEN MIXTURES AT 370°F

TABLE 11

n-BUTANE - NITROGEN MIXTURES AT 370°F							
<u>Mol% n-C</u> 4	Approx. N2	<u>∆lnØ</u> N2-		<u> </u>	$\frac{\ln \delta C4}{\chi N2}$		
100 ATM				• •			
0	0.04246	0.0019	1.0452	1.000	0.730		
10	0.04770	0.0020	1.0510	1.007	0.625		
30 .	0.09284	-0.0055	1.0914	1,045	0.4325		
50	0.20130	0.0075	1.2320	1.180	0.1475		
70	0.42820	0.05350	1.6190	1.549	-0.307		
90	0.85287	0.1115	2.6200	2.510	-0.913		
100	1.0774	0.0660	3.1400	3.000	-1.100		
200 ATM			•				
0	0.09151	0.0008	1.0967	1.000	1.002		
10	0.10051	0.000	1.1058	1.009	0.828		
30	0.17539	-0.0085	1.1815	1.080	0.503		
50	0.33707	0.0135	1.4200	1.297	0.058		
70	0.57732	0.1330	2.0360	1.856	-0.547		
90	0.83092	0.1160	2.5800	2.355	-0.852		
100	0.94404	0.0770	2.7800	2.540	-0.932		
<u>300 ATM</u>							
0	0.14577	0.0005	1.1576	1.000	1.076		
10	0.15717	-0.0005	1.1646	1.008	0.865		
30	0.24506	-0.0115	1.2630	1.092	0.470		
50	0.40670	0.0270	1.5430	1.335	-0.004		

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR NITROGEN

44

TABLE 11 (Cont'd)

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR NITROGEN

			•		
Mol% n-C4	Approx. <u>lnØ</u> N2-	$\Delta \ln \phi_{N2}$	N2	<u>≯</u> _N2—	ln ¥
300 ATM	•		• •		
70	0.60369	0.2580	2.3700	2.050	-0.692
90	0.79227	0.1215	2.4950	2.155	-0.765
100	0.87657	0.0780	2.6000	2.250	-0.810
400 ATM			•		
0	0.20412	0.0001	1.2360	1.000	1.090
10	0.21697	-0.0015	1.2400	1.003	0.850
30	0.30894	-0.0320	1.3190	1.068	0.524
50	0.45990	0.0445	1.6550	1.340	-0.033
70	0.62807	0.299	2.5030	2.030	-0.710
90	0.78428	0.118	2.4650	1.998	-0.695
10,0	0.85434	0.0500	2.4700	2.000	-0.695
<u>500 ATM</u>					
0	0.25932	-0.0005	1.2960	1.000	1.090
10	0.27297	-0.0020	1.3115	1.015	0.824
30	0.36527	-0.0260	1.4040	1.085	0.475
[°] 50	0.50655	0.0600	1.6700	1.290	-0.010
70	0.65713	0.292	2.5800	1.990	-0.689
90	0.79520	0.124	2.5050	1.935	-0.659
100	0.85722	0.0485	2.4750	1.910	-0.647

TABLE 11 (Cont'd)

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR NITROGEN

		· ·			• •
<u>Mo1% n-C4</u>	Approx. <u>lnØ</u> N2-	<u>∆1nØ</u> N2—		<u>×</u> N2	$\frac{\ln \sqrt{C4}}{\sqrt{N2}}$
600 ATM		•			· · · · ·
0	0.32190	-0.0010	1.3780	1.000	1.048
10	0.33605	-0.0030	1.3950	1.013	0.784
30	0.42723	-0.0370	1.4770	1.071	0.480
50	0.55942	0.0470	1.8330	1.332	-0.052
70	0.69614	0.309	2.7400	1.990	-0.694
90	0.82041	0.128	2.5800	1.875	-0.628
100	0.87627	0.0605	2.5500	1,852	-0.617
700 ATM		••		•	
0	0.38650	-0.0015	1.470	1.000	1.060
10	0.40094	-0.0045	1.486	1.010	0.801
30	0.49037	-0.0510	1.551	1.050	0.540
50	0.61496	0.0645	1.971	1.341	-0.047
70	0.74136	0.353	2.990	2.035	-0.733
90	0.85549	0.1515	2.740	1.865	-0.626
100	0.90681	0.0770	2.675	1.820	-0.599

<u>n-BUTANE - NITROGEN MIXTURES AT 370°F</u>

CALCULATED	FUGACITY	AND	ACTIVITY	COEFFICIENTS	FOR	n-BUTANE
فما فاستنب المستجد الم				ويعينها واستعامتهم والمورد المكاري والمتحا أشاعة ومعاديات المتعا		

	n-BUTANE - NITROGEN MIXTURES AT 400°F						
		A					
<u>Mo1% n-C</u> 4	<u>ln f/p</u>	Approx. <u> </u>	$\Delta \ln \phi_{C4}$	Øc4	<u>∜</u> C4		
100 ATM				х.			
0	0.0017	-0.0705	-0.0175	0.9158	1.861		
10	0.0006	-0.1598	-0.0060	-0.8472-	1.722		
30	0.0032	-0.3176	0.0340	0,7504	1.525		
50	0.0056	-0.4542	0.0000	0.6350	1.291		
70	0,0002	-0.5722	-0.090	0.5590	1.136		
90	-0.0080	-0.6547	-0.0230	0.5080	1.033		
100	-0.0424	-0.6663	-0.0424	0.4920	1.000		
<u>200 ATM</u>							
0	0.0008	-0.0866	-0.0265	0.8930	2.440		
10	-0.0007	-0.2404	-0.0060	0.7820	2.137		
30	0.0035	-0.5036	0.0295	0.6230	1.702		
50	0.0034	-0.7131	-0.0225	0.4800	1.311		
70	-0.0133	-0.8549	-0.0490	0.4060	1.109		
90	-0.0435	-0.9158	-0.0670	0.3475	1.023		
100	-0.0833	-0.9218	-0.0833	0.3660	1.000		
300 ATM							
0	0.0007	-0.05936	-0.0385	0.9070	2.629		
10	-0.0022	-0.2561	-0.0125	0.7690	2.229		
30	0.0033	-0.5719	0.0545	0.5960	1.728		
50	-0.0001	-0.7902	-0.0415	0.4360	1.264		

<u>Mol% n-C4</u>	ln f/p	Approx. <u>lnØ</u> C4	<u>∆lnø_{C4}</u>	Ø _{C4}	<u>×</u> c4—
300 ATM					
70	-0.0246	-0.9124	-0.0685	0.3750	1.087
90	-0.0598	-0.9584	-0.0880	0.3520	1.020
100	-0.1033	-0.9628	-0.1033	0.3450	1.000
400 ATM					
0	0.0006	0.00139	-0.0620	0.9412	2.644
10	-0.0037	-0.2230	-0.0225	0.7825	2.198
30	0.0033	-0.5605	0.0470	0.6120	1.719
50	-0.0023	-0.7693	-0.0560	0.4882	1.371
70	-0.0307	-0.8753	-0.0775	0.4265	1.198
90	-0.0688	-0.9135	-0.0975	0.3640	1.022
100	-0.1153	-0.7171	-0.1153	0.3560	1.000
500 ATM					
0	0.0003	0.07817	-0.0820	0.9962	2.594
10	-0.0048	-0.1624	-0.0195	0.8340	2.172
, 30	0.0046	-0.5061	0.0765	0.6510	1.695
50	-0.0013	-0.7040	-0.0865	0.4540	1.182
70	-0.0332	-0.7995	-0.0800	0.4155	1.082
90	-0.0733	-0.8331	-0.1050	0.3920	1.021
100	-0.1225	-0.8363	-0.1225	0.3840	1.000

n-BUTANE - NITROGEN MIXTURES AT 400°F

۰.

- 				~		
<u>Mo1% N-C4</u>	<u>ln f/p</u>	Approx. <u>1nØ</u> C4-	<u>∆1nØ</u> c4_	C4	<u>×</u> _c4	
600 ATM						
0	-0.001	0.1806	-0.0800	1.1059	2.566	
10	-0.0052	-0.07146	-0.0220	0.9109	2.113	
30	0.0065	-0.4151	0.1340	0.7553	1.752	
50	0.0005	-0.6019	-0.0870	0.5020	1.165	
70	-0.0344	-0.6887	-0.0865	0.4620	1.072	
90	-0.0753	-0.7189	-0.1050	0.4390	1.019	
100	-0.1276	-0.7217	-0.1276	0.4310	1.000	
700 ATM						
ġ	-0.0003	0.2984	-0.0790	1.2455	2.553	
10	-0.0055	0.0392	-0.0155	1.0240	2.100	
30	0.0082	-0.0311	0.133	0.8452	1.732	
. 50	0.0025	-0.4780	-0.0900	0.6150	1.260	
70	-0.0344	-0.5584	-0.0865	0.5250	1.078	
90	-0.0753	-0.5860	-0.1050	0.5020	1.030	
100	-0.1310	-0.5886	-0.131	0.4880	1.000	
			•			

CALCULATED FUGACITY AND	ACTIVITY	COEFFICIENTS	FOR	NITROGEN	

					N
<u>Mo1% n-C</u> 4	Approx. <u>N2</u>	<u>∆lnØ</u> N2	N2	<u>×</u> N2	$\frac{\ln \frac{C_4}{N_2}}{\ln \frac{C_4}{N_2}}$
100 ATM					
0	0.04387	0.0017	1.0466	1.000	0.621
10	0.04857	0.0010	1.0507	1.004	0.540
30	0.8838	-0.0100	1.0815	1.035	0.385
50	0.1807	0.0110	1.2110	1.160	0.107
70	0.3618	0.0220	1.4680	1.403	-0.212
90	0.7024	0.1235	2.2850	2.185	-0.750
100	0.9180	0.5077	4.1600	3.980	-1.382
200 ATM					
0	0.09338	0.0008	1.0988	1.000	0.982
10	0.1015	0.0000	1.1070	1.007	0.752
30	0.1675	-0.0080	1.1730	1.068	0.465
50	0.3078	0.0315	1.4040	1.278	0.256
70	0.5195	0.0710	1.8050	1.643	-0.394
90	0.7564	0.1625	2.5030	2.278	-0.801
100	0.8664	0.5132	3.9700	3.613	-1.283
300 ATM		1	•		
0	0.1474	0.0007	1.1598	1.000	0.966
10	0.1576	-0.0010	1.1695	1.008	0.793
30	0.2361	-0.0185	1.2430	1.072	0.477
50	0.3804	0.0410	1.5240	1.314	-0.0389

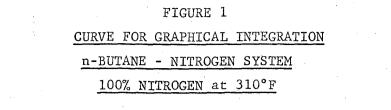
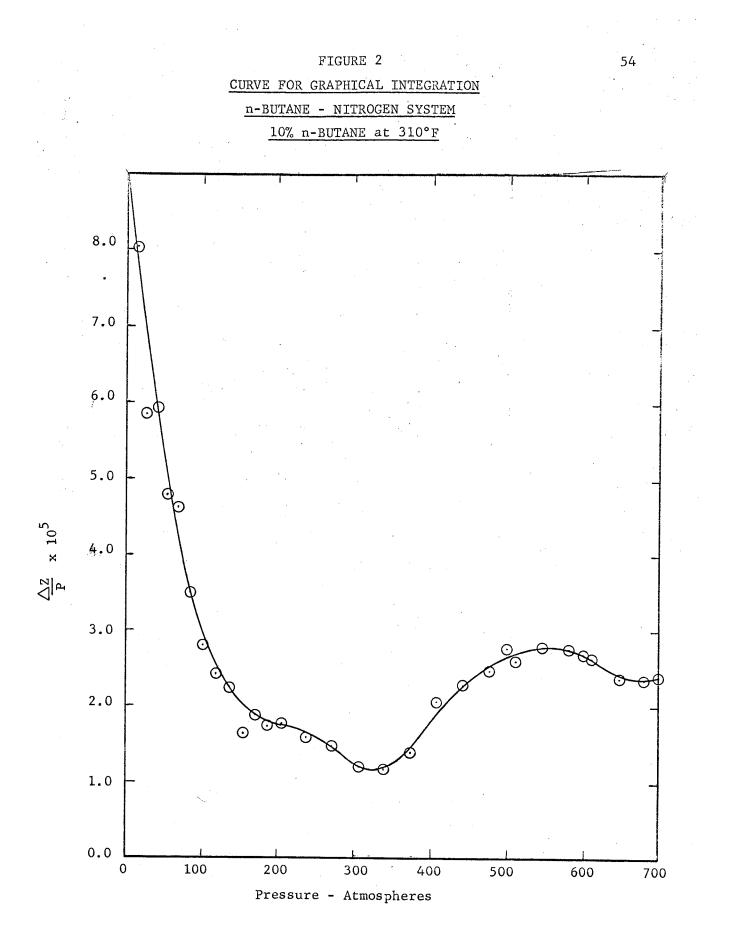
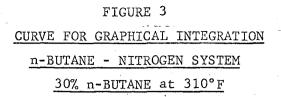
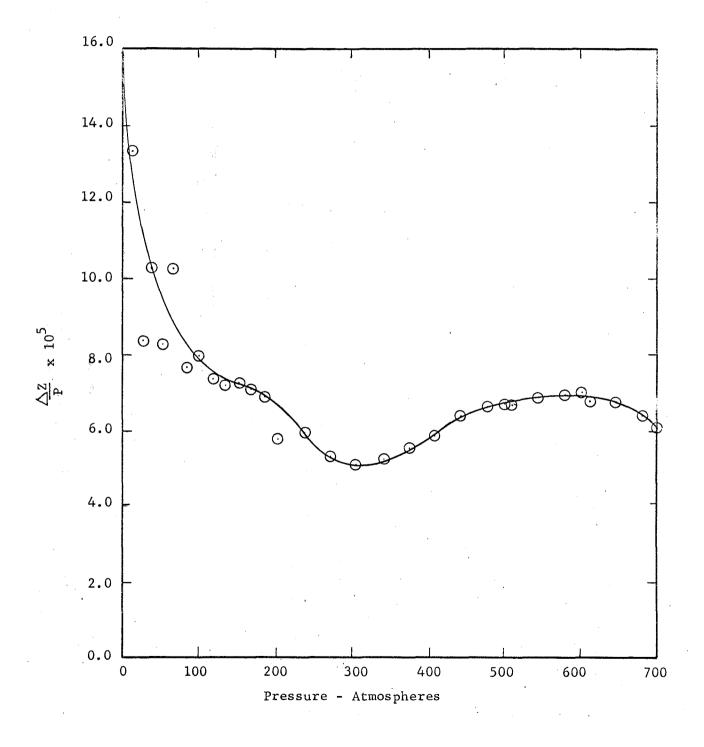
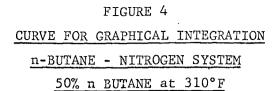

n-BUTANE - NITROGEN MIXTURES AT 400°F

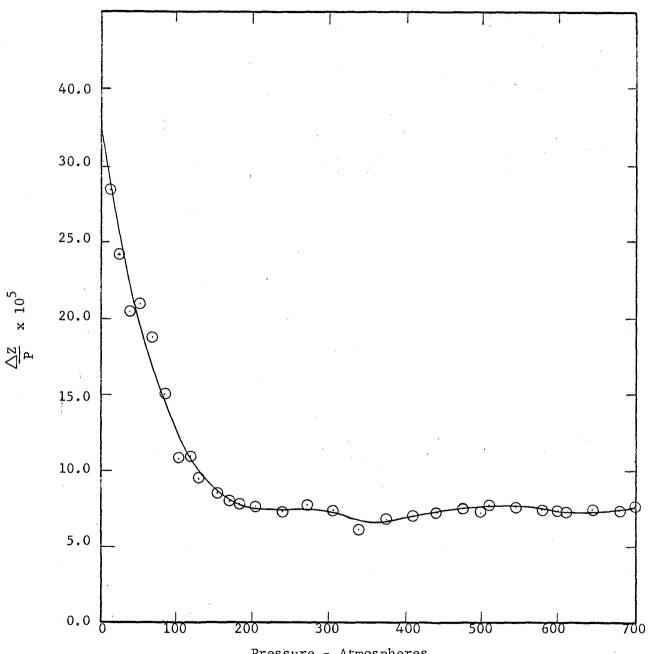
TABLE 13 (Cont'd)

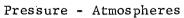

CALCULATED FUGACITY AND ACTIVITY COEFFICIENTS FOR NITROGEN

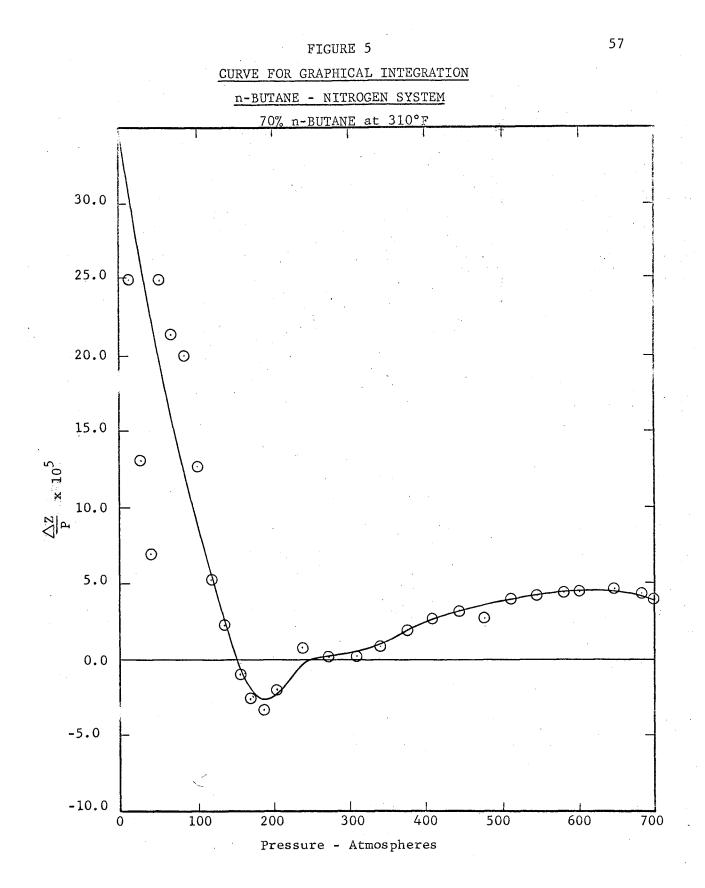

	Approx.				1 1
<u>Mol% n-C</u> 4	$\frac{\ln \emptyset}{N^2}$	$\Delta \ln \theta_{N2-}$	N2	<u>×</u> _N2	$\frac{\ln \frac{\delta C}{\delta N_2}}{\frac{\delta N}{2}}$
<u>300 ATM</u>					
70	0.5604	0.0785	1.8950	1.634	-0.408
90	0.7382	0.1910	2.5170	2.165	-0.755
100	0.8191	0.4882	3.6950	3.186	-1.160
400 ATM	Å			• • •	
0	0.2049	0.0006	1.2280	1.000	0.974
10	0.2165	-0.0020	1.2398	1.010	0.776
30	0.2994	-0.0140	1.3162	1.072	0.471
50	0.4363	0.0510	1.6280	1.326	0.0334
70	0.5918	0.0800	1.9580	1.594	-0.286
90	0.7389	0.1850	2.5200	2.052	-0.697
100	0.8055	0.6100	3.9700	3.233	-1.170
500 ATM			•		
0	0.2590	0.0003	1.296	1.000	0.990
10	0.2714	-0.0030	1.308	1.010	0.765
30	0.3552	-0.0265	1.390	1.073	0.457
50	0.4843	0.0830	1.765	1.362	-0.142
70	0.6240	0.0755	2.020	1.560	-0.367
90	0.7537	0.2100	2.620	2.020	-0.684
100	0.8124	0.7850	4.160	3.220	-1.170

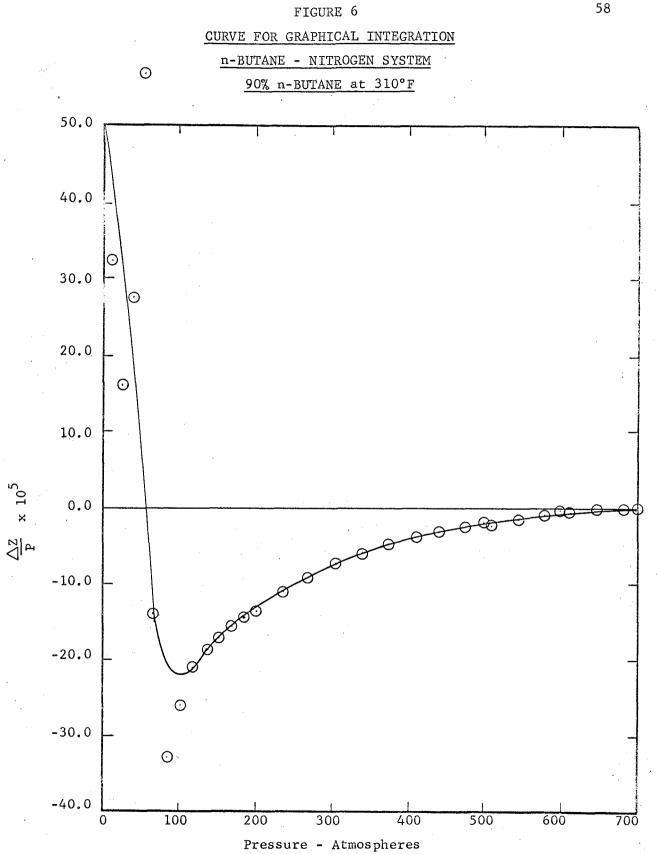

	n-BUTANE - NITROGEN AT 400°F					
<u>Mol% n-C</u> 4 600 ATM	Approx. <u>lnØ</u> N2-	<u>∆làØ</u> N2−	N2	<u>√</u> _{N2}	$\frac{\ln \sqrt[4]{C_4}}{\sqrt[6]{N_2}}$	
0	0.3200	-0.0001	1.377	1.000	0.967	
10	0.3330	-0.0035	1.39	1.018	0.732	
30	0.4162	-0.0490	1.44	1.048	0.515	
50	0.5376	0.0845	1.862	1,352	-0.149	
70	0.6646	0.0870	2.120	1.540	-0.361	
90	0.7810	0.196	2.630	1.910	-0.630	
100	0.8336	0.715	4.700	3.420	-1.230	
700 ATM	А _{ра} на С					
0	0.3829	-0.0003	1.466	1.000	0.959	
10	0.3961	-0.0045	1.480	1.010	0.732	
30	0.4780	-0.0455	1.525	1.040	0.510	
50	0.5929	0.0950	1.990	1.360	-0.076	
70	0.7102	0.0870	2.220	1.515	-0.342	
90	0.8169	0.196	2.730	1.862	-0.591	
100	0.8650	1.009	6.500	4.440	-1.490	

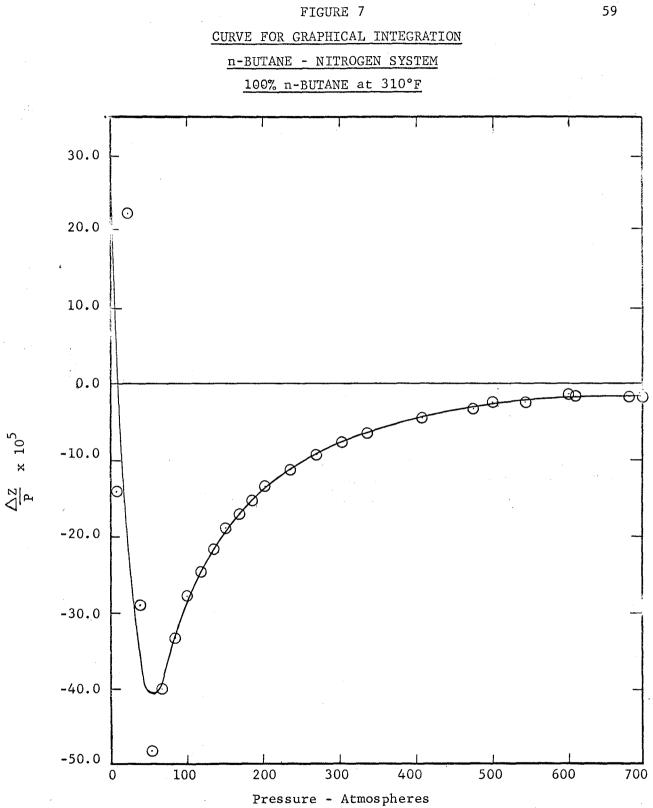












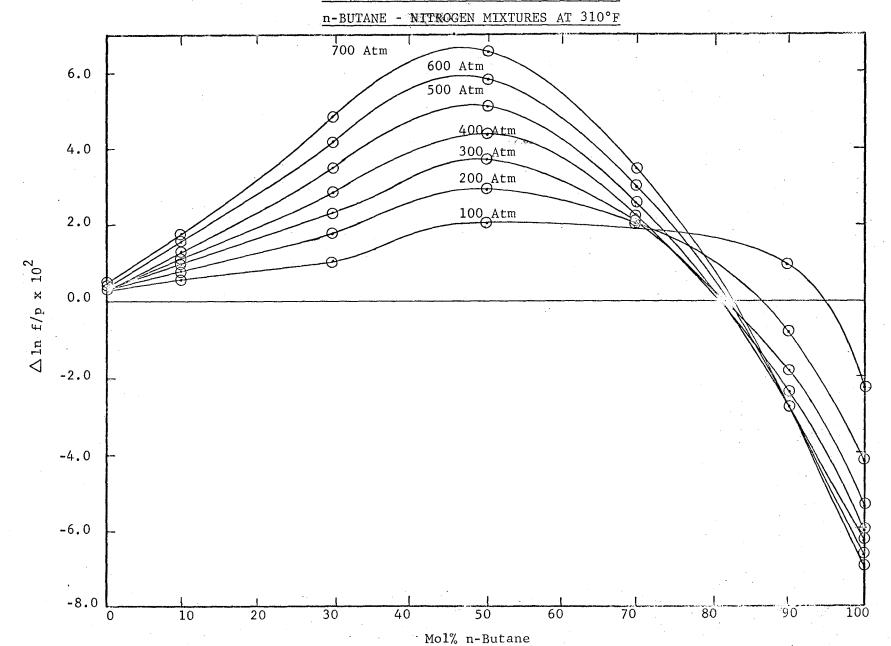


FIGURE 8

CURVES FOR GRAPHICAL DIFFERENTIATIONS

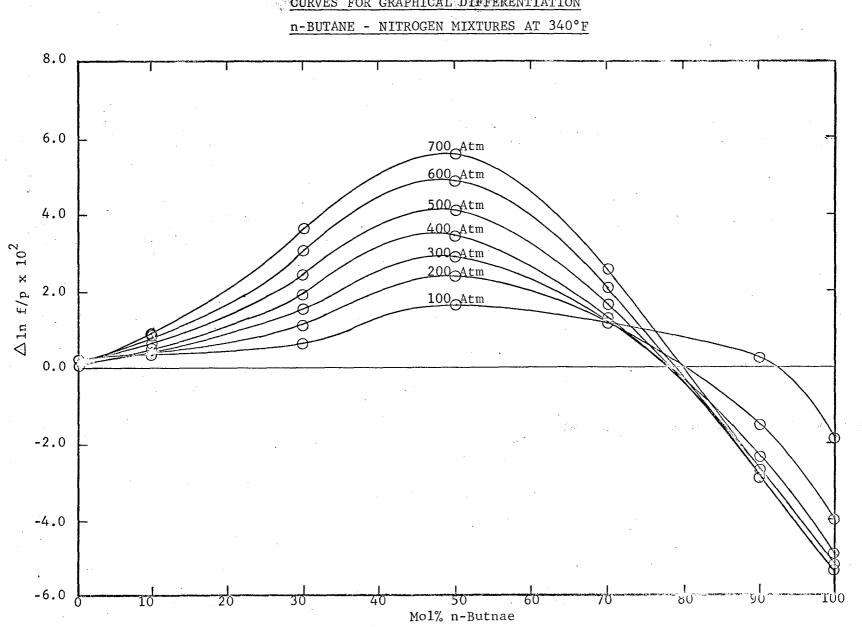
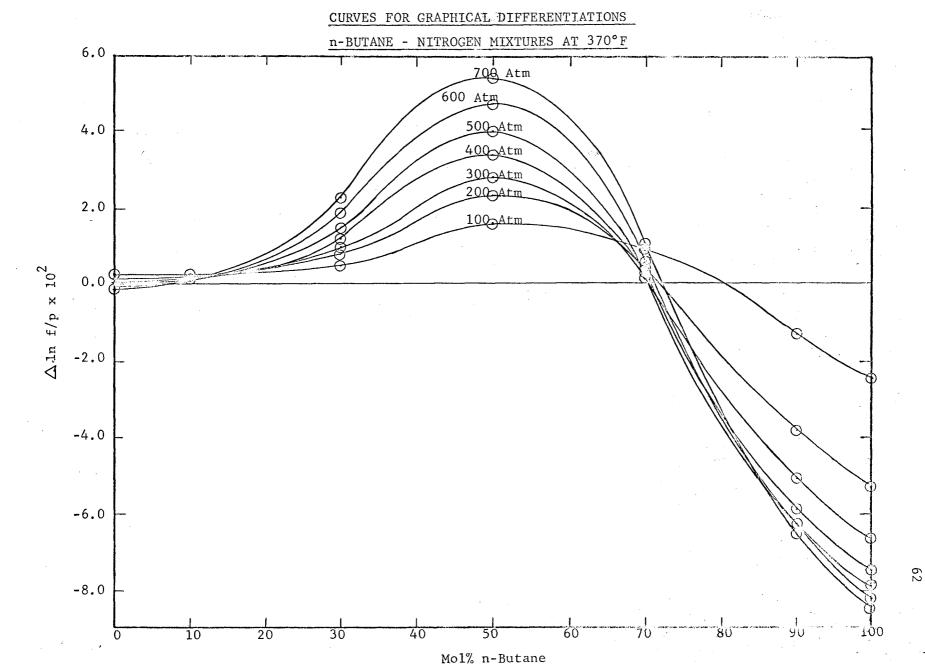
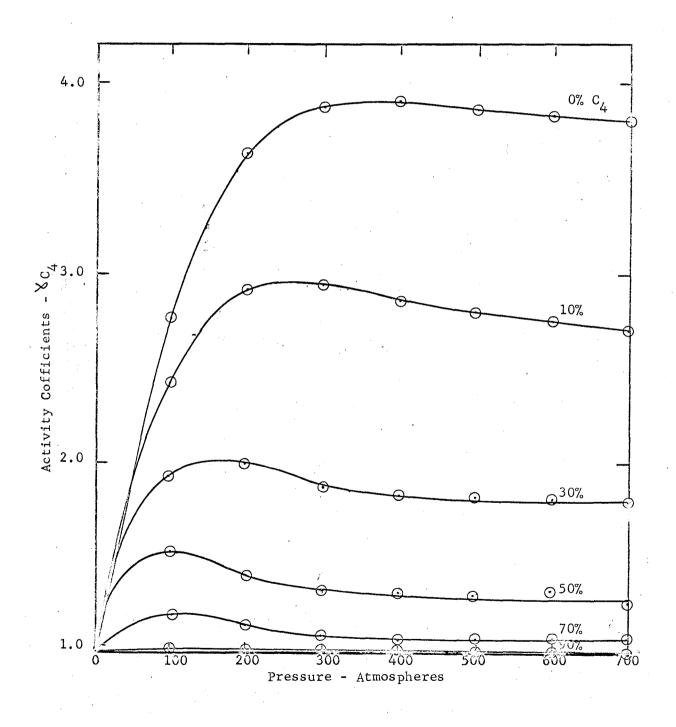
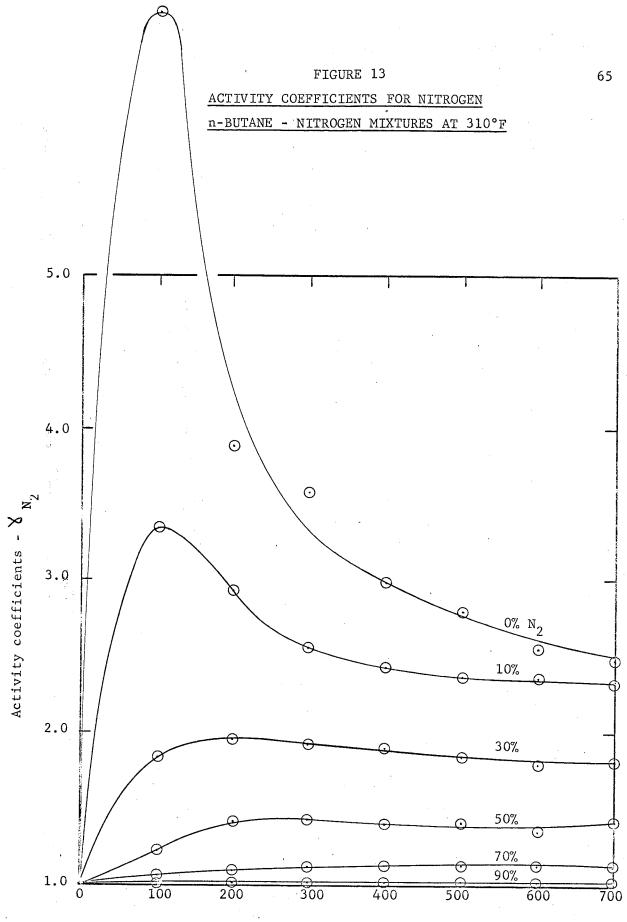



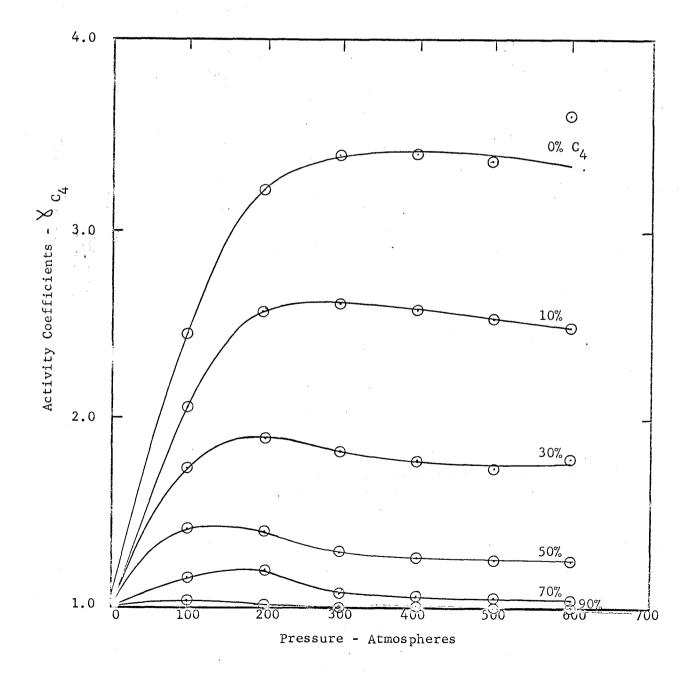
FIGURE 9 GURVES FOR GRAPHICAL DIFFERENTIATION

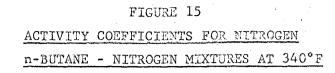
FIGURE 10

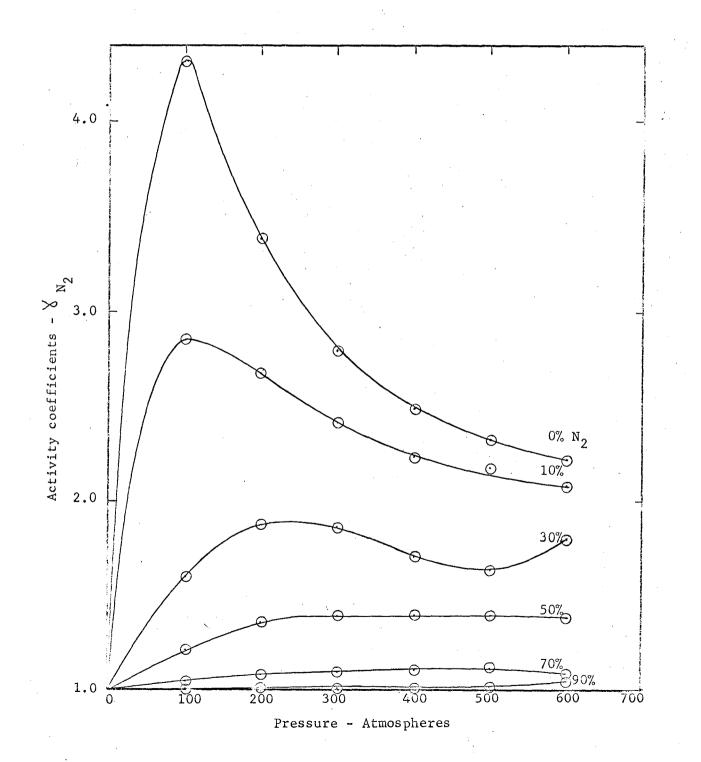

FIGURE 11 CURVES FOR GRAPHICAL DIFFERENTIATIONS n-BUTANE - NITROGEN MIXTURES AT 400°F 2.0 700 Atm 100 Atm 0.0 200 Atm 3 -2.0 300 Atm 400 Atm -4.0 500 Atm 600 Atm -6.0 N -8.0 -10.0 -12.0

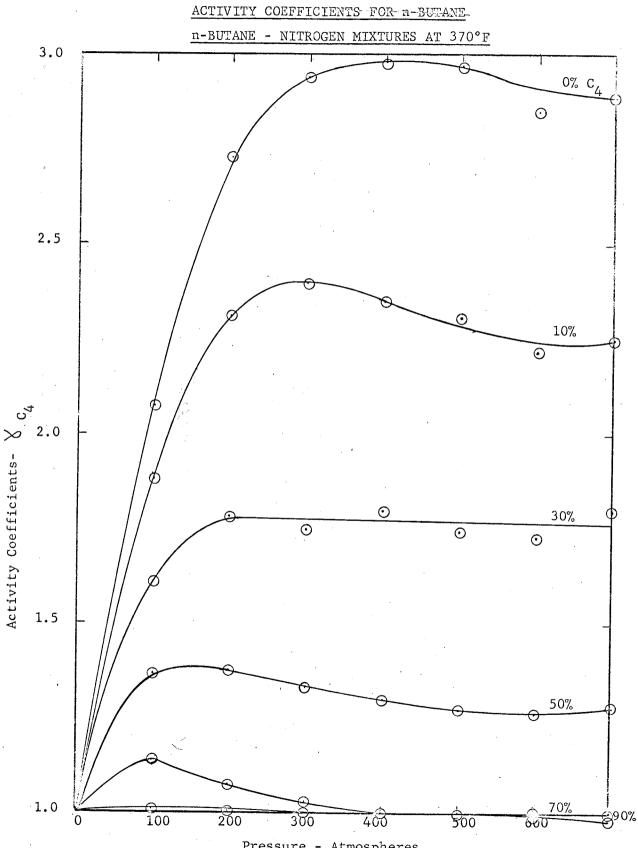

 $\cdot \Delta \ln f/p \times 10^2$

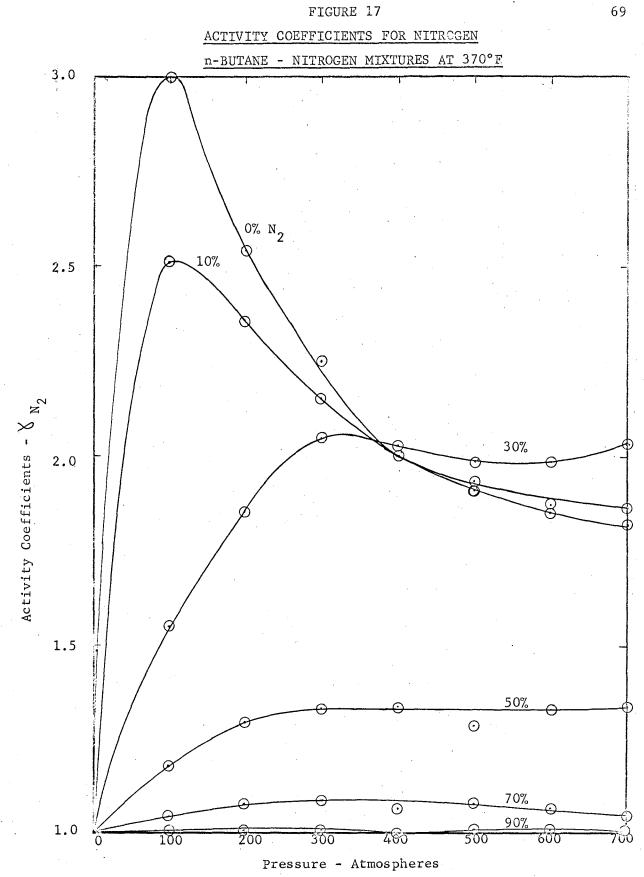
 $-14.0 \int_{0}^{1} \frac{1}{10} \int_{20}^{1} \frac{1}{30} \int_{40}^{1} \frac{1}{50} \int_{10}^{1} \frac{1}{50} \int_{10}^{1} \frac{1}{80} \int_{90}^{1} \frac{1}{100} \int_{100}^{1} \frac{1}{100} \int_{1$

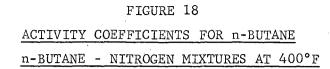


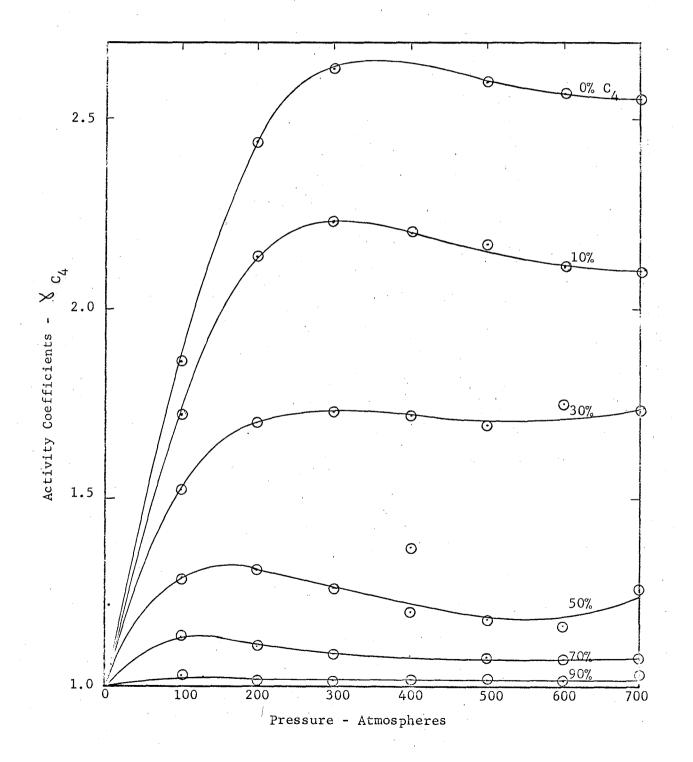

Pressure - Atmospheres

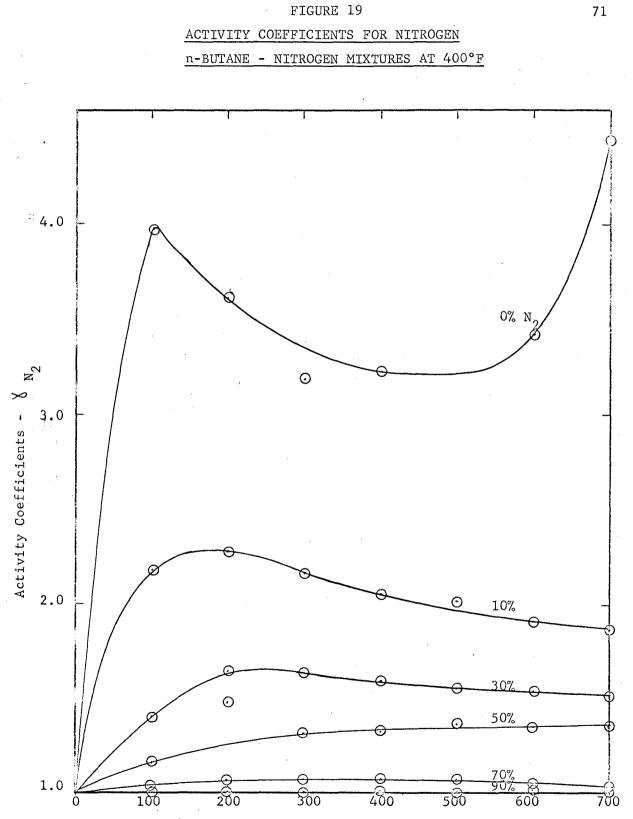

FIGURE 14

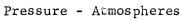

ACTIVITY COEFFICIENTS FOR n-BUTANE



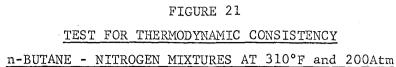


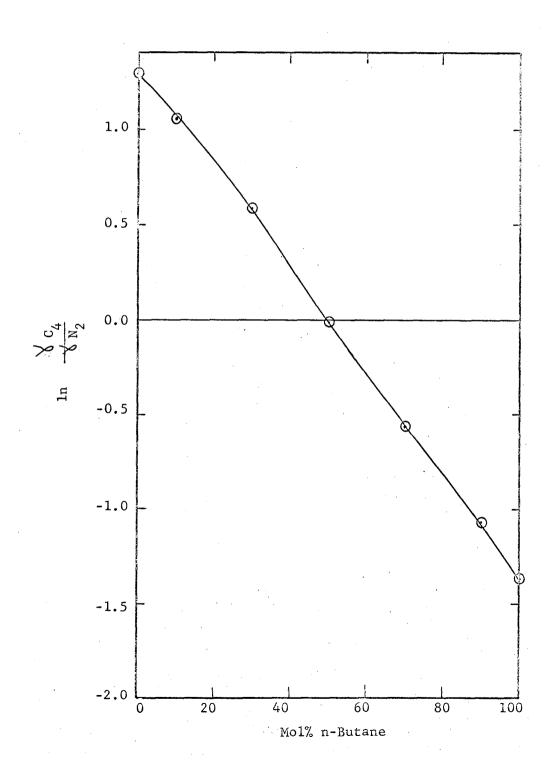


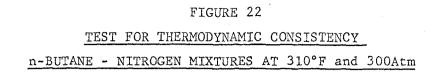


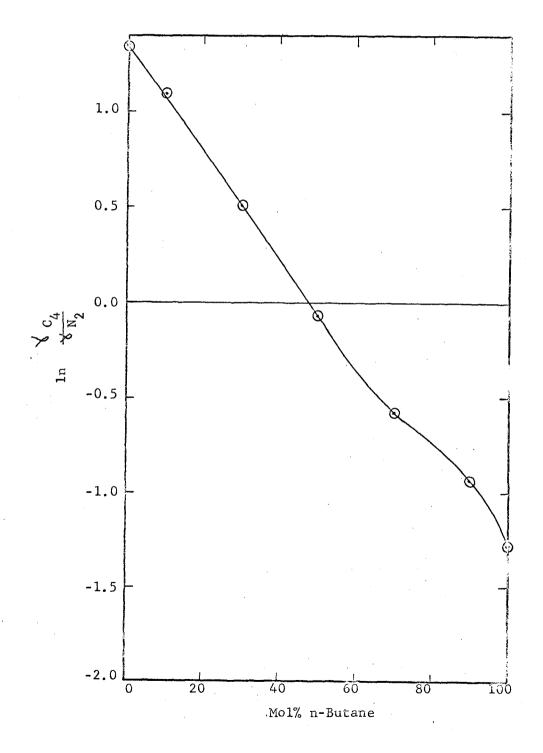

Pressure - Atmospheres

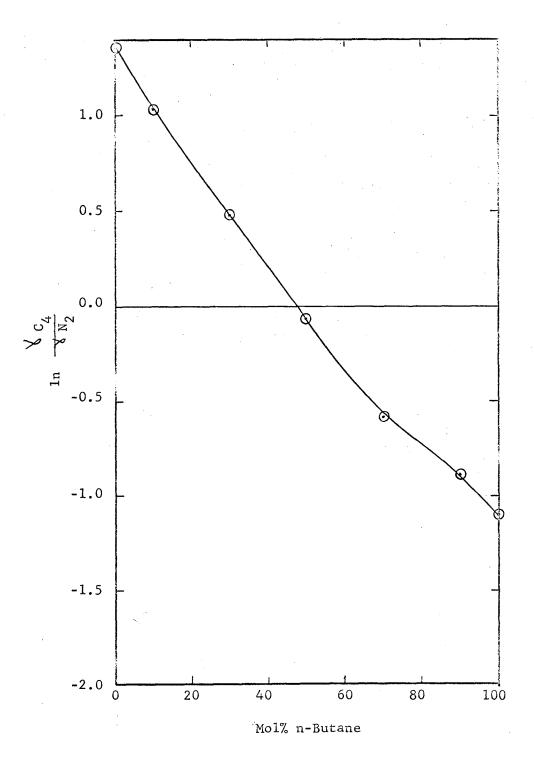


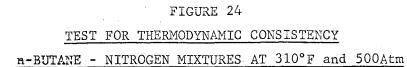


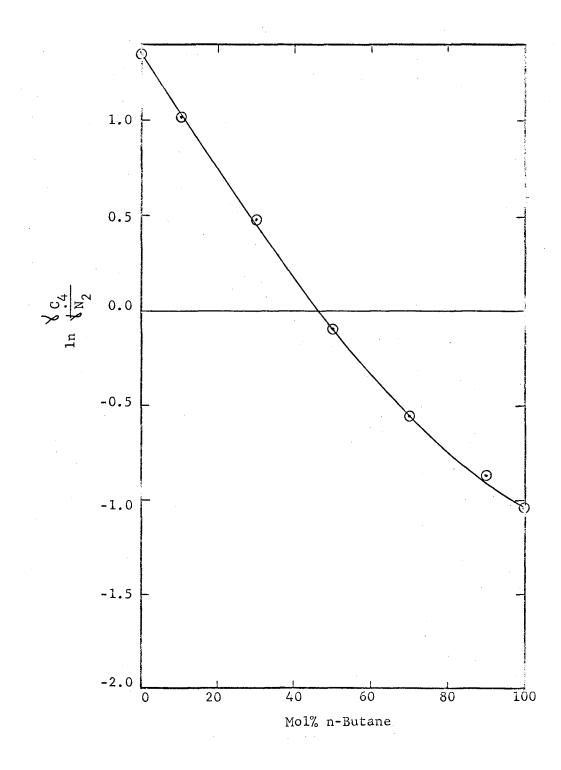


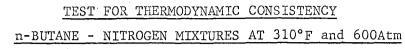


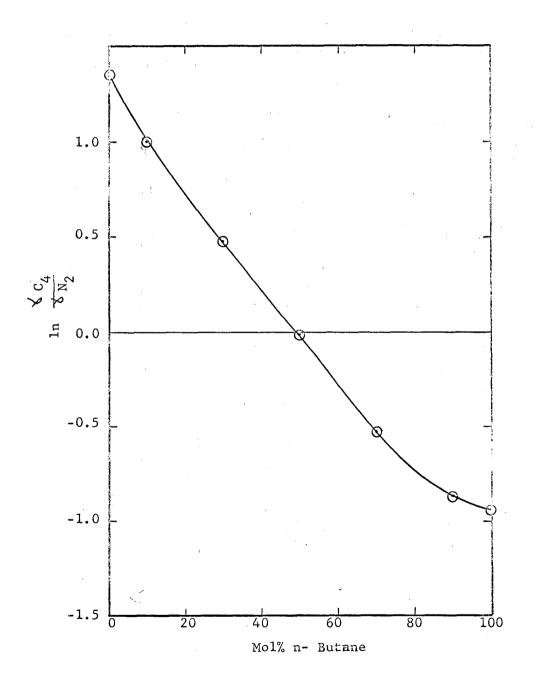

· '1



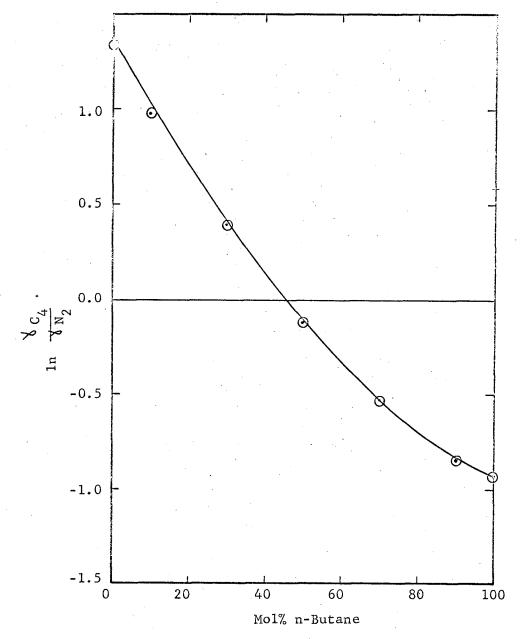


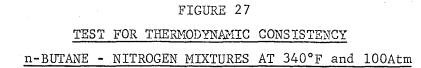


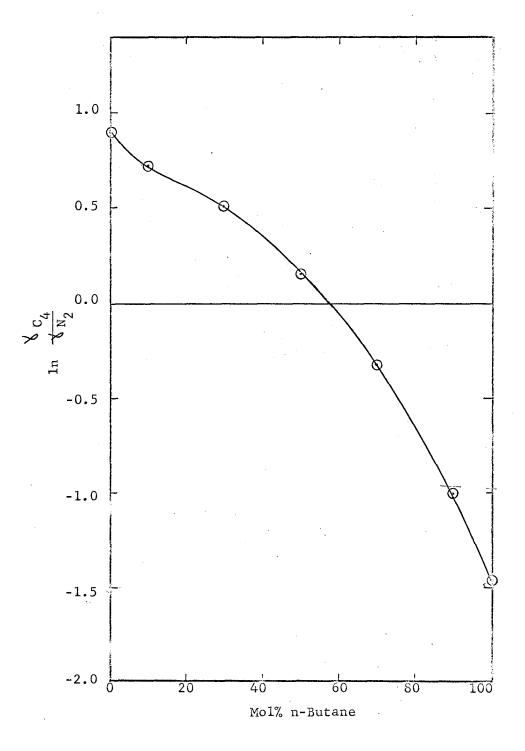

n-BUTANE - NITROGEN MIXTURES AT 310°F and 400Atm

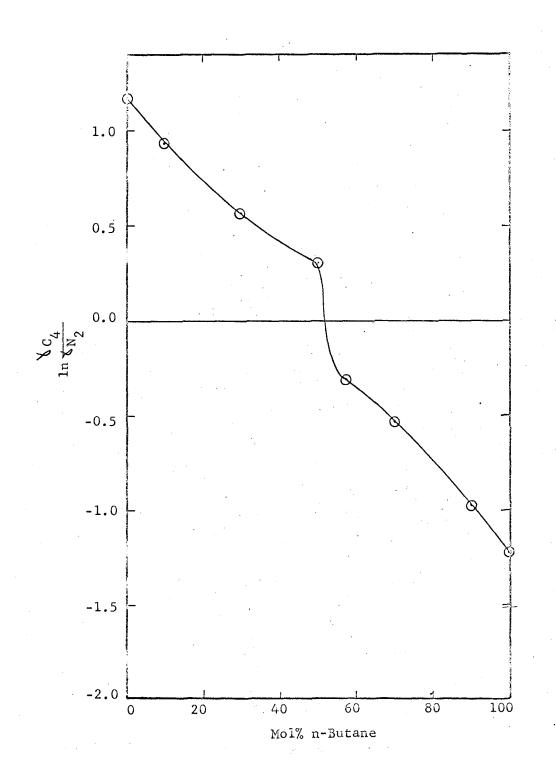


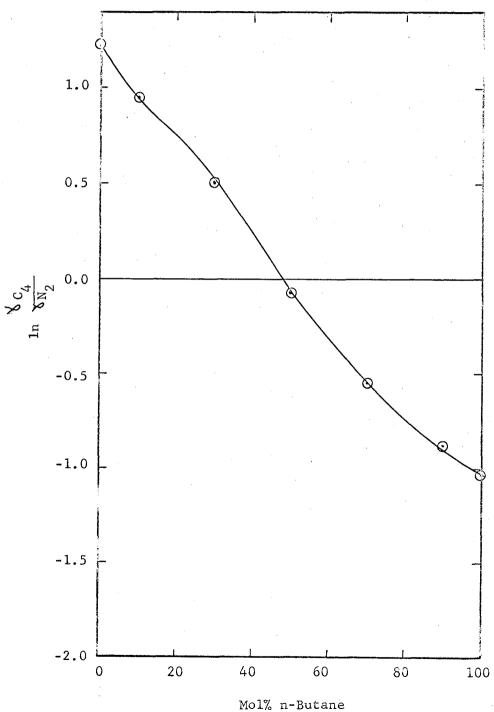


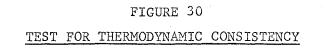

,76



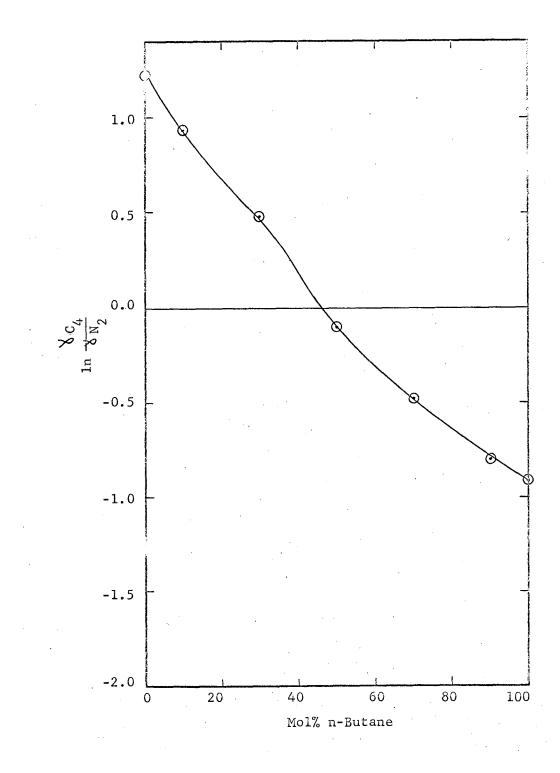


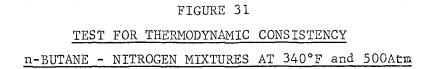

n-BUTANE - NITROGEN MIXTURES AT 310°F and 700Atm

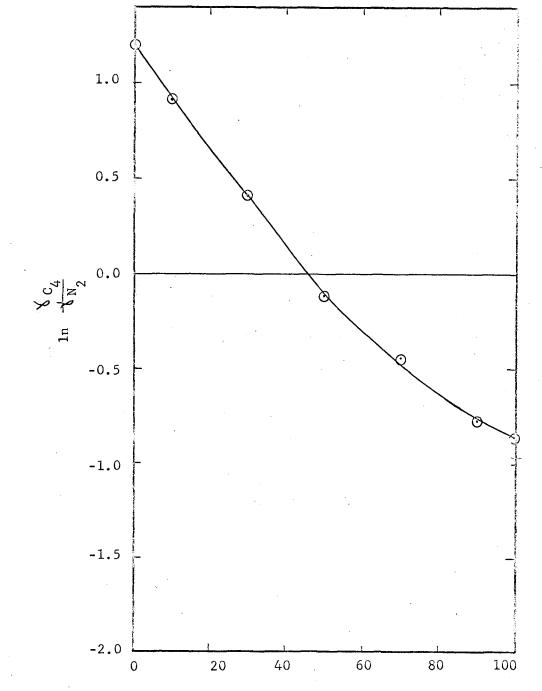


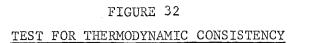


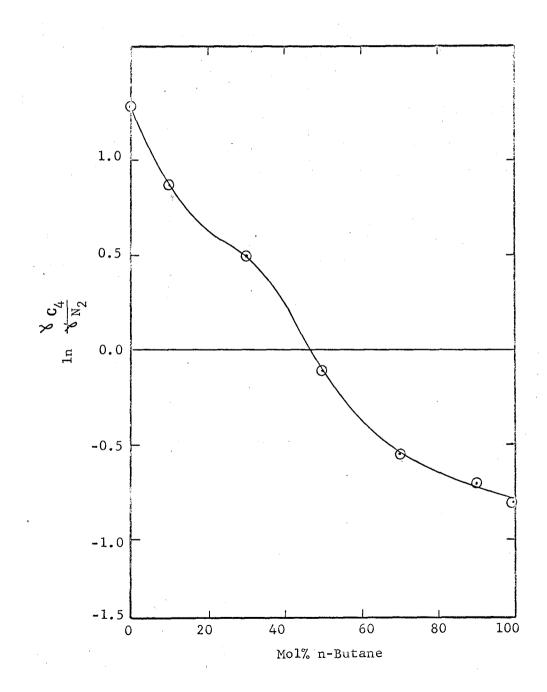
n-BUTANE - NITROGEN MIXTURES AT 340°F and 200Atm



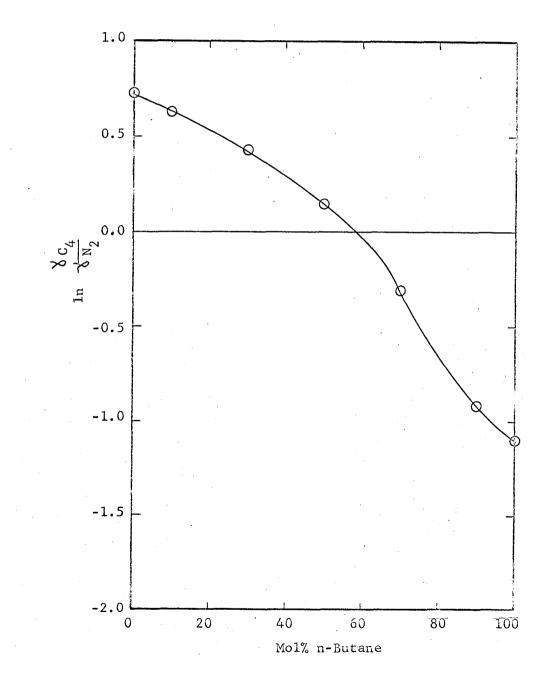

n-BUTANE - NITROGEN MIXTURES AT 340°F and 300Atm



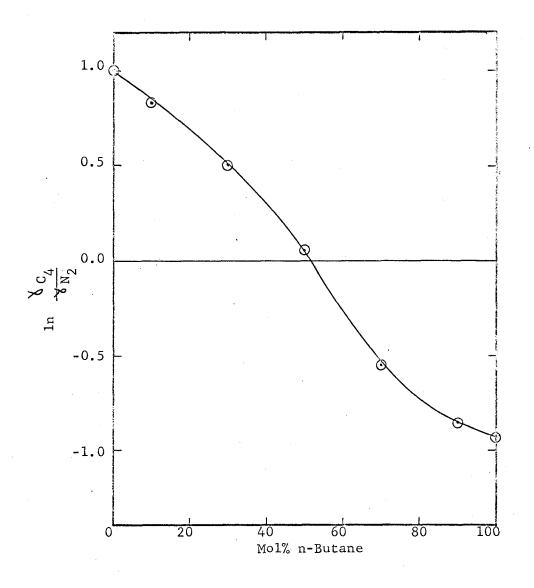

n-BUTANE - NITROGEN MIXTURES AT 340°F and 400Atm

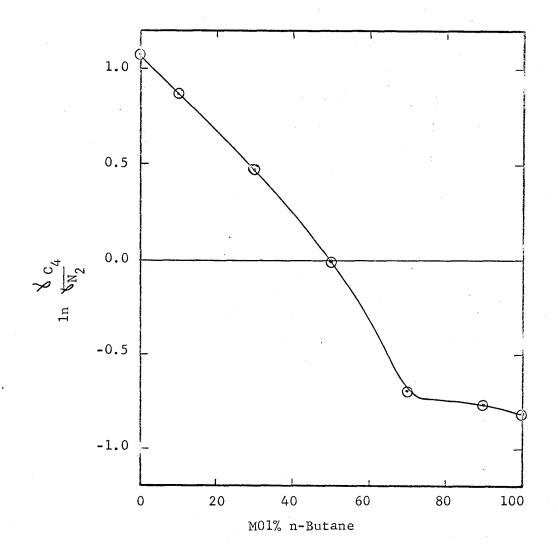


Mol% n-Butane



n-BUTANE - NITROGEN MIXTURES AT 340°F and 600Atm





n-BUTANE - NITROGEN MIXTURES AT 370°F and 200Atm

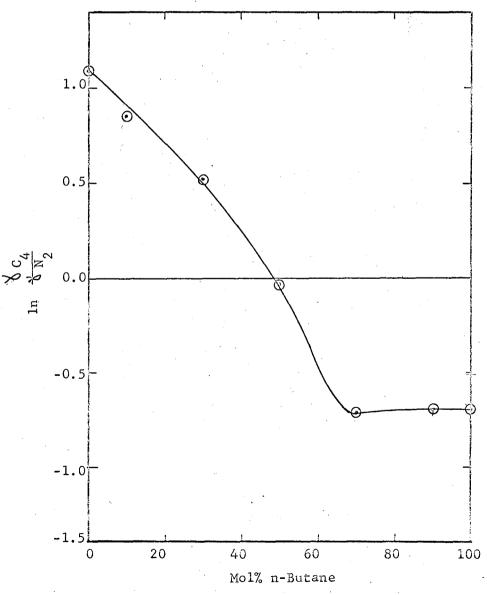
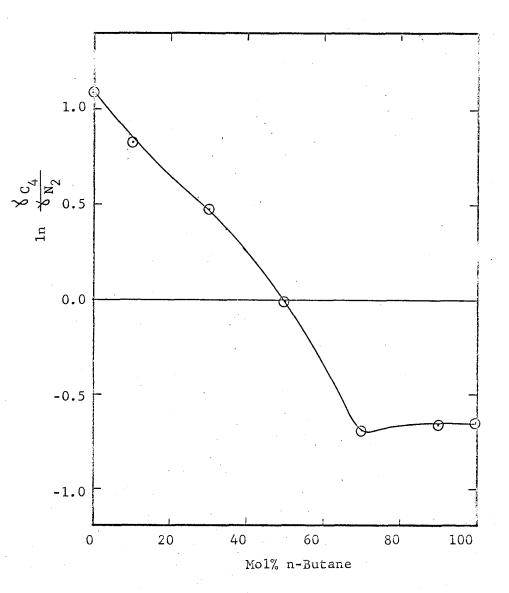
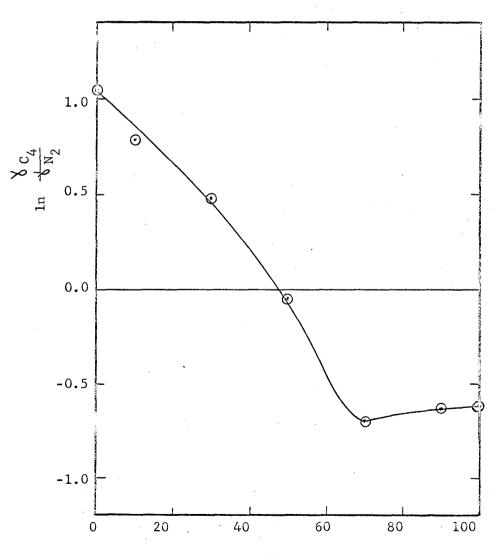
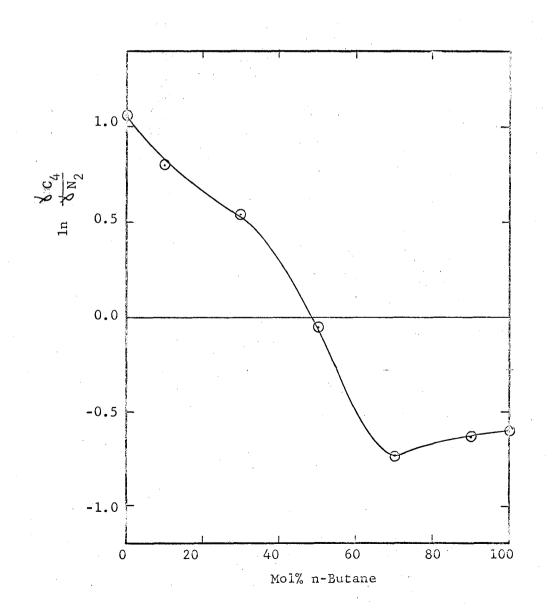

n-BUTANE - NITROGEN MIXTURES AT 370°F and 300Atm

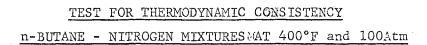
FIGURE 36

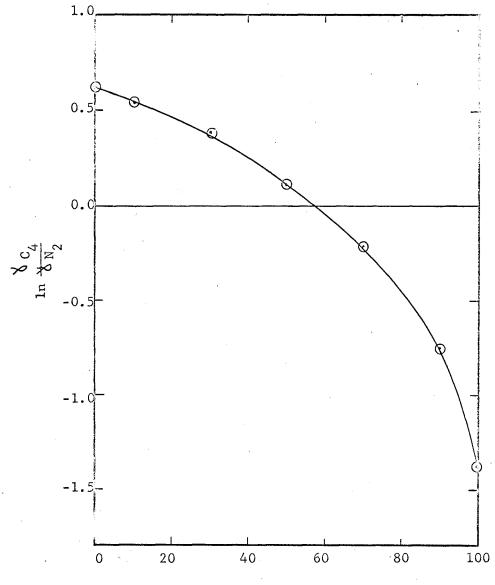

TEST FOR THERMODYNAMIC CONSISTENCY

<u>n-BUTANE - NITROGEN MIXTURES AT 370°F and 400Atm</u>

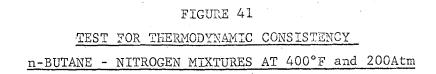


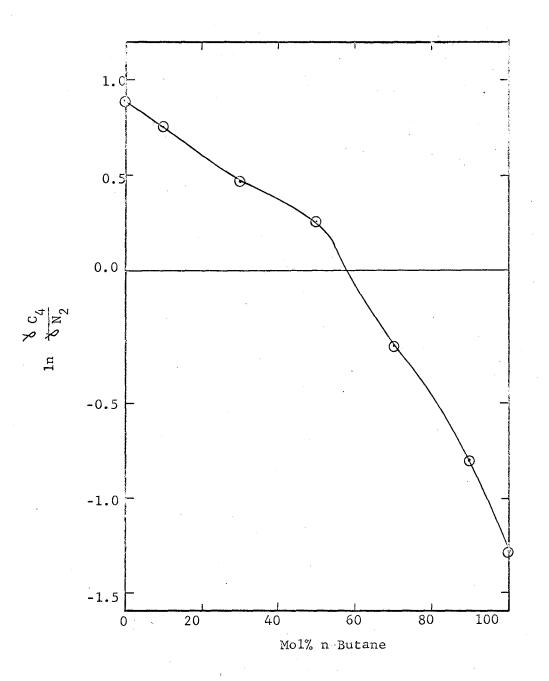

Mol% n-Butane

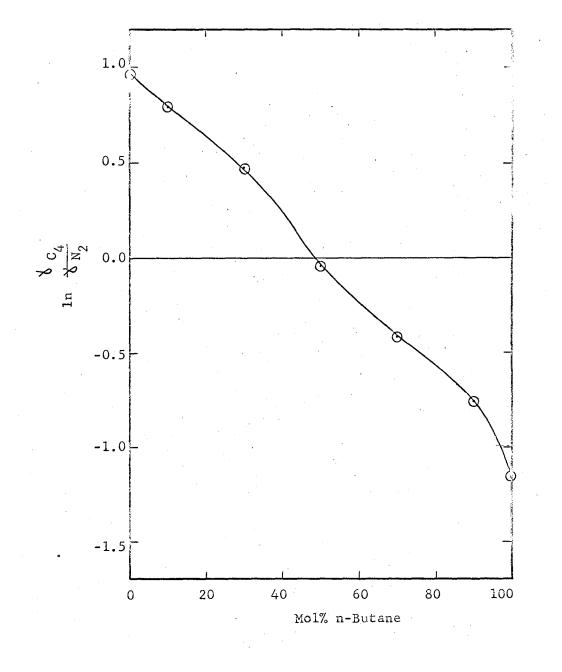

FIGURE 39


TEST FOR THERMODYNAMIC CONSISTENCY

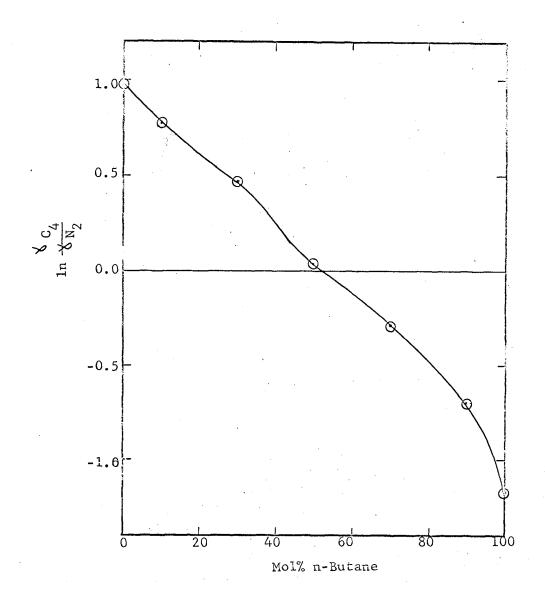
÷ .

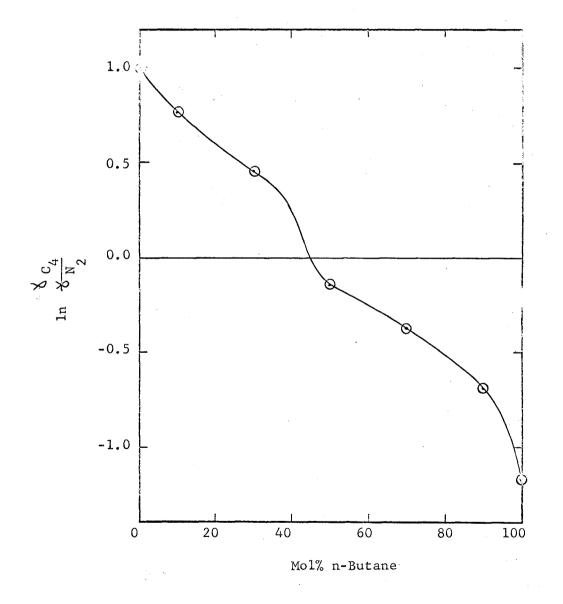


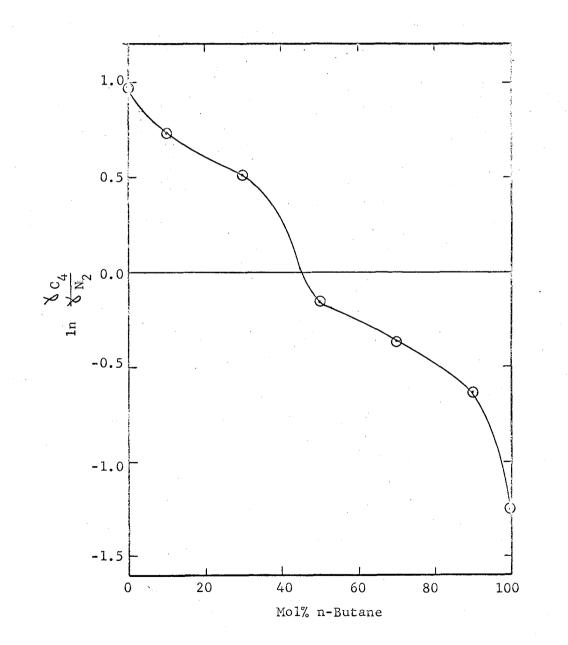


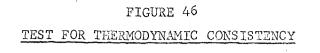


Mol% n-Butane

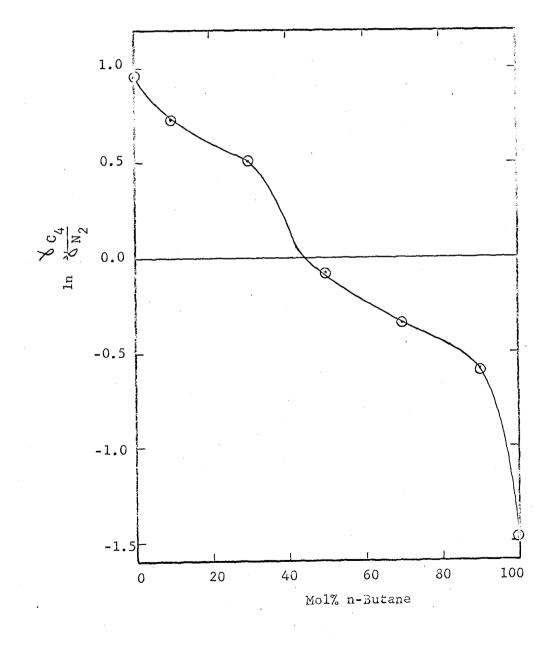



n-BUTANE - NITROGEN MIXTURES AT 400°F and 300Atm


n-BUTANE - NITROGEN MIXTURES AT 400°F and 400Atm

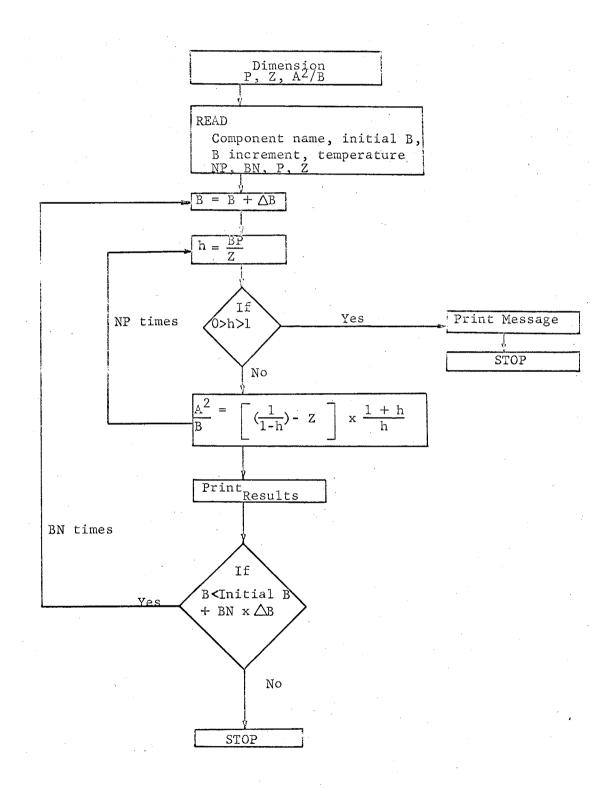


n-BUTANE - NITROGEN MIXTURES AT 400°F and 500Atm



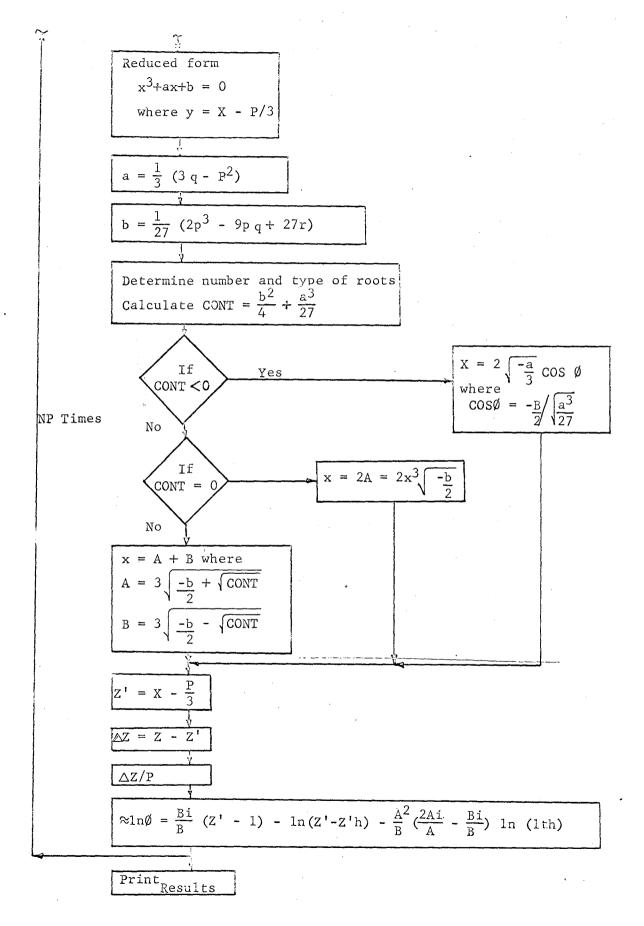
n-BUTANE - NITROGEN MIXTURES AT 400°F and 600Atm

n-BUTANE - NITROGEN MIXTURES AT 400°F and 7004tm



98

APPENDIX II


COMPUTER PROGRAMS

CALCULATION OF A²/B CONSTANT BLOCK DIAGRAM

CALCULATION OF Z', Z/P, AND 1nØ BLOCK DIAGRAM

Dimension P, Z, Z', $\triangle Z$, $\approx \ln \phi_{C4}$, $\approx \ln \phi_{N2}$, $\wedge Z/P$ READ mol%C₄, mol%N₂, B_{C4} , B_{N2} , $(A^2/B)_{C4}$, $(A^2/B)_{N2}$, T, NP, P, Z $(A^2/B)_{C4}/B_{C4}$ A_{C4} = $\left((A^2/B)_{N2}/B_{N2} \right)$ $A_{N2} =$ $A_{mix} = X_{C4} A_{C4} + X_{N2} A_{N2}$ $B_{mix} = X_{C4} B_{C4} + X_{N2} B_{N2}$ $(A^2/B)_{mix} = (A_{mix})^2/B_{mix}$ Find positive root of $z'^{3} - z'^{2} + \left[\frac{A^{2}}{B} (Bp) - Bp - (Bp)^{2}\right] z' - \frac{A^{2}}{B} (Bp)^{2} = 0$ General Form $y^3 + py^2 + y + r = 0$ P = -1 $q = \frac{A^2}{B}$ (Bp) - Bp - (Bp)² $r = -\frac{A^2}{B} (Bp)^2$

APPENDIX III

DETAILED SAMPLE CALCULATION

DETAILED SAMPLE CALCULATION

The step-by-step procedure employed in calculating the constants for the Redlich and Kwong equation and then the fugacity and activity coefficients is illustrated by the following sample calculation.

Calculation of Redlich and Kwong Constants B and A^2/B

Constants are calculated by a trial procedure for the pure components of the mixture considered. To illustrate, one step of one trial is presented for n-butane at 310 °F.

• Initial approximation of B; solution of equation 17.

В	$= 0.0867 \frac{T_c}{P_c T}$
т _с	= 305.6°F = 765.3°R
Pc	= 37.5 Atm
Т	= 310 °F $= 769.7$ °R
В	$= 0.0867 \frac{765.3}{37.5 \times 769.7}$
B _{c4}	= 0.002299

Similarly, the initial approximation of B for nitrogen at 310°F is calculated.

• Trail calculation of A^2/B ; solution of equation 19.

$$\frac{A^2}{B} = \left(\frac{1}{1-h} - Z\right) \left(\frac{1+h}{h}\right)$$
$$n = \frac{Bp}{Z}$$

To illustrate the calculation assume B = 0.00227 for n-butane at 310°F. From experimental data the compressibility factor Z = 0.397 at 1500 psia (102.07 Atm).

$$h = \frac{Bp}{Z} = \frac{0.00227 \times 102.07}{0.397}$$

$$h = 0.5836$$

$$\frac{A^2}{B} = (\frac{1}{1 - 0.5836} - 0.397) (\frac{1 + 0.5836}{0.5836})$$

$$\frac{A^2}{B} = 5.4396$$

This procedure is repeated for each pressure at which a compressibility factor is available. It has been programmed for computer calculation using Fortan IV language. The Fortran statements for this calculation are presented on page 100. A sample of the printout from this program is presented on page 102 for the trial when B = 0.00227 for n-butane.

Additional trial values of B are assumed until the value of A^2/B has a minimum variation; this determines the values of the constants for the Redlich and Kwong equation for n-butane at 310 °F. Similarly, the constants for other temperatures and other components can be calculated. The constants used for the calculations are presented in Table 5.

• Calculation of A and B constants for gaseous mixtures; solution of equations 6 and 7.

Basis: 30% n-Butane--- 70% Nitrogen at 310°F Constants for pure components at 310°F

	<u> </u>	B	A^2/B
n-butane	0.1068	0.00227	5.0237
nitrogen	0.0220	0.00082	0.5900

 $A_{mix} = X_{c4} A_{c4} + X_{N2} A_{N2}$

 $= 0.30 \times 0.1068 + 0.70 \times 0.0220$

 $A_{mix} = 0.04744$

$$B_{mix} = 0.001255$$

$$(A^{2}/B)_{mix} = \frac{A_{mix}}{B_{mix}}$$

$$= \frac{(0.04744)^{2}}{0.001255}$$

$$(A^{2}/B)_{mix} = 1.793$$

Calculation of Fugacity and Activity Coefficients

• Calculation of the compressibility as predicted by the Redlich and Kwong equation; solution of equation 4.

A form of the Redlich and Kwong equation is given by equation 4,

$$Z' = \frac{1}{1-h} - (\frac{A^2}{B}) (\frac{h}{1+h})$$

where,
h =
$$\frac{BP}{Z}$$

Combining these equations and rearranging we obtain equation 20, i.e.,

$$Z'^{3} - Z'^{2} + \left[\frac{A^{2}}{B} (BP) - BP - (BP)^{2}\right] Z' - \frac{A^{2}}{B} (BP)^{2} = 0$$

This can be put into ghe general form of the cubic equation, i.e.,

$$y^3 + py^2 + qy + r = 0$$

by letting

$$P = -1$$

$$q = \frac{A^2}{B} (BP) - BP - (BP)^2$$
and $r = -\frac{A^2}{B} (BP)^2$

The general form of the cubic can be reduced to

$$x^3 + ax + b = 0$$

by substituting $y = x - \frac{P}{3}$

$$a = \frac{1}{3} (3q - p^{2})$$

b = $\frac{1}{27} (2 p^{3} - 9 pq + 27r)$

The solutions of the reduced form are

$$x_1 = A + B$$
 and x_2 , $x_3 = -\frac{1}{2}(A + B) + \frac{i\sqrt{3}}{2}(A - B)$

where

$$A = {}^{3}\sqrt{-\frac{b}{2} + \sqrt{\frac{b^{2}}{4} + \frac{a^{3}}{27}}}$$
$$B = {}^{3}\sqrt{-\frac{b}{2} - \sqrt{\frac{b^{2}}{4} + \frac{a^{3}}{27}}}$$

(1) $\frac{b^2}{4} + \frac{a^3}{27} > 0$ (2) $\frac{b^2}{4} + \frac{a^3}{27} = 0$ and (3) $\frac{b^2}{4} + \frac{a^3}{27} < 0$

there are one real root and two conjugate imaginary roots,

there are three real roots of which at least two are equal,

0 there are three real and unequal roots

Since the desired solution will always be positive, there is only one unique solution applicable. For the first situation, which occurs most often, there is only one real solution which is the desired solution. For the second situation, this will almost never occur when utilizing computer accuracy and if it did occur, there is only one positive solution. Should situation three occur the above solution is impractical. In this case, the roots are defined as,

$$\begin{aligned} x_1 &= 2 \sqrt{\frac{-a}{3}} \cos \emptyset \\ x_2 &= 2 \sqrt{-\frac{a}{3}} \cos \left(\frac{\emptyset}{3} + 120^\circ\right) \\ x_3 &= 2 \sqrt{-\frac{a}{3}} \cos \left(\frac{\emptyset}{3} + 240^\circ\right) \\ \end{aligned}$$
where, $\cos \emptyset &= -\frac{b}{2} / \sqrt{\frac{a^3}{27}}$

Here again only x₁ will yield a positive real number and is therefore the desired solution.

Application of this procedure and subsequent calculations are presented based on a 30% n-butane - 70% nitrogen mixture at 310°F and a pressure of 1500 psia (102.07 Atm).

From the previous section

$$A_{mix} = 0.04744$$

 $B_{mix} = 0.001255$
 $(\frac{A^2}{B})_{mix} = 1.793$

Therefore

$$P = -1$$

$$q = \frac{A^2}{B} (Bp) - Bp - (Bp)^2$$

$$Bp = 0.001255 \times 102.07$$

$$Bp = 0.1281$$

$$q = 1.793 \times 0.1281 - 0.1281 - (0.1281)^2$$

$$q = 0.0852$$

$$r = -\frac{A^2}{B} (Bp)^2$$

= - (1.793) x (0.1281)²
$$r = - 0.0294$$

$$a = \frac{1}{3} (3q - (P)^2)$$

$$= \frac{1}{3} \left[3 \times 0.0852 - (-1)^2 \right]$$

$$a = -0.2481$$

$$b = \frac{1}{27} \left[2 \times (-1)^3 - 9 \times (-1) \times 0.0852 + 27 \times (-0.0294) \right]$$

$$b = - 0.07507$$

$$\frac{b^2}{4} + \frac{a^3}{27} = \frac{(-0.07507)^2}{4} + \frac{(-0.2481)^3}{27}$$

$$\frac{b^2}{4} + \frac{a^3}{27} = 0.000843$$

$$A = \sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}$$

$$= \sqrt[3]{-\frac{(-0.07507)}{2} + \sqrt{0.000843}}$$

$$A = 0.406$$

$$B = \sqrt[3]{0.03754 - 0.02903}$$

$$B = 0.204$$

$$x = A + B$$

$$= 0.406 + 0.204$$

$$x = 4 - \frac{P}{3}$$

$$= 0.610 - \frac{(-1)}{3}$$

$$y = 0.943$$

or equation compressibility Z' = 0.943

This calculation is repeated at each pressure for which experimental compressibility data are available. The procedure has been programmed using Fortran IV language, for the computer. It is part of the program presented on page 103 and sample results are given on page 107.

• Calculation of residuals

$$\triangle z = z - z'$$
$$\triangle z = 0.951 - 0.943$$
$$\triangle z = 0.008$$

• Calculation of $\Delta Z/P$

 $\triangle Z/P = \frac{0.008}{102.07} = 0.00008$ • Calculation of $\int_{P}^{P} \frac{\triangle Z}{P} dP$

At each temperature and composition a plot of $\frac{\triangle Z}{P}$ was obtained. This plot was then graphically integrated, using a compensating polar planimeter in this instance. The plot is shown in Figure 3 and the integration is given below:

		_x1(ე3
Pressure, Atm	in ²	$\Delta z/P$	$\Delta z/P$
0	0	0	0
100	3.43	9.8	9.8
200	2.56	7.31	17.11
300	2.03	5.80	22.91
400	1.90	5.43	28.34
500	2.26	6.46	34.80
600	2.43	6.94	41.74
700	2.33	6.66	48.40

0.7 $in^2 = 2 \times 10^{-3}$

• Calculation of the analytical approximation of the fugacity coefficient; solution of equation 14.

approx.
$$\ln \phi_i = \frac{B}{B}i$$
 (Z'-1) - ln (Z' - Z'h)
- $\frac{A^2}{B}(\frac{2A}{A}i - \frac{B}{B}i)$ ln (1 + h)

Solving for $\approx \ln \phi_{C4}$ where

$$A_{C4} = 0.1068$$

$$A_{mix} = 0.04744$$

$$B_{C4} = 0.00227$$

$$B_{mix} = 0.001255$$

$$\left(\frac{2}{B}\right)_{mix} = 1.793$$

$$Z = 0.943$$

$$P = 102.07 \text{ atm.}$$

$$h = \frac{Bp}{Z} = 0.1326$$

approx.
$$\ln \phi_{C4} = \frac{0.002^{\circ7}}{0.001255}$$
 (0.943 - 1)
- $\ln (0.943 - 0.943 \times 0.1326)$
- $1.793 \left(\frac{2 \times 0.1068}{0.04744} - \frac{0.00227}{0.001255} \times \ln (1 + 0.1326)\right)$
approx. $\ln \phi_{C4} = -0.5137$

Similarly, values of approx. $\ln \phi_{C4}$ and approx. $\ln \phi_{N2}$ are calculated over the desired temperature, pressure and composition range. This procedure has been programmed for computer using Fortran IV language. The Fortran statements are presented on pages 103 and 104 and a sample of the printout is given on pages 107, 108, and 109. • Calculation of the graphical correction of the fugacity coefficient; solution of equation 15.

This correction factor is obtained by graphically differentiating using the method of intercepts, the curve of $\frac{\Delta z}{P}$ versus composition with parameters of pressure; Figures 8 through 11.

• Calculation of the fugacity coefficient; solution of equation 13.

The calculation of the fugacity coefficient of a component in the mixture is straightforward; the antilog of the summation of the results from the previous two sections. The analytically and graphically obtained values for $\ln \phi_i$ are presented in Tables 6 and 7 along with the respective values of the fugacity coefficients.

• Calculation of the activity coefficient; solution of equation 16.

This again is straightforward once values of the fugacity coefficient have been determined. The activity coefficient is the ratio of the fugacity coefficient of the component in the mixture and the fugacity coefficient of the pure component at the temperature and pressure of the system. Values for n-butane and nitrogen for our sample are given in Tables 6 and 7.

NOMENCLATURE

А	constant for the Redlich and Kwong equation
В	constant for the Redlich and Kwong equation
Í	fugacity of gaseous mixture
fi	fugacity of pure component
h	defined as Bp/Z'
р	pressure in atmospheres
P _c	critical temperature of a component in atmospheres
P*	zero pressure
T	absolute temperature of gas
T _C	critical temperature of a component in units consistent with T
Xi	mole fraction of component i in a gas mixture
Z	experimental compressibility factor of pure components or of the gas mixture
Z	compressibility factor as calculated by an equation of state
γi	activity coefficient of component i
Øi	fugacity coefficient of component i

REFERENCES

- Capik, R. J., <u>Fugacity and Activity Coefficients for Methane Carbon</u> <u>Dioxide System</u>, Thesis, Newark College of Engineering, Newark, New Jersey, (1959).
- Dodge, B. F., "Chemical Engineering Thermodynamics", p. 105, 106, McGraw-Hill Book Co., Inc., New York, (1944).
- 3. Esso Blue Book Physical Constants of Hydrocarbons, p. 1-13, April, 1962.
- 4. Evans, R. B., and G. M. Watson, "Compressibility Factors for Nitrogenn-Butane Mixtures in the Gas Phase", I/EC Chemical and Engineering Data Series, Vol. 1, p. 67, (1956).
- Glasstone, S., "Theromodynamics for Chemists", p. 430, D. Van Nostrand Co., Inc., New York, (1947).
- 6. Sage, B. H., Lacey, W. N., "Monograph on A.P.I. Research Project 37. Thermodynamic Properties of the Lighter Hydrocarbons and Nitrogen", First Edition, American Petroleum Institute, New York, (1950), p. 49 and p. 97.
- 7. Sievering, P. J., <u>Fugacity and Activity Coefficients for Methane-Carbon</u> <u>Dioxide System</u>, Thesis, Newark College of Engineering, Newark, New Jersey, (1958).
- 8. Redlich, O. and A. T. Kister, "I/EC", Vol. 40, p. 345, (1948).
- 9. Redlich, O. and J. N. S. Kwong, Chemical Reviews, Vol. 44, p. 223, (1949).
- 10. Van Ness, H. C., "Use of the Redlich and Kwong Equation of State in Calculating Thermodynamic Properties of Gases from Experimental Compressibility Data", <u>AICh.E Journal</u>, Vol. I, No. 1, March, 1955, p. 100.