
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

12-31-1991

A graphical tool for the simulation of timed petri nets A graphical tool for the simulation of timed petri nets

Javaid Aslam Siddiqi
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Siddiqi, Javaid Aslam, "A graphical tool for the simulation of timed petri nets" (1991). Theses. 2622.
https://digitalcommons.njit.edu/theses/2622

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2622?utm_source=digitalcommons.njit.edu%2Ftheses%2F2622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Thesis Title: A Graphical Tool for the Simulation of Timed Petri Nets

Name of Candidate: Javaid Aslam Siddiqi

Thesis directed by: Dr. Anthony Robbi

Associate Professor

Department of Electrical and Computer Engineering

A highly interactive graphical tool is developed for the drawing and simulation of discrete

event systems involving time constraints. The Timed Petri Net Simulator tool (TPNS) is

capable of simulating systems with deterministic and stochastic delays. Performance and

utilization parameters are collected during simulation for behavior and analysis purposes.

Simulation results are stored in different files (log, verify, utilize, and mark). Conflict res-

olution on the basis of priority or random selection of multiple transitions in conflict is

implemented to handle complex modeling situations. A user friendly interface is devel-

oped for effective interaction between the tool and the user. This interface utilizes pop-up

windows and an on-line help facility.

New Jersey Institute of Technology, Newark, New Jersey

A GRAPHICAL TOOL FOR THE

SIMULATION OF TIMED PETRI NETS

Thesis presented

by

Javaid Aslam Siddiqi

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements
for the degree of

Master of Science in Electrical Engineering

New Jersey Institute of Technology
Newark, New Jersey

December 1991

APPROVAL SHEET

Thesis Title: A Graphical Tool for the Simulation of Timed Petri N(ts

Name of Candidate: Javaid Aslam Siddiqi
Master of Science in Electrical Engineering

Thesis and Abstract Approved by:

Dr. Anthony Robbi Date
Associate Professor
Electrical and Computer Engineering Departrpent

Members of the
Thesis Committee:

Dr. MengChu Ziiou pat-
Assistant Professor
Electrical and Computer Engineering Department

Dr. Daniel Chao Date
Assistant Professor
Computer and Information Science Department

VITA

Name: Javaid Aslam Siddiqi

Permanent Address:

Degree and date to
be conferred: M.S.E.E. December 1991

Date of Birth:

Place of Birth:

Secondary Education: Pakistan Embassy School, Jeddah, Saudi Arabia.

Institutions attended Date Degree Graduation

New Jersey Institute Sept. 1989-
of Technology Dec. 1991 M.S.E.E. Dec. 1991

N. E. D University of July 1983-
Engineering & Technology Feb. 1989 B.S.E.E. Feb. 1989

v

Contents

LIST OF FIGURES ix

LIST OF TABLES xi

PETRI NETS : CONCEPTS, HISTORY AND APPLICATIONS.
1.1 Basic Concept 1
1.2 Introduction to Petri Nets 3

1.2.1 Terminology and Representation 4
1.2.2 Transition Enabling and Firing 5

1.3 Applications 6
1.4 Modeling Systems 7

1.4.1 Finite State Machines 7
1.4.2 Flexible Manufacturing Systems 8
1.4.3 Data Flow Computation 10

1.5 Parallel Activities 11
1.5.1 Communication Protocols 12

1.6 Research Objectives 14
1.7 Overview of Chapters 15

TIMED PETRI NETS 16

2.1 Time hi Petri Nets 16
2.2 Status of PN Models Including Time 17

2.21 Ramachandani's Timed Petri Nets 17
2.2.2 Merlins's Time Petri Nets 18

2.3 Properties of Time Extensions 19
2.3.1 General Model 19
2.3.2 Firing Sequences 19

2.4 Timed Petri Nets and Firing Delays 20
2.5 Stochastic Petri Nets and Transition Delays 21

2.5.1 SPN and transition delays 21
2.5.2 Generalized SPN (GSPN) 21
2.5.3 SPN with Deterministic and Exponential firing times (DSPN) 22

2.6 Status of Current TPNS model 22

vi

TPNS GRAPHICAL USER INTERFACE 25
3.1 Introduction to the User Interface 26
3.2 Pop-up Windows 26

3.2.1 Message Pop-ups 26
3.2.2 Data Entry Pop-ups 26
3.2.3 Alerts and their Application 26
3.2.4 Information Pop-ups 27

3.3 On-line Help Facility 27
3.4 S unview Environment 28

STRUCTURE OF TIMED PETRI NET SIMULATOR TOOL 29
4.1 Modular Programming 29
4.2 Parts of the Tool 31

4.2.1 Graphical Editor 31
4.2.2 Petri Net Simulator (PNS) 31
4.2.3 Timed Petri Net Simulator (TPNS) 31

4.3 Extended Editor Features 32
4.3.1 Automatic Backup And Overwite Protection 32
4.3.3 Action Choices 32
4.3.2 Built-in File Extensions 33
4.3.4 Error Pop-ups 33

4.4 Enhanced Simulator Features 34
4.4.1 Date Stamping 34
4.4.2 Conflict Detection 34
4.4.3 Conflict Resolution By Random Selection 35

4.5 Description of Modules 36
4.5.1 check_cycles.c 36
4.5.2 display_file.c 36
4.5.3 enable_timed.c 36
4.5.4 fire _:immediate.c 38
4.5.5 fire_timed.c 38
4.5.6 net_utilization.c 38
4.5.7 priority_selection.c 39
4.5.8 random_selection.c 40
4.5.9 sort_enabled_trans.c 40
4.5.10 trans_modify.c 40
4.5.11 update_place.c 40
4.5.12 update_remaining_ticks.c 41
4.5.13 vacant,c 41

4.6 Data Structures 41
4.6.1 Places 42
4.6.2 Transitions 43
4.6.3 Arcs 44
4.6.4 Cycles 45

vii

DESCRIPTION AND WORKING OF TPNS TOOL 47
5.1 General Descrption 47
5.2 Net Management 49
5.3 Panel Buttons 49

5.3.1 Load 49
5.3.2 Save 50
5.3.3 Clear 50
5.3.4 Redraw 50
5.3.5 DelSeg 51
5.3.6 DelArc 51
5.3.7 Verify 51
5.3.8 Step 52
5.3.9 Run 54
5.3.10 Help 55
5.3.11 Last Action 55
5.3.12 Display 55
5.3.13 Reset 57
5.3.14 Quit 57

5.4 Panel Object 58
5.4.1 Places 58
5.4.2 Transitions 58
5.4.3 Arcs 59
5.4.4 Tokens 60
5.4.5 Eraser 60

EXAMPLE APPLICATIONS
6.1 An Example of Timed Net 61
6.2 Application of TPNS to FMS 68

6.2.1 System Representation 68
6.2.2 System Operation 68
62.3 System Behavior 72

CONCLUSION 78
7.1 Summary 78
7.2 Future Work 79

7.2.1 Text Processing Program 79
7.2.2 Extensions to the Stochastic Model 79
7.2.3 Extensions to Conflict Handling 79
7.2.4 Integration of TPNS And CPNS 79
7.2.5 Enhancements to On-line Help 79

REFERENCES 81

Appendix-A List of Programs Files used in TPNS 84
Appendix-B List of Image Files used in TPNS 85

viii

List of Figures

Figure # Description Page #

1.1 A simple Petri net 4

1.2 A Petri net (A state machine) representing the state diagram ofa vending

machine, where coine return transition are omitte 7

1.3 A Petri net structure called conflict, choice or decision. It is a structure

exhibiting non determinisim. 8

1.4 A block diagram for a Flexible Manufacturing System. 9

1.5 A Petri net model of FMS in Fig. 1.4. 10

1.6 A Petri net showing a data flow computation for x= (a+b)/(a-b) 11

1.7 A Petri net representing deterministic parallel activities. 12

1.8 A simplified model of a communication protocol. 13

2.1 Equivalence of Timed Petri nets and Time Petri net. 19

2.2 TPNS D TdPNs D Classical Petri nets. 20

2.3 The preselection scheme. 24

3.1 A Tag pop-up window. 27

4.1 A Timed Petri net with ticking transitions. 36a

5.1 TPNS tool Panel Canvas window. 48

5.2 A sample net with 3 places and 2 transitions. 51

5.3 Petri Net saved with a temporary name. 52

5.4(a) User specified termination condition reached. 54

5.4(b) A Petri Net reached dead lock state. 54

5.5 Run mode options. 55

5.6 An on-line Help window. 56

5.7 Display menu. 57

5.8 A Tag pop-up window. 59

5.9 A data entry pop-up for average delay of a stochastic transition 59

6.1 Working example of a Timed Petri net. 62

6.2 Firing diagram. 63

ix

6.3 Utilization file created at the end of simulation for the net of

of Fig. 6.1 64

6.4 A marking file that contains instantaneous state information

at each step for Fig. 6.1 65

6.5 The log file that contains the results of simulation of net in

Fig. 6.1 67

6.6 A block diagram of a Flexible Manufacturing System (FMS). 70

6.7 Petri net model of FMS of Fig. 6.6. 71

6.8 Utilization file created at the end of simulation for the net of

Fig. 6.6. 73

6.9 A marking file that contains instantaneous state information

for each step for Fig. 6.6. 74

6.10 The log file that contains the results of simulation of net in

Fig. 6.6. 75

6.11 Graphical representation of maximizing utilization of M1 & M2 77

x

List of Tables

Table No. Desciption Page#

1.1 Some typical interpretations of Places and transitions 5

4.1 Output file extensions and their description 33

5.1 Connection matrix for net in Figure 5.2 52

6.1 Places and their representation in an FMS application of
Figure 5.15 and 5.16 69

6.2 Transitions and their representation in an FMS application
of Figure 5.15 and 5.16 69

6.3 Simulation results after running net of Fig. 6.1 for 2000 steps 76

xi

PETRI NETS: CONCEPTS, HISTORY
AND APPLICATIONS

Chapter

1.1 Basic Concepts

Petri nets (PN) [1, 2] were originally developed by Carl Adam Petri in 1962 to

model asynchronous concurrent systems. A Petri net is an abstract formal model of infor-

mation flow. The properties, concepts and techniques of Petri nets are being developed in

a search for natural and simple methods for describing and analyzing systems that may

exhibit asynchronous and concurrent activities. As a graphical tool Petri nets can be used

as a visual-communication aid similar to flow charts, block diagrams, and networks. These

nets can simulate the dynamic and concurrent activities of systems.

In many fields of study, a phenomenon is not studied directly, but indirectly through

a model of the phenomenon. A model is a representation, often in mathematical terms, of

what are felt to be the important features of the object or system under study. By analyzing

the model, useful information about the underlying system can be obtained. This informa-

tion might reveal system properties such as deadlocks. A model can be interpreted and used

to incorporate changes without running the tests on an actual system. One fundamental

1

2

idea is that the modeled systems are composed of separate, interacting components. The

components of a system may exhibit concurrent behavior. Activities of one component of

a system may occur simultaneously with other activities of other components. For exam-

ple, in a computer system, peripheral devices, such as card readers, line printers, tape drives

may all operate concurrently under the ultimate control of the computer. In a manufactur-

ing system a number activities take place in parallel.

Conventional systems are unable to model concurrent systems successfully. On the

other hand, Petri nets have demonstrated powerful approach towards the solution of such

concurrency and parallelism problems. Petri nets have proved to be a very useful modeling

technique for systems with some of the following characteristics :

1. Concurrency and parallelism.

2. Synchronous and asynchronous systems.

3. Distributed systems.

4. Nondeterministic and/or Stochastic behavior.

3. Conflicts for resources.

5. Event driven.

These systems are difficult to model accurately with either differential equations or

queuing theory. Petri nets can provide accurate and useful models for the following rea-

sons:

1. Petri nets capture the precedence relations and structural interactions

concurrent and asynchronous events.

2. They are logical models derived from the knowledge of system

operation. Their graphical nature is a good visual aid in the model-

ing process.

3. Deadlocks and conflicts can be modeled easily and concisely.

3

4. Petri net models have a well developed mathematical foundation

that allows qualitative analysis of the system.

1.2 Introduction to Petri Nets

A Petri net is composed of four types of elements : a set of places P, a set of transi-

tions T, an input function I, and and output function 0. The input and output functions

relate transitions and places. The input function is a mapping from a transition Tj to a col-

lection of places I(Tp, known as the input places of the transition. The output function 0

maps a transition Ti to a collection of places I(Ti) known as the output places of the transi-

tion. The structure of a Petri net is defined by its places, transitions, input function and out-

put function.

A Petri net structure, C, is a quadruple, C.: = {P,T,I,O}, where P = {pi, P2, P3,

, pn} is a finite set of places , n 0. T = {t1, t2, t3, , tni) is a finite set of transitions,

m 0. The set of places and the set of transitions are disjoint. P n T = 0. I : T -4 P is the

input function, a mapping from the transitions to bags of places. 0 : T ---> P is the output

functions, a mapping from transitions to bags of places. A basic Petri net structure is

described as follows :

C = {P, T, I, 0)

P = { Pi, P2, P3, P4, P5)

T= {ti, t2, t3, t4}

I(t1) = {Pi, P3, P5) 0(t1) = {P2, P3, P5)

1(t2) = tP2, P3, P5) 0(t2) = (1)5)

1(t3) = {p3) 0(t3) = {P4)

1(t4) = {P4} 0(t4) = {p2, P3)

If we look at the above Petri net description, it is difficult to form a concept of the

actual structure of the net. A graphical representation of a Petri net graph is much more

4

useful for illustrating the concepts of a Petri net theory. A Petri net graph is a representation

of Petri net structure as a bipartite multigraph. A Petri net of the above structure is shown

in Fig 1.1

Figure 1.1 : A graphical equivalent of the above net.

1.2.1 Terminology and Representation

Petri nets consists of places, transitions, tokens and arcs. For graphical representa-

tion of Petri nets the following symbols are used :

• A marking m is an assignment of tokens to the places of a Petri net.

1.2.2 Transition Enabling and Firing
A Petri net is a particular kind of directed graph. It has an initial state called the

initial marking M. A marking (state) assigns to each place a non-negative integer k, we say

that P is marked with k tokens. Pictorially, we place k black dots(tokens) in place P. A

marking is defined as the token distribution in each place is denoted by `m', an m-vector,

where m is the total number of places. The Pth component of M, denoted by M(P), is the

number of tokens in place P.

In modeling, using the concept of conditions and events, places represent condi-

tions, and transitions represent events. A transition(an event) has a certain number of input

and output places. Their marking represent the pre-conditions and post-conditions of the

event, respectively. The presence of a token in a place is interpreted as holding the truth

of the conditions associated with the place. In another interpretation, k tokens are put in a

place to indicate that k items or resources are available. Some typical interpretations of

transitions and their input places and output places are shown in Table 1.1

Table 1.1 : Some Typical interpretations of Transitions and Places

..
Input Place Transition

. ..
Output Place

Preconditions Event Postconditions

Input data Computation step Output data

Input signals Signals processor Output signals

Resources busy Task complete Resources released

Conditions Clause in login Conclusions

Parts Assembly Product

Buffers Processor Buffers

6

The behavior of discrete systems can be described in terms of system states and

their changes. In order to simulate the dynamic behavior of a system, a state or marking in

a Petri net is changed according to the following transition (firing) rules:

1.A transition is said to be enabled if each input place contains at least as

many token as arcs from the place to the transition. For example, t2 in Fig-

ure 1.1, requires a token in each of P2, p3, and p5.

2. Firing of an enabled transition removes a token per arc from each input

place and adds a token per arc to each output place. For example, if T4 in

figure 1.1 fires a token is removed from P4 and a token is placed in each

of p2 and p3.

1.3 Applications

Petri nets have been proposed for a wide variety of applications. This is due to the

generality and permissiveness inherent in Petri nets. They can be applied informally to

any area or system that can be described with flow charts and that needs a means of repre-

senting parallel or concurrent activities. However, careful attention must be paid to a

trade off between modeling generality and analysis capability. The more general the mod-

el, the less amenable it is to analysis. A weakness of Petri nets is the complexity problem,

i.e., Petri net based models may become too large for analysis even for a modest size sys-

tem.

Promising areas of applications include performance evaluation of communication

systems, flexible manufacturing/industrial control systems, modeling and analysis of dis-

tributed software systems, distributed database systems, concurrent and parallel programs,

discrete event systems, programmable logic and VLSI arrays, asynchronousronous cir-

cuits and structures, compiler and operating systems. Other areas of application are local-

area networks, legal systems, human factors, neural networks, digital filters and decision

models.

7

1.4 Modeling systems:

To illustrate the scope and practical importance of modeling using Petri nets the

following examples are given for better understanding.

1.4.1 Finite State Machines

Finite-state machines or their state diagrams can be equivalently represented by a

subclass of Petri nets. As an example of a finite-state machine, consider a vending machine

which accepts either nickels or dimes and sells 15¢ or 200 candy bars. For simplicity, sup-

pose the vending machine can hold up to 200. Then, the state diagram of the machine can

be represented by the Petri net shown in figure 1.2, where the five states are represented by

the five places labeled with 00, 50, 100, 150, 200, and transformations from one state to

another state are shown by transitions labeled with input conditions, such as "deposit 50".

Figure 1.2 : A Petri net (a state machine) representating the state diagram of a vending

8

The initial state is indicated by initially putting a token in the place pl, with a 00 label

in this example. Note that each transition in this net has exactly one incoming arc and

exactly one outgoing arc. The subclass of Petri nets with this property is known as state

machines. Any finite-state machine can be modeled with a Petri net state machine. Place

P1 has two output transitions Ti (5 0) and T2 (100), as shown in Figure 1.3. This situation

is referred to a conflict, decision, or choice because only one of Ti and T2 can fire. State

machines allow the representation of decisions, but not the synchronization of parallel

activities.

Figure 1.3 : A Petri net structure called a conflict choice or

decision. It is a structure exhibiting non determinism

1.4.2 Flexible Manufacturing Systems

One of the promissing areas of application has been Flexible Manufacturing Sys-

tems (FMS). The following section discusses a simple example of a Flexible

Manufacturing System with focus to Petri nets.

In this example two machines Ml and M2 operate on different combinations of

parts arriving form the input buffer. Machine 1 processes individual parts from input buffer

9

1 or 2. The input buffers are labeled as P1 and P2. The AGV is required to transport these

parts to the machines. If both bufferes have parts available than only the AGV is capable

of transporting the parts of machine 2 which is lableld as T4. The place P5 serves as a stag-

ing place for machine 2. Similarly place P3 serves as a staging for machine 1 which is

represented by transition T5. On reaching either machines the AGV is freed and becomes

available for the next transportation. This example show how syncronism as well as flex-

iblity is modeled using Petri nets. Figure 1.4shows the modeled system, where as Figure

1.5 shows its Petri net representation.

Figure 1.4: A block diagram of a Flexible Manufacturing System

1.4.3 Dataflow Computation

Petri nets can be used to represent not only the flow of control but also flow of data.

The net shown in Figure 1.6 is a Petri net representation of a dataflow computation. A data-

flow computation is one in which instructions are enabled for execution by the arrival of

their operands, and may be executed concurrently.

In the Petri net representation of a data flow computation, tokens denote the values

of current data as well as the availability of data. In the net shown in Figure 1.6, the instruc-

11

tions represented by transitions T1 and T2 can be executed concurrently and deposit

resulting date (a+b) or (a-b) in the respective output places.

1.5 Parallel Activities

Parallel activities or concurrency can be easily modeled by Petri nets. For example,

in the Petri net shown in Figure 1.7, the parallel or concurrent activities represented by tran-

sitions T2 and T3 begin at the firing of transition tl and end with firing of transition T4.

In general two transitions are said to be concurrent if they are actually independent ,i.e., one

transition may fire before or after or in parallel with the other, as in the case of T2 and T3

in Figure 1.4.

It has been pointed out [Ref] that concurrency can be regarded as a binary relation

(denoted by e0 on the set of events A = {el, e2,). For example one may drive a car

(event el) or walk (event e3) while singing (event e2), but one can not drive and walk con-

currently. Note each place in the net shown in Figure 1.7 has exactly one incoming arc and

12

exactly one outgoing arc. The subclass of Petri nets with this property is known as marked

graphs. Marked graphs allow representation of concurrency but not decisions(conflicts).

Two events el and e2 are in conflict if either el or e2 can occur but not both, and they are

in concurrent if both events can occur in any order without conflicts.

Figure 1.7: A Petri net (a marked graph) representing deterministic parallel activities

1.5.1 Communication Protocols

Communication protocols are another area where Petri nets can be used to represent

and specify essential features of a system. The liveness (lack of deadlock) and safeness

properties of a Petri net are often used as correctness criteria in communication protocols.

The Petri net shown in Figure 1.8 is a very simple model of a communication protocol

between two processes. Figure 1.8 shows the Petri net representation of a nondeterministic

wait process where trl, tr2, or tout fires if response 1, response 2, or no response is received

before a specified time (tout) respectively.

14

1.6 Research objectives

System performance and behavior can be studied once a system is translated into a

Petri net model. At present, a computer tool with the expertise to model a system with

Petri nets does not exist. Once a system is translated, simulation and analysis of the net

should be automated. Thus there is a need for a graphical computer tool which allows one

to create a Petri net structure on screen and simulate the dynamic behavior of the drawn

net according to the prescribed firing rules. Feldbrugge[17] has given an overview of

available net-based tools. Most of these tools were developed on machines not in use

these days and were used for some particular class of modeling problmes. Later, Chio-

la[18] and Vernon[19] presented more general graphical Petri net tools on SUN3 worksta-

tions running under UNIX` 4.21. These tools however, are not available and modifiable.

The field of modeling using Petri nets is constantly undergoing modifications resulting

from research and development. As a result, it is extremely important that such tool be

available in well-understood source form to enable modifications and development as the

field progresses.

Initial work towards the development of a graphical Petri net tool was made by

Arsalan Gilani [20]. Later Ashish Shukla [21] integrated a simulator for Petri nets with

the graphical editor. This thesis is a continuation of the above work.

Time has been added to Shukla's model to enable simulation of real systems that

have time delays as an important feature. New features have been added to enhance the

editing and simulation capabilities of the tool. Systems with deterministic and discrete

stochastic delays can be simulated and many perfromance and throughput parameters are

derived. Extensive improvements in the user interface have made it possible to learn and

use the tool much easily. The acronym TPNS for "Timed Petri Net Simulator" is used to

refer to the tool described here. Integration of TPNS and CPNS2 into a unified package is

planned.

1 UNIX is a trade mark of AT&T Bell labs

15

The justification for using the SunViewTM environment3, the description of Sun-

View capabilities which contirbuted towards the development of TPNS and the explana-

tion of program specifications and salient features of the editor code are detailed in

Gilani's [20] work. The basic simulator strucutre and description of modes of operation

(i.e. Step and Run) are available as a part of Shukla's [21] work.

1.7 Overview of Chapters

In the following chapters concepts, previous research and current status of timed

net is discussed as a part of the second chapter. This chapter also discusses the status of

the current research in timed nets.

The third chapter describes the TPNS graphical interface and its features. It de-

scribes the user interface and its features. There are many suggested future developments

in this regard. The user interface has been improved and new features are added to it.

The fourth chapter discusses structure of Timed Petri Net Simulator. It mainly fo-

cuses on the file system, type of modules and programs that are required to run this simu-

lation tool. It has a section that describes the data structures used for objects in this tool.

Chapter five is the user manual for this tool. It describes TPNS tool and its working in

detail.

An example for Zubereks papter [8] is used in chapter six to verify the conform-

ance of results. Application of TPNS tool to FMS is given in section 6.2. This section is

completely devoted to the discussion of using the tool for performance analysis. The last

chapter has the concluding remarks and discussion of future work.

i The work of Sanjay Desai towards the development of a simulator for Colored Petri Nets (CPNS) is carved out m parallel to this

work of TPNS and is almost complete. In CPNS tokens and arcs carry information which can be used to model concurrent and inter-

locked systems such as flexible manufacturing systems.

3 SunView is a trade mark of Sun micro systems

TIMED PETRI NETS

Chapter

2

2.1 Time in Petri Nets

In conventional Petri net theory no consideration is given to time [7, 25, 26],

transitions fire instantaneously. Practical systems are constructed from devices which

have a finite speed of operation. For example, in an FMS a finite amount of time is required

for a robot to complete an activity. Almost every practical system requires a finite amount

of time to complete its operation. Since conventional Petri nets do not have time

parameters as part of their definition, they do not contain enough information for

throughput evaluation. Time is introduced into the PNS model to have a more powerful

and flexible method of evaluating system behavior, performance and the throughput

of systems with timing delays.

In order to model time as part of a Petri net model, a new class of transitions is

introduced which is called timed transitions [1, 3, 7, 8, 23]. A finite time delay is associated

with these transitions to model timing behavior. Addition of time to Petri nets has opened

a wide variety of application areas that can be modeled. Different classes of timed Petri

nets and their application is discussed in the following sections.

16

17

2.2 Status of PN Models Including Time

The first two extension of classical Petri nets involving time came around 1973

with the publication of two PhD theses. Ramachandani's thesis [1] proposed a model

called Timed Petri nets (TdPNs) in which a duration or a firing time is associated to

each of the transitions of a classical model. Merlin's thesis in the University of California

Irvine [2, 3, 4] proposed another model called Time Petri nets (TPNs). A third extension

was proposed three years later by Sifakis [5]. In this model a delay is associated to each

place of a classical Petri Net. Later Sifakis, concluded that his model was equivalent

to Ramachandani's model. The model proposed by Sifakis was named in this occasion

Timed Place-Transition nets (TdPTNs)

The classical net obtained from a time(d) net by disregarding all timing information

is called the associated classical net of a Time(d) Petri Net and will be denoted by a

quadruple PN = (Ps, Ts, Is, Os) as discussed in section 1.2, where Ps is the set of places,

Ts is the set of transition, Is is the transition input function such that I(p,t) is the weight

of the oriented arc leading place P to transition T; Os is the transition output function such

that O(p,t) is the weight of the oriented arc leading transition T to place P. The set of

places where I(p,t) 0 will be called the set of input places of T and the set of places where

O(p,t) 0 will be called the set of output places of T.

2.2.1 Ramachandani's Timed Petri Nets
A Timed Petri Net is a couple (PN, C) where PN is a classical Petri Net

(Ps, Ts, Is, Os) and C is the function assigning a real non negative number to each

Ti e Ts called the firing time of transition Ti. Transitions are enabled the same way as in

classical Petri nets (Section 1.2.2). Firing an enabled transition T provokes a two step

marking change.

1. The first step is instantaneous with the enabling of T and provokes a decrement

in the marking of input places as follows

As it can be seen, the marking after a transition firing in a Timed Petri net is the

same as in its associated classical Petri net. When a transition is enabled a firing is

initiated. The above firing rule shows two kinds of states: Active and Inactive states.

Active States: This state is the one where there are active transitions, i.e. transitions

for which firing is incomplete [1, 10].

Inactive states : In this state no transition is active [1, 10].

2.2.2 Merlin's Time Petri Nets
A Time Petri net is a couple (PN, 0), where PN is a classical Petri net PN = {P,

T, I, 0) and 0 is a function assigning a closed interval [al, bi] to each transition ti E

Ts, called the static firing interval of transitions Ti. No restrictions to the lower and

upper bound of the interval is implied, except that bi must be greater or equal to ai. This

means that the lower bound of the static fire interval may be zero and the upper bound may

be infinite.

Transitions are enabled the same way as in classical Petri nets, but firing only

19

occurs within the limits of time defined by the static firing interval beginning from the

moment the transitions was enabled. The firing of a transition itself is an instantaneous

action and produces exactly the same effect as in the classical model.

2.3 Properties of Time Extensions

As result of introduction of time to a classical Petri net model the following

properties are observed:

2.3.1 General Model
The set of all TPNs contains both the set of all classical nets and the set of all

TdPNs. In fact, classical Petri nets may be considered as special cases of TPNs where

all static firing intervals are set to zero. Timed Petri nets may equally be considered as a

special class of Time Petri nets. It is possible to obtain a TPN with the same behavior as

a TdPN if every transition Ti in a TdPN with firing time x is substituted by the subnet

consisting of two transitions and one place as shown in Figure 2.1

2.3.2 Firing Sequences
In TdPNs transitions starts firing as soon as they become enabled. Classical Petri

nets could also be considered as a special class of TdPNs in which all firing times

20

associated to the transitions are set to zero. This is because the set of all firing sequences

in a TdPN with all firing times set to zero is exactly the same as for their associated

classical net. So, if we define net equivalence solely on the basis of the firing sequence,

it is possible to classify classical nets as special cases of TdPNs.

2.4 Timed Petri Nets

There are several variants on this model.

• A variable time can be associated with transitions. This model was introduced by

P. Merlin [2] who used a fixed range of firing times for transitions to model

protocols.

• A fixed time can be associated with transitions so that tokens are removed and

withheld for a fixed period of time before the tokens can appear in the output places

[8, 23].

• A fixed time can be associated withe transitions as a firing delay so that the actual

removal of the tokens and appearance of the output tokens is instantaneous after the

delay has expired [1].

21

2.5 Stochastic Petri Nets

The Stochastic Petri Net (SPN) considers the transition firing and the resulting

marking process to be a stochastic process, usually a Markov process or semi-Markov

process. There are many variants of this model.

2.5.1 SPN and Transition delays

• The common stochastic Petri nets associate an exponentially distributed

random variable with each transition for the time to fire the transition [7],

[12].

• Another model used more general distributions of time [14].

• The generalized stochastic Petri net (GSPN) adds a transition that takes zero

time to fire, the immediate transition [15].

• Another variant allows the random selection of which tokens to remove and

which tokens to add to the output places [16].

There are several variants depending on the rule for conflict handling. The

selection of which transition to fire in a conflict may occur independently of the firing time

(this is called preselection, see Section 2.6) or the firing of the transitions may be

considered to continue in parallel so the transition selected is the transition with the

minimum firing time.

2.5.2 Generalized SPN (GSPN)

GSPN, that were introduced in [14], try to cope with the problem associated with

the explosion of the number of MC states by defining two types of transitions: timed

22

transitions (drawn as boxes) and immediate transitions (drawn as thin bars) [23] . An

exponentially distributed firing time is associated with timed transitions, whereas

immediate transitions are defined to fire in zero time with priority over timed transitions.

It was shown that GSPN are still equivalent to Markovian models and that their solution

can be obtained with less effort than it is necessary for SPN.

2.5.3 SPN with Deterministic and Exponential Firing Times (DSPN)
DSPNs is an extension of GSPN model, which allows firing delays of timed

transitions to be either constant, or exponentially distributed random variables [23].

2.6 Status of Current TPNS model

In the current TPNS model each transition takes a positive amount of time to fire.

When a transition is enabled a firing can be initiated by removing a token from each of the

T's input places. This token remains in the transition [7, 12, 23] for the "firing time" and

the transition is represented on the screen as a thick solid block. This representation

provides visual effects during net execution. Firing terminates by adding a token to each

of the t's output places. Each of the firings is scheduled at the moment it is enabled [8],

[23]. This is expressed in greater detail later in this section.

Operation of a timed net can thus be considered as taking place in "real time" and

it is assumed that it starts at time (t = 0). At this moment the firings of the timed

transitions enabled by the marking mo are initiated and the tokens are removed from their

input places. Then, after the time determined by the smallest firing time of the enabled

transitions, the tokens are deposited in the appropriate output places creating a new

marking and a new set of enabled transitions. Timed transitions can have deterministic or

stochastic delays [23] depending on what is modeled.

23

Preselection
The method of preselection is used for transition firing [8, 23]. Consider the

example in Figure 2.3. Transition T2 has a constant delay of 7 time units where as T1 has

a lesser delay of 3 time units. With an initial marking mo = (1, 0) and CLOCK = 0, T1 and

T2 will be in conflict. If T2 is selected as a result of conflict resolution, then the token in

Pi will be absorbed by T2. This token will be held for 7 time units. If in the mean while

(say at CLOCK = 1) a token arrives in P2 from P3, T1 requires a token in P1 and P2 to get

enabled. If the token held by T2 is available for Ti, then T1 can fire earlier (at CLOCK =

4). Where as if T2 retains that token then it will fire at CLOCK = 7. For this situation some

researchers have allowed the token absorbed by T2 to be available for Ti. Others allow the

preselection scheme in which that token will be held by T2 until it fires. This pre-selection

scheme has been used in TPNS tool.

To justify the use of this technique the following aspects are presented :

1. The technique will permit a fair policy of firing. If T2 is disabled due to

the appearance of a token in P2, then T2 possibly may never fire.

2. Assuming these transitions to represent a process (drilling process) and

a token absorbed by it as a piece of metal to be drilled, then reassignment

of the token to T1 will require recording state of the token at the time of

reassignment with respect to T2. This will involve maintaining lot of

history information relevant to all the involved objects. The preselection

method eliminates this requirement.

This technique is explained here to give a clear idea of the TPNS tool behavior in such sit-

uations. Users of this tool are subject to this rule and are required to create models with

due consideration to this scheme.

TPNS GRAPHICAL USER INTERFACE

Chapter

3

3.1 Introduction to the User Interface

Most computer aided design and software application developers keep revising

their user interfaces. Work is constantly done towards the improvement of the user

interfaces for application software based on users feedback. A user interface may simply

be defined as the interface between the human behavior and the capabilities and features

of an application. For example if a user clicks a mouse button on an object, selects an

option from a pull-down menu or requests loading, saving or printing action he expects

a feedback about the completion, success or results of that action. A user may requests

for help while he is in the middle of some activity and expects for helpful directions related

to his situation. This is called case sensitive help. These features along with many others,

constitute a user interface for an application software. The measure of success of a user

interface is user satisfaction in terms of comfort of use and ability to learn and operate

quickly. Therefore, an application can be very powerful, yet lack of a suitable user

interface can result in considerable failure for that software. Developing a user interface

for an application requires the addition of many features. For the PNS, the interface was

in its preliminary stages. As a part of developing TPNS considerable attention is given

25

26

towards the improvement of this aspect.

3.2 Pop-up Windows

To draw immediate attention a pop-up window with a message is a very effective

technique. Normally these windows suddenly appear in the middle of the screen.

3.2.1 Message Pop-ups

These pop-up windows can be examples to inform the user of an action and its

status (i.e. failure or success). An interpretation of a result, an error message and a help

message are examples. Such pop-ups are extensively used for TPNS tool. When an invalid

button on the Panel is clicked, an error message appears in a pop-up window with a brief

description of the invalidity and some hints (where required) on how to correct it.

3.2.2 Data Entry Pop-ups

These windows can be used to request the user to input some data. In this way the

user is prompted for input in a very prominent way. The alternative is to prompt the user

for input in the parent window, which may be hidden behind the tool window. A

disadvantage of using the parent window for user input is that, in most cases, a new

user may not even realize that data entry is required. Using a pop-up window for this

purpose eliminates the possibility of getting stuck.

3.2.3 Alerts and their Application

Alerts are, pop-up windows that require mandatory user attention. When an Alert

is called it displays a pop-up window with a message and one or more buttons. The only

action a user can take is to click the Continue button. Another type of Alert has two

buttons, one to Confirm and one to Cancel an action. The third type has multiple options

and buttons.

27

3.2.4 Information Pop-ups
A good example of this kind of pop-ups is the Tag pop-up. This pop-up window

contains information either about a transition or a place. The following information is

available for a place.

3.3 On-line Help Facility

An on-line help facility is designed for the TPNS tool to provide help on different

topics and features of the tool. The help facility consists of a Panel window with a tty

subwindow attached to it. The Panel consists of buttons labeled by the help topic. A sub-

directory Help is created in the current P_Nets directory. The file structure is as

follows:

28

1. How to Load/Save 2. Re-setting parameters

3. Using the Eraser 4. Displaying files

5. Using tokens 6. Net utilization

7. Deleting Segments 8. Net marking

9. Deleting Arcs 10. Getting started

11. Using Redraw 12. Using Verify

All the above topics provide concepts and working steps and hints where required.

The help facility is designed such that it reads the text file for a particular topic and displays

it on a tty subwindow, which will be discussed later in Section 5.3.10.

There has been a recent upgrade in SunView that can be a very convenient source

of help for the future version of this tool. A new Panel attribute has been added to the

existing list of attributes. This attribute (HELP DATA) is specified with every Panel

object and all structures such as (canvases, tty subwindows, etc). A tag is attached to this

attribute which is used to lookup for the help text related to that object or structure. This

help text is stored in a specially formatted file that has these tags as markers to

differentiate between help text on different topics [24].

3.4 SunView Environment

SunView (SUN Visual Interface Evironment for Windows) has been selected for

TPNS. SunView is a system to support interactive graphic based applications running

within windows. The runtime system is based on a central Notifier which distributes input

to the appropriate window, and a window manager to manage overlapping windows. The

exchange of data between applications running in separate windows (in the same or

separate processes) is facilitated by a Selection Service. Sunview is an object oriendted

system. Think of sunview objects as visual building blocks which you use to assemble the

uers interface to your application. Different types of objects are provided, each with its

paticular properties; you employ whatever object you need for the task at hand.

Technically, an object is a software entitiy presenting a functional interface [24].

STRUCTURE OF TIMED PETRI NET

SIMULATOR TOOL

Chapter

4

4.1 Modular Programming

Programming is the art of converting a sequence of mathematical steps or a

modeled system into computer instructions in a particular format that is executable

by a computer. With time and experience programmers have learned techniques to

develop programs more efficiently. Modular programming is one of these techniques.

Programs written using this method are easily understood by others as well as being easy

to debug and modify.

In modular programming control resides in the main module. Smaller functions

inside the main program or separate programs that are included or linked with the main

module perform a special or specific task. These functions or modules are usually

written in such a way that they can be called from different parts of the main program or

from inside other functions or programs. Therefore, generality of these functions is

important. Parameters are passed to these functions or modules and results are passed

back (returned) to the calling function or module. For example a function to sort an array

or a linked list of structures can be called repeatedly from different locations without

29

30

writing code for each individual situation. Writing different modules(programs) for a

particular task and including or linking it to the main module reduces the size of the main

module and thus reduces the compilation time which results in ease of debugging and

accelerates modification process.

The current work is a third phase in the development of a highly interactive

and user friendly graphical interface for the simulation and performance analysis of

Timed Petri Nets. At the end of the second phase [21] the tool was in the form of a

single large file. A decision about the future file structure was required. There were the

following two choices :

Choice 1
The programming language used for this tool is C. It was suggested to break down

the main module into large number of separate smaller modules based on their functions.

Then by making use of the make utility these files could be linked. Make creates

object modules of all files and every time it is executed, it recompiles only the modified

modules. This technique would result in saving considerable compilation time. The use

of this technique was postponed because of the large file size and the amount of time

required for debugging and bringing the tool back to working order. The prime objective

at the beginning of the third phase was to introduce time to the tool, making it possible

to model, simulate and analyze real time systems and applications.

Choice 2
As an alternate to the above method it was suggested that all possible new

modifications to the current tool along with the work done in the third phase, will be

added as separate program files. These files are then included in the main module as :

#include "filename.c"

This procedure does not reduce the compilation time, but eases and accelerates

the debugging process.

31

4.2 Parts of the Tool

The overall structure of the tool can be divided into three basic functioning parts:

4.2.1 Graphical Editor
The Graphical Editor was developed as a part of the first phase [20]. This part

provides drawing, editing, saving, loading and other basic editor functions. The tool runs

under SunOs in SunView environment. SunView library functions are called to perform

different graphical and windowing functions [20, 24].

4.2.2 Petri Net Simulator

The Petri Net Simulator was added to the existing tool as a part of the second

phase[20]. The PN Simulator runs in two modes. The first mode is the "Step" mode, in

which the net is executed for one step. A step is defined as the transition from one state

to the next state by firing all enabled transitions simultaneously. The second modes is the

"Run" mode in which the user can precisely control the extent of execution by specifying

the number of steps to run or defining a certain termination state. A history file which

describes the total population of tokens, transitions fired and net marking at every step is

also created. The log file can be used later for performance and / or throughput analysis.

4.2.3 Timed Petri Net Simulator

The TPN Simulator is developed as a part of the third phase (this work). Now the

tool is capable of modeling real systems with time as an important characteristic. Timed

Petri Nets carry timing information [1, 8, 9, 12] as a part of the transitions. A deterministic

or a stochastic delay is associated with each timed transition. Two new objects

representing a time transition, with both horizontal and vertical orientations are added to

the objects in the Panel window (Figure 5.1). The two modes of simulation, "STEP" and

"Run" perform in the same manner with due consideration to timed transitions. The

definition of a 'STEP' for a net with timed transitions has changed considerably and will

be discussed in Section 5.3.8. In 'Run' mode the "STEP" mode is repeatedly called until

the required state is reached or a deadlock occurs. During the execution of a net in

32

either mode a CLOCK called (the System Clock) ticks to determine the overall execution

time and all relevant timing information for performance and throughput analysis.

4.3 Extended Editor Features

As a part of this work many features were added to enhance editing capabilities of

the Graphical Editor. These features are discussed below.

4.3.1 Automatic Backups and Overwrite Protection

Every user is prone to mistakes. Sometimes these mistakes can be a disaster. In

saving a new file or a modified version of an old file with the same old name, a user can,

by mistake, overwrite very important informations. Therefore, the feature of automatic

backup is added to the existing editor. When a user requests saving a file with an existing

file name, he is warned about the existence of the old file with the same file name and is

given an option to cancel his action. If the user still chooses to continue deliberately or

not a backup of the old file is created with an extention "bak" (the user is prompted of the

backup action). In this way, a disaster situation can be avoided.

4.3.2 Action Choices

In most cases where the user is given set of preset choices he is prompted about

it using ALERTS (Section 4.3.4). These action choices have a uniformity of display.

The actions are numbered (1, 2, 3, etc) and a short description of the action is followed

by every number. At the bottom of the action window 13013-111), buttons are labeled as

By making these action choices uniform, the user gets familiar with the format

of these pop-ups and chances of clicking the wrong choice button are reduced. The

addition of this feature saves the user from swithcing between parent and tool window

for choice selection requiring keyboard strokes. Important goals are to enable the user

to rely on mouse clicks for most actions and reduce keyboard usage.

33

4.3.3 Built-in File Extension
Saving or loading a file requires the supply of a filename without any extension.

To identify files that are created as a result of a simulation session the following extension

are predefined and are used as standards as shown in Table 4.1..

Table 4.1: Output file extentions and their description

Extension Abbreviates Description

*.pic Picture This extension is automatically added for any Petri net picture file

*log Log This extension is added for the history file that is created in "Run"
mode. This file contains all the necessary information about net
activity in each STEP.

*.vfy Verify This file is created in "Run" mode only and contains the initial
connection matrix for places and transitions. The net connection
can be obtained independently at any time by pressing the Verify
button.

*.bak Backup This file is the backup version of the edited file.

* . util ize Utilization This file is created at the end of "Run" mode only and is used for
transition and place utilization and behavior. The information can
be used for performance and throughput analysis.

*.mark Marking This file contains the instantaneous marking of a net.

4.3.4 Error Pop-ups
If a user presses a wrong button or does an illegal action then, irrespective of any

damage, he should be prompted of the error. The best way to do this is by popping up

a small window with an error message. To ensure user's attention, a button press is

required to continue. Such error messages catch user's attention and reduces the possibility

of similar future errors. These pop-up windows are called ALERTS. When this window

is displayed on the screen, the whole screen is frozen and TPNS waits for the user to

press Continue.

34

4.4 Enhanced Simulator Features

The Petri Net Simulator tool is able to detect and resolve conflicts up to a certain

level. In order to expand the scope of this tool the following features are added to the

existing model.

4.4.1 Date Stamping
At any point during simulation users may want to stop the simulation process with

the specified token distribution (Marking) and/or transition delays (if time transitions are

present). They may wish to edit these parameters without doing any modification to the

structure of the net (i.e. deleting, modifying or adding any place, transition or arc) and run

simulations a number of times with modified parameters for performance analysis, and

keep all results in the same log file.

In order to be able to distinguish results from different runs they must be

separated. We can use the exact time of the clock and date information to be stamped

to the log file before the start of each run. In the above mentioned case the users will

request to append the results of every run to the existing log file (Figure 5.5). For initial

marking information a verify file (*.vfy) is also stamped with time and date informations.

In this way it becomes easy for users to analyze a log file containing results of many runs

at different times withan exact track of initial marking at every time. In order to avoid

unnecessary log files to occupy large space on the disk, each time the users finish

working with one net and requests loading or simulating another net they are asked to

delete or keep the log file (if one exists for the recent Petri net file).

4.4.2 Conflict Detection

The PNS model was designed on the assumption that there will be only two

conflicting transitions per conflict resolution. Detection of conflicts involving more than

two transitions and situations with more than one conflicts involving n number of

transitions in conflict was beyond the scope of their thesis research [20]. To be more

general and allow more complicated multiple conflicting situations the tool has been

35

upgraded to handle a variety of complex situations. Now the tool is capable of detecting a

number of simultaneous conflicts where every conflict may have m number of transitions

in conflict. This enhancement will increase the flexibility of the tool to model

concurrent systems with very complex multiple conflicting situations.

4.4.3 Conflict Resolution By Random Selection
If a situation is detected with more than two transition in conflict requiring random

selection for conflict resolution than due attention should be given to the fact that the

random selection of one out of n transitions follows the equal opportunity rule. In case

of two transitions of the same priority in conflict each transition has a probability of

selection of 0.5. Similarly if the number of transitions is 5, then each should have the

probability of selection of 0.2.

The PN Simulator was designed with consideration to allow two transitions, at

the most, to undergo conflict [20]. Therefore, in TPN Simulator this restriction was

removed and equal opportunity rule is applied for random selection of any number of

transitions.

4.5 Description of Modules

The modules that are added to the main program are discussed in the following

section. These modules are listed alphabetically as follows :

check_cycles.c sort_enabled_trans.c

display_file.c tran s_modify. c

enable_timed.c update_remaining_ticks.c

fire jrnmediate.c update_place.c

fire_timed.c random_selection.c

net_utilization.c

priority_selection.c

These modules are included in the main program as discussed in Section 4.1.

36

4.5.1 check_cycles.c
The following module is called at the end of each STEP in "Run" mode simulation

to check the initial marking. If that marking is found, the structure for cycle is updated.

The fields in the cycle structure are self explanatory. If the "Run" mode is requested by the

user for a net then the present marking for the net is recorded. This marking is checked for

occurrence at the end of every step. If a match occurs, the time of the day from the system

clock is assigned to that particular cycle along with the cycle number (which is nothing but

the cycle occurrence sequence). This feature can be extended to detect any repeated

marking in the net to detect cycles of a user- supplied marking. A similar feature is also

available at the time of selecting a "Run" stop criterion. The user has an option of selecting

a particular marking as a terminating point for a "Run" mode. This TPNS feature can be

handy to detect cycles while running with a different terminating conditions.

4.5.2 display_file.c

This module is called as a result of clicking a button on the Panel window. The user

is asked to select from four options, namely,

1. To display the current log file.

2. To display the current connection matrix (known as the verify file).

3. To display the current utilization file.

4. To display the current marking file.

Section 5.3.12 discusses the Display button in more detail.

4.5.3 enable timed.c

This module is called to enable timed transitions. This module performs the

following functions.

1. If the input places have sufficient tokens to permit firing, tokens are

removed from the input places.

2. It modifies all the enabled time transitions and their pictorial

representations (Figure 4.1).

37

3. In case of a stochastic transition, it calls the function

Get_Exponential_delay to calculate the discrete stochastic delay.

Every time a stochastic transition is enabled, a discrete stochastic delay

is calculated. A random number is generated which is used to calculate

the random variable (delay). The function uses the regenerative

approach for producing a random number which is later used for

generating a random variable. The regenerative random number method

is used for simulation consistency. In simulating a net a user will be

interested to run the simulation with the same set of values for random

variables. His main focus will be on the net behavior with different

average delays (stochastic transitions),different transition delays

(deterministic transitions) and perhaps a different set of markings.

38

4.5.4 fire immediate.c

This module is called to fire all immediate transitions. It removes tokens from all

input places of enabled immediate transitions and places tokens in all output places

updating the associated structure. The utilization parameters are also updated in this

module.

4.5.5 fire timed.c

This module is called with two parameters, the stucture of the selected transition

and the amount of delay by which the system clock has to be advanced. In order to advance

the system clock, first the enabled timed transition with the minimum amount of delay is

selected [8]. When the selected transition fires, the system clock is advanced by the

transition delay. The sequence of execution and the steps will be similar to firing an

immediate transition above. This module also modifies the pictorial representation of a

fired timed transition from a black solid bar to a hollow bar to represent the release of

tokens by that transition.

4.5.6 net utilization.c
This module is called at the end of the "Run" mode. It creates a file showing the net

utilization and behavior in terms of transition and place utilization. This file is created in

the current directory with the notaion filename.utilize. Filename is the name for the net

and utilize is the standard extension added to the file.

(a) Transition Utilization

All transitions are tabulated against the following parameters

The number of times fired: Number of times a transition fired.

Busy: % Busy = (Total wait time of transition * 100) / run time.

Involved in conflict : The number of times the transition was involved in conflict.

Success: The number of times it won the conflict and fired.

Transition utilization can be checked in STEP mode using Tag pop-up.

39

(b) Place Utilization and Behavior

All places are tabulated against the following parameters

Total number of tokens enterd this place: Total tokens entered the place.

% Duration for which plarr was Occupied: Duration for which a place was vaccant.

A place is said to be vacant if there is no token in the place and all the timed transitions for

which this place is an input place , are not enabled.

The module vaccant.c is called to check if a place is vaccant at some point during

simulation. This module calls the token functions to check the above described condition.

If both calls to token return 0, the place is vaccant otherwise occupied. Place utilization can

be checked in STEP mode using Tag pop-up.

(c) Cycles detected

In "Run" mode the net checks by default the number of times the initial marking of

the net is repeated and records the system time at that cycle (Section 4.5.1). If the initial

marking is not repeated it reports that also.

4.5.7 priority_selection.c

This module checks the list of ready (enabled) transitions and deletes all those that

are in conflict except the one with the highest priority (e.g. Priority 0 is higher than Priority

1 or 2). It than updates the linked list of ready transitions. Handling of the updated linked

list becomes easier and simpler for the next modules and functions.

40

4.5.8 random selection.c

This routine is called to resolve conflicts between two or more transitions that have

equal priority. In this situation one transition has to be selected out of those in conflict.

The PNS tool [21] was capable of handling two transitions in conflict. Here one of the

conflicting transitions is retained in the list of ready transitions and all the loosers are

deleted. As a result of this updat the linked list of ready transitions contains only those

transitions that are enabled and non-conflicting.

4.5.9 sort enabled trans.c
This module performs sorting of the linked list of ready transitions (this_rdy_trans

& first_rdy_trans) which at this stage contains only timed transitions. The linked list is

sorted in an ascending order on the transition delay. For stochastic transitions, the discrete

transition delay is already calculated (Section 4.5.3) during the execution of

enable_timed.c. The selected transition is the one with the minimum delay. In case of a

more than one enabled time transitions with the same minimum firing delay then all of them

are retained in the list and are fired at the same time in fire_timed.c.

4.5.10 trans modify.c
This module is called once from enable_timed.c to convert the pictorially the

hollow timed transition bar(representing waiting state) to a solid black bar representing a

transition that has absorbed a token and is ticking. When the timed transition fires this

module is called to convert the solid black bar into a hollow bar representing release of

absorbed tokens.

4.5.11 updateplace.c

This routine is called at the end of each step to modify each place's utilization

parameters. Place occupancy is calculated on the basis of how long it was vacant. Another

module "vacant.c" is called to find out if a place is vacant or not. This routine calculates

the total accumulated time for which the place has remained vacant.

41

4.5.12 update remaining_ticks.c
This module is called to update the timed transitions that are ticking. At every step

the CLOCK is moved up by the minimum delay of all the enabled transitions. Remember

that the conflicts are already resolved. The timed transition with the minimum delay is

selected. At the end of each step the active clock for every ticking transition is updated by

subtracting the delay of the selected transition from it. The active CLOCK for every

transition is a field in the structure of transition.

4.5.13 vacant.c
This routine is called from the update_place.c to find out if a place is vacant or not.

This decision is taken on the basis of conditions discussed in Section 4.5.6(b). The vacant

module returns 1 if a place is found vacant, otherwise 0. Based on the place's vacancy the

percentage place occupancy is calculated as its compliment. The Tag pop-up window can

be used at any time during simulation for place utilization. The utilization file contains

these information besides some others.

4.6 Data structures

The TPNS tool is written using the SunView library. SunView is a notification

based [20, 24] based event driven environment. Therefore, all the procedures are written

keeping the underlying notifire in mind. During the initial setup all the procedures are

registered with the notifier and then the notifier invokes each of them when the related event

occurs. The basic requirement to write any software is the definition of the data structures

which will hold the details of different objects. For TPNS we mainly rely on the data type

"structure" used in C language. Petri net places and transitions are described in linked lists.

Following is description of each data structure.

The first integer place_no hold the place number of the object. This number is

automatically assigned to the place at the time of drawing. The fields pl_loc_x and

pl_loc_y hold the positioning details of the place in the xy plane. The integer no of tokens

holds the number of tokens in a place at any moment. The fields tokens_in, total_tokens_in,

avt, vls and nvst are used for calculating the number of tokens entered a place dunng a run

and the total vaccant time of a place. For definition of place vacancy refer to Section 4.5.6.

A tag field hold the tag and the comment field hold any definition or description related to

the place. The structure *next_place is a pointer which points towards the next place in the

linked list.

Character fields :

The orient field holds the orientation of the object (v: vertical, h: horizontal). The

trans_type hold the type of transition (t: timed, i: immediate). The tag field hold the tag

which is assigned to a transition by the tool (Tx, where x is the transition number). The

44

comment field is 60 characters long and can describe function of a transition or contains

remarks about it.

Integer fileds:

The tr loc x and tr_loc_y hold the positioning details of the transition in the xy

plane. Priority holds the priority of a transition to fire in case of conflict. The field conflicts

contain hold the number of times a transition was in conflict where as conflict success

holds the number of times it won the conflict. The field total_delay is used to calculate the

total time a transition was in wait state (i.e. ticking). The total_firing field determines the

number of times a transition fires. The field trans_delay is only used for transitions with

deterministic delays. The remaining_ticks field is used during simulation. This field is

used to keep the ticking transitions in a net up to date. The trans_no field holds the number

assigned by the simulator to a transition. The avg_delay field is used by time transitions

with discrete stochastic delays. The waiting_tokens field is used to keep track of the

number of tokens absorbed by a transition. This field is set to one whenever a time

transition is enabled. It is set to zero when the transition fires. The last four fields in the

transition structure are pointers to the structures of the first arc coming in, the first arc going

out, the next transition, and the structure of next ready transition. A float field is used for

utilization. This contains the transition occupancy as a percentage of the total time for

which a net is simulated.

The struct place *arc jnout holds the address of the place to which this arc is going

out or coming from. Struct arc *next_arc is a pointer to the next arc in the linked list.

Besides the data structures described above which are essential to find the interrelationship

45

of different objects, there is another data structure which is important for editing purposes.

It is as follows :

The integers xl, yl and x2, y2 holds coordinates of two ends of a line. Integers

pl_no and tr_no hlod the place number and transition number of the place and transition

which are connected by this line. The struct del_arc *other_arc points towards the last or

first member of the structure which belongs to the same arc and struct del_arc

*next_del_arc points to the next member of the linked list. This is a linked list of all the

line segments drawn to connect a place to a transition.

4.6.4 Cycles
Cycles are stored in a data structure which is as follows :

46

cycle_no holds the number of cycle. The cycle_time holds the time of the day at which that

cycle is detected. Knowing the elapse time can be helpful for finding time between cycles.

The thir field is the pinter to the next structure *next_cycle.

DESCRIPTION AND WORKING
OF TPNS TOOL

Chapter

5.1 General Description

The Timed Petri Net Editor and Simulator (TPNS) runs on SUN3 and SUN4

workstations under suntools utility based on SunView providing a graphical user interface.

Figure 5.1 shows the appearance of the tool on the workstation screen, a high resolution

bit-mapped CRT with 1152 X 900 pixels. The upper window is a panel which governs the

editor. The big window below is the working space of the editor. The working space has

two scrollbars (one horizontal and one vertical) to move the visible part of the main

window over the whole net space. The grey bar in the scroll bar represents the visible part

of the whole size, and can be moved by clicking the right or left button of the mouse at the

point at which one wants the center of the visible part. In the following sections the

acronyms LMB, MMB, RMB will be used to indicate the left, middle, and right mouse

buttons, respectively. A header displays the name of the tool "A Graphical Timed Petri

Nets Simulator"

47

49

5.2 Net Management
The Panel window contains many items. When the tool appears on the screen the

directory item appears in the top left corner of the Panel window. This item is by

default set to the current directory. The user can edit this item to specify a different path.

This directory path is used for loading or saving files. This path is read by a SunView

library function as follows :

This string variable can be used to specify the location for saving or

loading a file. The second item that appears below the directory item is the File

name item. This is an empty string of length described by MAX_FILENAME_LEN defined

in the beginning of the main program file (tpns. c). The user is required to type in the

filename. This file name is read into a string_variable as follows :

5.3 Panel Buttons

There are fourteen buttons on the Panel for Petri nets editing and simulation and

results display. These are Load, Save, Clear, Redraw, DelSeg, DelArc, Verify, Step, Run,

Help, Last Action, Display, Reset and Quit. The following section discusses these buttons

and their functions in more detail.

5.3.1 Load
When the LMB is clicked on the this button , t loads the file described in the File

name item into the net working area. Loading a file clears any previously edited net.

Loading a net is a three step process integrated into one step. The following sequence is

followed:

1. The clearallproc is called to clear any previous net structurere from

memory and screen.

50

2. Loads the file into memory using the load_proc.

3. Draws the net on the canvas using redraw_proc .

If there is no file name specified or there already exists a file in memory the user is

warned. When this button is clicked with a loaded net on the canvas, the simulator

searches for the generated files (log, verify, utilization, and marking) of the most recently

loaded net (if there was a net loaded before the current net). If these files exist, then the

user has the choice to delete them or keep them. The purpose of this is to immediately free

disk space.

5.3.2 Save
When the LMB is clicked on the Save button, it saves the net drawn in the canvas

window with the file name specified in the file item. If there is any previous version of

that file the, user is prompted about it. If the user still continues then a backup copy of the

older version is saved with the same file name and an extension of "bak". This prevents

accidental loss of important data.

5.3.3 Clear
When this button is clicked, the whole net working space is cleared. Any

information not saved is lost. If there exists a net on the canvas, the user is notified.

5.3.4 Redraw
This option may be needed to redraw the whole net during an edit session.

Clicking the LMB on this button will redraw the whole net. This can be used to redraw

arc connections to a timed transition if transition type is changed or refill the fine

connections at the intersection of arcs or redrawing the arrow-heads. The redraw function

will refer to the loaded net in memory for redrawing a net.

51

5.3.5 DelSeg
This button is used to delete the last line segment drawn. This button is primarily

used for editing while drawing. Every time this button is clicked, a segment is deleted.

5.3.6 DelArc
This button is used to delete an entire arc. To delete an arc the LMB is clicked

once at one end and then at the other end of the arc. When the first arc end is successfully

selected, a message pop-up instucts the user to select the other end. Once the second end

of the arc is selected a message pop-up prompts 'press the RMB'. The position of the

cursor is not important while clicking the RMB. Clicking the RMB once will delete the

entire selected arc.

5.3.7 Verify
This button is used to print the connection matrix between the transition and places

in the parent window. A user may draw a net with arc connections that looks correct on

the canvas, but the stored structure is incorrect. This matrix can be used to verify whether

the net drawn in the canvas is interpreted correctly by the tool or not.

52

Table 5.1 : Connection matrix for net in Figure 5.2

Transition # Input places Output places

1 1

1 1

1 2

2 1

2 3

This shows that transition Ti has 2 input arcs from place P1 and one output arc to

place P2. Transition T2 has one input arc from place P1 and one output arc to place P3. If

this table does not agree with user intentions then check for errors. If a net is loaded with

errorneous connection information, an error message pops up indicating the error and its

location.

5.3.8 Step
This button is a part of the simulator. When a net is loaded into the canvas it can

be stepped. Simulation using Step mode can not be carried out immediately after drawing

a net on the canvas. The drawing has to be saved first and then loaded before simulation.

If the user requests to simulate a net in Step mode immediately after drawing a net, he is

given a choice to save the file with a temporary name "temp . pic" (Figure 5.3) or

select the Save option from the Panel window by specifying a file name in the File

name item.

53

Once the file is reloaded, simulation can be carried out. There can be only timed

transitions (status =1) or immediate and timed (status = 2), or immediate transitions only

(status =3) in the net. The net status is determined before execution of a step. Based on

the net status the corresponding section of the step procedure is called. The Step is defined

in three different ways depending on the net status.

Timed transitions only (status = 1)

If there are only timed transitions in the net, then the following sequence of steps

are taken to complete one step :

1. Resolve conflicts on the basis of priority or random selection.

2. Update the list of potentially enabled transitions. The updated list contains

transitions which are independent (not in conflict).

3. Enable ready timed transitions. Remove input tokens and add tokens to timed

transitions. These timed transitions are displayed as solid thick rectangles.

4. Update linked list of timed transitions by sorting in an ascending manner.

5. Update the remaining ticks for the ticking transitions.

6. Fire the timed enabled transitions with least delay and place output tokens.

7. Advance CLOCK by the delay of the timed transition fired.

8. Report activity to logfile (if called from RUN procedure).

Timed and immediate transitions (status = 2)

If there are both timed and immediate transitions in a net, then the following

execution sequence is followed to complete a step :

1. Resolve conflicts on the basis of priority or random selection.

2. Update the list of potentially enabled transitions.

3. Fire all enabled immediate transitions.

4. If the firing of the immediate transitions enables new immediate transitions repeat

steps 1 to 4.

5. If there are no immediate transitions enabled and there exist enabled timed

transitions than follow steps 3 to 7 as in (status = 1) for timed transitions only.

54

6. Report activity to logfile (If called from RUN procedure).

Immediate transitions only (status = 3)

If there are immediate transitions only in the net, then the fire_immediate

procedure will remove tokens from input places and deposit them in the output places

[21]. In this case the CLOCK is never advanced.

5.3.9 Run
This button is a part of the simulator. All the conditions for running simulation in

Step mode apply to Run mode. In Run mode, the Step procedure is called repeatedly until

a user specified terminating condition (Figure 5.4 (a)) is reached or a deadlock (Figure 5.4

(b)) occurs. When Run mode is selected to simulate a net, the simulator searches for any

previously created files (log, verify, utilization, and marking) for the current net. If these

files are found then the user is prompted with the options menu of Figure 5.5.

If the termination condition is reached or a deadlock occurs a window pops up

with termination message and the simulation status. There are three files that are created

as a result of running simulation. These are (a) a log file, (b) a verify file (connection

matrix), (c) a utilization file, and (d) a marking file. These files can be displayed after

completion of net simulation using the Display button.

5.3.10 Help
This button is used for accessing an on-line help facility designed to provide

documentation about the TPNS tool, and helping the user in its usage. This is a fast and

relevant method of learning to use the TPNS tool. When the user clicks this button a

pop-up window will appear with a Panel window and a tty subwindow (Figure 5.6) . The

Panel window contains the help topics as button tags. The user can click the button with

the required help topic and the help text will be displayed in the tty subwindow (Section

3.4).

5.3.11 Last Action
This button can be useful during net drawing. If it is clicked, it displays in a small

pop-up the last button clicked and the last object selected.

5.3.12 Display
This button is used to is display generated files due to simulation. Clicking this

button pops up a window with four the different options shown in Figure 5.7.

The "current" is defined as the file whose name appears in the File name item in

the Panel item. Once the required option is selected it is displayed in a tty subwindow.

5.3.13 Reset
This button is used to reset the utilization parameters associated with every place

and transition. The same button is used to reset the CLOCK. When simulation is carried

out in Run mode utilization parameters (Section 3.2.4) are calculated and updated. These

are, for example, percentage of transition occupancy, number of times a transition was in

conflict, how long a place was vacant, etc. It is left to the user to decide to allow these

parameters to accumulate or to reset them at some point during simulation. A user may

want to run simulation many times with a different set of marking and/or transition

attributes and study the impact of certain parameters on the net behavior and utilization.

It should be noted that resetting the utilization parameters resets the CLOCK automatically.

5.3.14 Quit
This button is used to quit the TPNS tool. It requires confirmation.

58

5.4 Panel Objects

The available objects are (from left to right) places, transitions, arcs, tokens, tags,

and eraser.

5.4.1 Places
Places (represented by circles) are characterized by a name (tag) that defaults to Px

(where x is the number of place). These places when drawn on the canvas default to zero

initial marking (i.e. zero tokens). A comment about what a place represents or its function

in the net is optional (Section 5.4.5).

5.4.2 Transitions
Transitions (represented by horizontal or vertical bars) are characterized by a name

(tag) that defaults to Tx (where x is the transition number). There are two types of

transitions :

1. Immediate transitions (solid single bar)

2. Timed transitions (hollow rectangles)

There are many parameters as discussed in Section 4.5.2, associated with a

transition. These can be modified through a Tag pop-up window as shown in Figure 5.8.

To draw a timed transition the user has to specify the type of transition delay as

deterministic or stochastic. A transition delay for deterministic or an average transition

delay (Average transition delay = 1/ 7, where X =firing rate) for a stochastic transition is

entered at the time of drawing a net (Figure 5.9).

Figure 5.9: A data entry pop-up for average delay of a stochastic transition

Integer values are used for transition delay. This eliminates the need for fractional

time units and synchronizes firing with the CLOCK. The user is recommended to use a

smaller time unit for more precise results. If a user selects a time transition to draw on the

canvas he is forced to enter an intger value greater than zero for transition delay.

5.4.3 Arcs
Arcs are characterizedcharacterized by a type (Input or Output), a place and a

transition. These arcs are used to connect places and transitions.

60

5.4.4 Tokens
Tokens (represented by small solid circles). Their distribution in places constitutes a net's

marking.

5.4.5 Eraser
This object is used for editing purposes. It can be used to erase other objects such

as places, transitions, and tokens).

EXAMPLE APPLICATIONS

Chapter

6

6.1 An example of Timed Net

Zuberek[8] in 1980 studied an example for Timed Petri nets. The current TPNS

model conforms with Zuberek's model and satisfactory simulation results for the net of

Figure 6.1 confirm this. The behavior of a certain class of timed nets can be visualized by

a firing diagram represented by a set of time semiaxes, each semiaxis corresponding to a

particular transition. Such a diagram for the timed net of Figure 6.1 is shown in Figure

6.2. The succession of firings is marked by arrows. It can be observed that the sequence

of firing is cyclic and the state of the net at the step "S9" is the same as that at step "S4". It

is also seen that the states of the net are subject to changes at those moments only in which

firings initiate or terminate.

When the above example is drawn using TPNS and is simulated in Run mode

Zuberk's results are confirmed. Figures 6.3 to 6.5 show the generated output files. This

example shows the conformance of deterministic timed Petri nets in TPNS model with

Zuberek's work.

61

68

6.2 Application of TPNS to FMS

In the following section the TPNS tool is used to simulate and analyses a real time

application of Flexible Manufacturing System (FMS). This example application is a fac-

tory floor model of a flexible manufacturing system. An Automatic Guided Vehicle

(AGV) is used to transport material between work stations and processors. These proces-

sors operate on the parts supplied by the AGV and transport them to the delivery locations.

To increase productivity and cost ratio one AGV is used to transport material in two differ-

ent directions. A central storage location is used to store the raw material. This raw mate-

rial is moved to the workstations through conveyor belts. When the AGV becomes

available it is used to transport the material to machine 1 and machine 2. The processed

parts are moved to output places. All these activities require a finite amount of time and is

modeled accordingly.

6.2.1 System Representation

All these activities require a finite amount of time and is modeled accordingly.

The block diagram of Figure 6.6 is used to represent the underlying system and its activi-

ties. The Petri net model for this system is given in Figure 6.7. Places and transitions are

represented as in Table 6.2 and 6.3.

6.2.2 System Operation

The supply of the raw material is carried by conveyor belts. These conveyor belts

which are represented by stochastic transitions (ti and t3) with an average delay of 3 and

4 time units. The reason for this declaration of transition delay as exponentially distrib-

uted is the fact that supply to these locations are exponentially distributed. The objective

is to maximize the use of the AGV by adjusting the speed of the conveyor belt such that

the material does not reach workstation 1 and 2 simultaneously. This will also eliminate

frequent conflict for AGV. When a token arrives in place pl or p3 (Workstation 1 or 2),

the AGV has to be available in order to fire immediate transitions ti or t2. The availability

of AGV is represented by a token in place p4. In many instances tl and t2 fire indepen-

denity. In case of conflict, prioritized or random selection is carried out. Therefore, a con-

69

flicting situation is also modeled in this example.

Table 6.1: Places and their representation in FMS application of Figure 6.6 & 6.7

Place # Represents

pl Work station number 1

p2 Work station number 2

p3 Central Storage of raw matenal

p4 AGV available

p5 Staging place for AGV transportation

p6 Staging place for AGV transportation

p7 Staging place for Product A transportation

p8 Output location of product A

p9 Staging place for Product B transportation

p10 Output place for Product B transportation

Table 6.2: Transitions and their representation in FMS of Figure 6.3

Transition # Represents Type

U Used to immediately send AGV back from machine B after it has

shipped the material to machine B.

Immediate

t2 Used to immediately send AGV back from machine A after it has

shipped the material to machine A

Immediate

t3 Time required by Conveyor belt to transport material from storage to

workstation 2

Stochastic

t4 Time required by Conveyor belt to transport material from storage to

Workstation 1

Stochastic

t5 Time required by machine 2 to process material supplied by AGV Deterministic

t6 Time required by machine 1 to process matenal supplied by AGV Deterministic

t7 Time required by AGV to return to machine 2 Deterministic

t8 Time required by AGV to return to machine 1 Deterministic

72

When a token is present in place p4 (representing availability of an AGV) transi-

tion tl or t2 can fire provided firing conditions are met. These transitions along with place

p5 and p6 are used for staging. Place p5 and p6 are temporary places used for sending the

AGV back to the workstations area immediately after shipment of material is complete.

Transitions tl and t8 are used to model the time required for the AGV to reach the

starting point to be available for the next shipment. Transitions t7 and t8 are deterministic

timed transitions with delays equal to 3 and 2 time units respectively. Places p7 and p9 are

used to model availability of materil for processing by machine A and B, respectively. t5

and t6 are deterministic timed transitions used to model the processing of machine A and

machine B. Finally the products are deposited to place p8 and p9. This cycle goes on

untill all the tokens in the store (p2) are exhausted or a user requested termination state is

reached.

6.2.3 System behavior

The TPNs tool was used to analyse the above example. Simulation results are

analysed to study system behavior and utilization. Figures 6.8 to 6.10 show the simulation

and utilization results. Figure 6.8 shows the utilization of transitions and places during net

execution. It also shows how many times a transition was in conflict, how many times it

fired, the number of tokens entered a place and place occupancy. Figure 6.9 shows the

markings reached during net execution at each step. Token distribution at each step is

given along with the number of remaining ticks for each ticking transition is shown for

debugging and step verification purposes. Figure 6.10 shows the log file created during

simulation.

In order to achieve maximum utilization of both machines 1 and 2, utilization of

these machines is observed for this system with respect to the return time of AGV from

machine 2 keeping all other time parameters constant. Table 6.3 shows these results

which were obtained after simulating the net for 2000 steps. Figure 6.1 shows a graphical

representation of these results. These results lead to the conclusion that machine 1 and 2

have their optimum utilization with return time of AGV from machine 2 equal to 4.

Figure 6.10 :Parts of the log file created during simulation.

Performance

Table 6.3: Simulation results after running net of Fig. 6.1 for 2000 steps.

Time required to return
form machine 2

Time required to return form
machine 1 (t8)

Utilization of
Machine 2 (t5)

Utilization of
Machine 1(t6)

2 2 99.40 % 58.39 %

3 2 99.74% 58.00%

4 2 98.20 % 69.01 %

5 2 96.83 % 63.70 %

6 2 90.37 % 52.63 %

9 2 63.92% 43.02%

CONCLUSION

Chapter

7

7.1 Summary

The development of TPNS is an important extension of PNS [21]. The tool is

more user friendly, with its pop-up windows enhancing the graphical user interface.

Extensions to the editor include automatic file backups, overwrite protection,

standardized file extensions, date stamps, message and error pop-ups. An on-line help

facility is designed to help understand the TPNS environment, related concepts and

working of the tool.

The addition of time to PNS tool has expanded its application scope. The tool is

capable of modeling systems that use time as an important characteristic. A CLOCK

keeps track of the time elapse since execution started. TPNS also can handle nets with

complex conflict situations such as simultaneous multiple conflicts. This has enhanced the

power of the tool to model a variety of real systems.

The PNS history file is modified to provide comprehensive information about

each step. New output files are produced during simulation in Run mode to enable system

throughput evaluation and utilization. A marking file is created in Run mode which

78

79

contains place and transition status for a quick review of instantaneous states during net

simulation.

7.2 Future Work
There are many features that can be added to the tool to make it more powerful and

versatile. These are discussed here.

7.2.1 Text Processing Program

In Run mode the tool produces output files in text format. These contain detailed

activity of the net. A text processing program which can analyze this information to

produce aggregate performance measures can be added the tool.

7.2.2 Extensions to the Stochastic Model

Currently the tool can handle systems with stochastic delays that have exponential

distribution. This distribution is selected by default. As an extension other distribution

functions such as normal and uniform can be added. The current work has provided the

basic structure for such extensions.

7.2.3 Extensions to Conflict Handling

The current TPNS model resolves conflicts on the basis of priority or random

selection. In random selection every transition has an equal opportunity to fire. As an

extension to this equal opportunity rule, the user could specify selection probabilities for

transitions in conflict.

7.2.4 Integration of TPNS and CPNS

The integration of TPNS with CPNS [22], can lead to a tool capable of modeling a

large variety of systems.

7.2.5 Enhancement of On-line help

Currently a separate program is used for the on-line help facility. This separate file

is kept under a Help subdirectory under the current directory of TPNS, and Help is called

80

using C language's system call system 0. A SunView help facility as discussed in

section 3.4, would permit context dependent help.

81

References

[1] C. Ramachandani, "Analysis of Asysnchoronous Concurrent Systems by Time

Petri Nets, PhD. Thesis, " MIT., July 1973.

[2] P. Merlin, "A study of the recoverability of Computer Systems, "PhD. Thesis, Com-

puter Science Dept. University of California IRVINE, 1974.

[3] P. Merlin, "Methodology for the design and implementation of Communica-

tion Protocols, IEEE Transactions on Communications COM-24, No. 6, June

1976, pp. 614-6621.

[4] P. Merlin, Farber, D.J. ," Implication of a Theoretical Study", IEEE Transactions

on communications," Vol COM-24, No. 9, September 1976, pp. 1036-1043.

[5] J. Sifakis, "Use of Petri Nets in performance evaluation in measuring, modeling

and evaluating computer systems," North Holland, 1977, pp. 75-93.

[6] M. Mansche, B. Berthomieu ,"Time Petri Nets for analyzing and verifying

time dependent Protocols," 3rd International workshop on Protocol verifica-

tion, Zurich, 1983, pp.161-172.

[7] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proc. of IEEE on

Software Engineering, November 1989, pp. 541-580.

[8] W. M. Zuberek, "Timed Petri Nets and preliminary performance evaluation,"

7th Annual Symposium on Computer Architectures, May 1980.

[9] W. M. Zuberek, "Application of Timed Petri Nets to Analysis of Multiproces-

sor Realization of Digital Filters," Proceedings of the 25th Symposium of Circuits

and Systems, Houghton, Michigan, August 1982.

[10] Miguel Menasche, "PARADE: An automated tool for the analysis of Time(d)

Petri Nets".

82

[11] P. Merlin, D.J. Farber, "Recoverability of Communication Protocols - Impli-

cation of a Theoretical study," IEEE Transactions on Communications,

September 1976, pp.1036-1043.

[12] M. K. Molloy, "Performance Modelling using Stochastic Petri Nets, " IEEE

Transactions on Computers, September 1982, C-31, No. 9,pp.913-917.

[13] J. B. Dugan, K. S. Trivedi, R. M. Geist, V.F. Nicola, "Extended Stochastic Petri

Nets: Applications and Analysis," Proceedings of Performance 84 North-Hol-

land, 1984, pp.506-519.

[14] A. M. Marsan, G. Balbo, G. Conte, "A Class of Generalized Stochastic Petri

Nets for the Performance Evaluation of Multiprocessor Systems," ACM Trans-

actions on Computer Systems, Vol 2, No. 2, May 1984, pp. 93-122.

[15] P .J. Hass, G.S. Shedler, "Regenerative Stochastic Petri Nets," Performance Eval-

uation Vol. 6, No. 3, September 1986, pp. 189-204.

[16] M. K. Molloy, "Petri Nets Modeling: The past, the Present, and the Future,"

IEEE transactions, 1989.

[17] F.Feldbrugge, "Petri Net Tools," Phillips data Systems, Netherlands.

[18] G.Chiola, "A Graphical Petri Net Tool for Perfonuance Evaluation," Proc. Intern-

tional.Workshop on Modeling Techniques and Performance Evaluation, France,

March 1987.

[19] M .A. Holliday, M. K. Vernon, "A Generalized Timed Petri Net Model for Perfor-

mance Analysis,",IEEE Transactions on Software Engineering,V ol. SE-14, no. 12,

December, 1987,pp.1297-1310.

[20] A.Gilani, "A Graphical Editor for Petri Nets," Master's Thesis, Electrical Engi-

neering, Departement, New Jersey Institute of Technology, 1989.

[21] Ashish Shukla, "A Petri Net Simulation Tool," Master's Thesis, Electrical Engi-

neering Department, New Jersey Institute of Technology, 1990.

83

[22] Sanjay Desai, "Colored Petri Net Simulator,"Master's Thesis, Electrical Engineering

Department, New Jersey Institute of Techonolgy, 1991.

[23] M .A. Marsan and G.Chiola, "On Petri nets with Deterministic and Exponential

Transition Firing Times," in Lecture Notes in Computer Science, vol. 266,

pp. 132-145, 1987.

[24] Sun Microsystems, Inc. -SunView` Programmers Guid, 1990.

[25] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Englewood Cliffs, New

Jersey: Prentice-Hall, 1981

[26] T. Agerwala, Putting Petri Nets to work, IEEE Computer, pp. 85-94, December 1979.

Appendix -A
(List of Program Files used in TPNS)

The following is the list of program files used for TPNS. This list is arranged alphabetically.

check_cycles.c
check_priorities.c
display_file.c
enable_timed.c
fire_immediate.c
fire_timed.c
net_utilization.c
print_marking.c
priority_selection.c
random selection.c
sort_enabled_trans.c
tpns.c
trans_modify.c
update_place.c
update_remaining_ticks.c
vacant.c

Description and purpose of every file is given in Section 4.5.

85

Appendix -B
(List and use of Image Files used in TPNS)

timed_vt.image

timed_ht.iamge

timed_vt_fill.image

timed_ht_fillimage

place.image

htransition.image

marker.image

dot.image

arc.image

tag.image

clear.image

eraser.image

vtransition.image

petri.image

The list of Panel objects are as follows :

Description and purpose of every file is given as follows :

	A graphical tool for the simulation of timed petri nets
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: PETRI NETS: Concepts, History and Applications
	Chapter 2: Timed PETRI NETS
	Chapter 3: TPNS Graphical User Interface
	Chapter 4: Structure of Timed PETRI NET Simulator Tool
	Chapter 5: Description and Working of TPNS Tool
	Chapter 6: Example Applications
	Chapter 7: Conclusion
	References
	Appendix - A
	Appendix - B

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables

