New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

5-31-1991

Interfacing plasticating extruders with personal computers for
data acquisition, information analysis and retrieval purposes

Gautamkumar Y. Shah
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

6‘ Part of the Manufacturing Commons

Recommended Citation

Shah, Gautamkumar Y., "Interfacing plasticating extruders with personal computers for data acquisition,
information analysis and retrieval purposes" (1991). Theses. 2610.
https://digitalcommons.njit.edu/theses/2610

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=digitalcommons.njit.edu%2Ftheses%2F2610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2610?utm_source=digitalcommons.njit.edu%2Ftheses%2F2610&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Interfacing Plasticating Extruders with Personal
Computers
for Data Acquisition, Information Analysis and Retrieval
Purposes.

Gautamkumar Y. Shah, M.S. Manufacturing Engineering Systems.(1991)

Thesis Advisor: Dr.Keith O’Brien.
Professor of
Mechanical Engineering

The current manufacturing industries are influenced more and more by com-
puters and automation. Two of the major areas of computer uses are data acquisition
and interfacing, both lead towards automation.

The intent of this thesis is to focus on the area of interfacing personal computers with
plasticating extruders for information retrieval and storage. The requirements for
software and hardware are discussed. Analysis of the stored information can be used
to improve the quality of the final product. Implications of the stored parameters
on the final product are also discussed. A sample program to store and retrieve the

important parameters is demonstrated.

Z/ INTERFACING PLASTICATING EXTRUDERS WITH PERSONAL
COMPUTERS
FOR
DATA ACQUISITION,INFORMATION ANALYSIS AND RETRIEVAL

PURPOSES

by

!
X Gautamkumar Y. Shah.

-
o

Thesis submitted to the faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of
the requirements for the degree of

Master of Science in Manufacturing Engineering Systems.

May 1991

UV U S0 U G
L - s T e T T
[N N T L AR o
- ™
3 W v e - -
PRSI S TR OO D S UV Y [N
- L. H R . PR - [
U GNP VI A U S VN [.
o N . B P Tl as- - U A f
A T W S R N O TURVIN SN LUV S L
o R - [
e e e oL s s - SR A AR e tae 4w
e, Tl Y T oL
DU I e
- AP
- D TS

\ . - -~ . .

s
J e R I A e . ’ N
IR STUTOIRS NGRS TROFE 101 X AN TS LSGA AN P ARPE U S Sy SO

- g ;

- =0 =

[e U

— n P . - - .
= B R A I I D .
SFCLESECS O MC LGl Uil Ll S e

VITA

Name:

Permanent address:

Degree and date conferred:

Date of birth:

Place of birth:

Secondary education:

Collegiate institution attended

New Jersey Institute of Technology

Bangalore University

Major:

Gautamkumar Y. Shah.

Master of Science, May 1991.

R.P.T.P. Science College,
Vallabh Vidya Nagar, India.

Date Degree Date
of degree
09/89 to 05/91 M.S. May 1991
08/84 to 12/88 B.S. Jan 1989

M.S. Manufacturing Engineering.

B.S. Electronics Engineering.

ACKNOWLEDGEMENTS

I would like to thank Dr. Keith O’Brien, for his immense help and cooper-
ation. I gratefully acknowledge his help for suggesting the topic and providing the
necessary guidance for the successful completion of this program.

I would like to express appreciation to Dr. Nouri Levy and Dr. R. Chen
of my thesis committee for their valuable suggestions. I also wish to thank Mr.
Charlie Martin and staff members of Killion Extruders Inc, for provicfing valuable
information and suggestions.

I am greatly indebted to my family their moral and monetary support. Last
but not the least I would like to thank all my friends who helped me one way or

other during the course of this program.

i

Contents

1 INTRODUCTION
1.1 Information Amnalysis
1.2 Industrial Scemario Lo e
1.3 Data Acquisition« . 0 e e e e e e
1.3.1 Hardware Design
1.3.2 Software Design
2 EXTRUSION PROCESS
2.1 Extrusion Process
2.1.1 Hopper e e e e e
2.1.2 Barreland Screw L
21.3 ControlPanel L.
2.2 Screw Design e e e
2.2.1 Low-shear mixing sections
2.2.2 Single screws for different polymers.
2.3 Theoretical Aspects o
2.4 Effect of Temperature on Flow Properties
2.5 Effect of Pressure on Flow Properties.
3 HARDWARE DESIGN
3.1 Logical Gates e
3.2 Line Multiplexer e
3.3 Analog to Digital Converter
3.4 PhaseLocked Loop
3.5 Universal Synchronous Asynchronous Receiver Transmitter
3.5.1 Features and Enhancements
3.5.2 8251A Basic Functional Description
3.6 RS-232 . . e e e e
3.7 Physical Interface L e
4 SOFTWARE DESIGN
4.1 Software Requirement Characteristies
4.1.1 Functional Design
42 ProgramDesign. o o0l
4.3 Design of an Efficient Software
431 TopDownDesign
4.3.2 Modularity e e e e e e
433 DesignLanguage oo
4.3.4 Documentation o0 e

11

s 0RO

bt
DO © 00 00 00 ~J ~1 O Ut Or N

> © o =

4.4 Assembly language program

4.5 Highlevel Program

RESULTS
DISCUSSION

.......................

6.1 Pressure and Temprature Effects

6.2 Useofprogram v it

CONCLUSIONS
FUTURE WORK
REFERENCES

CODE FOR PROGRAM

v

....................

52
52
52
54
56
57

59

List of Figures

(4] .CQOJCOOOQOCOCO
[= L VSN UL

jursy

Digital Logic Gates 14
4 to 1 line Multiplexer 15
Analog to Digital Converter 17
Phase Locked Loop o . Lo o 18
Functional diagram of 8251A 22
Block Diagram o 27
Assembly Language Flow Diagram 29
Block Diagram of Data Acquisition Process. 43

Chapter 1
INTRODUCTION

Increasingly, computers are touching more and more aspects of our private and
professional lives. That they have revolutionized our documents, library, and infor-
mation storage retrieval techniques is evident. That they have affected profoundly
the very nature of professions transfer, is a prospect which this professions cannot
afford to ignore. Information handling mainly deals with the storing and retrieving
of the information or the given data. Information storage refers to the mechanism
of storing the data in the computer memory. Information retrieval is the name for
process or method by which a prospective user of information is able to convert
his need for his information into his actual list of citation from the items in the
storage. It is the finding or discovery process with respect to stored information
and can be considered another, more general name for production of a demand bib-
liography. Information retrieval, however arrives at a general class of information
by examining specific units of input data for their interrelationships. There are
number of methods of retrieving the information implementation of which depends

upon the user requirement. That the customer is always right is one of the perti-

nent of the business. Accordingly more and more industries are building database
to assure that they are doing right to their customers. These database can con-
tain the information on who the customer is, who the key contacts are, what the
customer is buying and how often, when the last purchase was made, amount of
the average order, source of the customer inquiry, and possibility of hundreds of
other demographic items. Over the past decades technology advances have given
personal computers, enormous data gathering and storage capability, making data

-collection, storage and analysis one of the PC’s most prominent task.

1.1 Information Analysis

In order to perform the satisfactory analysis of the stored information, it is generally
necessary to identify the basic elements which are used to represent the informa-
tion and to recognize the rules by which the basic elements can be combined into
large units. The development of the effective scheme must take into account the
multidimensional nature of the documented information. Merely establishing a mul-
tidimensional system for analyzing information is not enough. It is necessary that
information be analyzed so that any question which may be posed is clearly and ob-
viously in harmony with the system of analysis or at least capable of being brought
into harmony with it. The essence of an information storage and retrieval system
is its database or collection of files. If an information system is to provide timely
and accurate information to all levels of users, the database must yield the desired
data quickly and efficiently, also the database management system must be flexible
enough to allow growth and changes. Database management is thus concerned with

the problems of storing data in farm as flexible and accessible as possible.

1.2 Industrial Scenario

Killion Extruders Inc. is a company which manufactures extrusion equipment ac-
cording to the customer specified dimensions and supplies them all over the world.
All the equipments are made to orders. Due to unique modularity for all the cus-
tomers it is needless to say that specifications are different for all the customers. For
example specified screw diameter can be different for different customers, also L/D
dimensions may vary according to the need of the customer. As we can see number
of different variables are encountered in the design of a particular equipment and
these values keep on increasing as number of customers increases. It becpmes enor-
mously difficult to keep track of all the variables and seek any one or more of them
whenever required quickly.

For such an industry, it is required to have an excellent information retrieval
system which can extract any information for any customer or an equipment. With
a good information retrieval system It becomes much more easier for a design en-
gineer or a marketing executive or any employee to retrieve an information for any
customer or any equipment design. In other words an efficient database which
can access the required data for the customer or the necessary information for the
equipment can be of much more help to increase the speed of communication as
well as it can lead towards faster designing process. Here by the term faster design-
ing process I mean that if, a part is to be used in certain product and if a design
engineer wants to know in previous cases where the particular part was used, by
just pressing the part he or she can get all the information about the same. Finally
we can say that the data base should be designed in such a manner that it reduces
the time spent defining and implementing an information processing system; to use

the normal problem solving approach to obtain better information; and to increase

the control over the creation and maintenance of data file and over access to data

-

and procedures for processing data.

1.3 Data Acquisition

Data acquisition is a process of accessing required data and storing them in the com-
puter. There are many methods of extracting data. One which can be implemented
for our purpose is called on line data acquisition. Here required data is acquired and
stored when the process is running. If we see this in context of plastic extruders,
it 1s important for us to control access the data online. Storing these parameters
can help us analyzing the process which can lead us towards better quality control
and other benefits. As mentioned earlier, important parameters are displayed on

the control penal. In order to store them in required fashion we need to do is

1.3.1 Hardware Design

By which we can interface data displayed on the control panel to the computer.

1.3.2 Software Design

After proper interfacing of computer and control panel we need a software which
enables us to read the data and converts it in the form of information we need. Also

the software should store the data hence it can be retrieved back when needed.

Chapter 2

EXTRUSION PROCESS

2.1 Extrusion Process

The word extrude originates in the Latin words, ‘ex’ (out) and ‘trudere’ (to thrust).
This explains the process itself as shaping by forcing through a die. The screw
extruder efficiently and continuously converts the solid polymers in to melt and
pumps the very high viscosity melt through a die at high pressure. A typical plastic
extruder contains following parts 1) Hopper 2) Barrel and screw 3) Control panel

4) Motor

2.1.1 Hopper

It is a cylindrical funnel type vessel, which is mounted on the top of barrel and the
raw material or polymers are funneled through it. They are passed through the

barrel in which the screw rotates and conveys it towards the die.

2.1.2 Barrel and Screw

It is the most important part of the extruder machine. Extruder machine ranges
from 1” to 12” in diameter. It could be build for higher ranges. The solid polymers
fed from the hopper is melted, homogenized, and pumped through the die at high
pressure and temperature through this section. Here the extruder is more than just
a pump, it also supplies energy to melt. There are two sources of energy 1) Hot
barrel of the extruder which is equipped with heaters and thermal energy and 2)
Mechanical energy is introduced through rotating shaft. The solids and melt are
pumped forward by relative motion of the screw and barrel. The screw ‘floats’ in
the barrel with a small clearance and material act as a lubricant. Screw and barrel
are made up of steel. The frequency of screw rotation at which the extruder will
operate depends on the size of the extruder required production rate. The melted
material which is also called melt is conveyed to the die and the shape is given.
The process could be analyzed in three parts solid conveying, melting, and melt
conveying.

In solid conveying the solid material or polymers are fed to the screw and
barre] through hopper. The process of converting solid material to melt is called
melting and the process of conveying molten polymers to the die is called melt con-
veying.

This was the basic idea about how the extrusion process works. The major part
of the thesis deals with the storing important parameters during the process. (On

line) The important parameters are

e Barrel Temperature in Zone 1

e Barrel Temperature in Zone 2

¢ Barrel Temperature in Zone 3

e Barrel Temperature in Zone 4

¢ Temperature at Die.

e Temperature of melt.

o Screw Rotation or (RPM)

o Ampere.

o Pressure developed in the barrel

2.1.3 Control Panel

Third and equally important part is control panel. All the parameters mentioned
above are displayed on the control panel. The display will be either in the digital

or analog form. Control panel allows us to control the parameters.

2.2 Screw Design

The screw could be designed of various types. It is a question of debate whether the
screw design should be able to handle a range of materials, or it should be dedicated
to a single product.

In general terms, blown film screws must provide excellent homogeneity and cooler
melt temperature perhaps, with multiple mixing section for the greatest possible
melt strength. Coating and laminating screws will have shallower channel depths
for applying hot melts at over 600 F. Sheet and profile screws fall somewhere in

between.

2.2.1 Low-shear mixing sections

Several machines and component builders have introduced dynamic mixing sections
to promote homogeneity while keeping melt temperature low. In this method in-
dentations are provided in the screw and/or barrel, either at the discharge of the
extruder or just prior to vent for devolatilization. This method helps for blown
film where low processing temperature and good homogeneity are required for melt
strength in bubble. This dynamic mixers are particularly helpful in processing high

molecular weight where temperature should be kept below 450 F.

2.2.2 Single screws for different polymers

An innovative tool varies the height of flow restrictors at the end of the extruder,
to optimize the pressure inside the barrel. Made by R.Dray Mig.![13], it has a
hydraulically operated shaft that runs through the barrel to move the retractors.
Adjusting the pressure in this way lets processor use one screw and barrel on mate-
rial with different viscosities, temperatures, throughputs and different requirements.

Some companies have established direct links between simulation/design soft-
ware and metal cutting mills at screw fabricating plant.{ 14], which means processors
can now design and build screw in one step. Simulation software enables processors

to optimize the screw with their specific process condition.

2.3 Theoretical Aspects

The forward motion of the material along the screw of an extruder may likened to
the motion of a nut on a screw in a hexagonal tube. As the screw turns the nut

advances in the constraining tube.

1Refernces at the end of the text

In the cylinder of the extruder the material must slip along the screw and be
kept from too great lateral turning by the friction against the side of the cylinder.
This means that the total friction between screw and material should be less than
that of material and cylinder wall, the surface area of each screw flight should be
less than the cylinder wall surface area facing it. This relation between areas forms
one of the basic considerations in screw and cylinder design. The wider the space
between the flights and the screw, the lower will be the ratio of the flights surface
area to subtended cylinder surface area.

The coeflicient of friction often is not the same for material against screw
and the material against the cylinder. This is not only because of the difference
in material but also due to difference in temperature. Some materials have a very
heat sensitive coefficient of friction. The relation between p,the pressure in the die
chamber; D, the screw diameter; u, the viscosity of the material; and ¢, the rate of
extrusion in cubic units may be expressed in the form of a dimensionally homoge-

neous power series of type

p =Y (A¢D*Nw)
where N is the speed of the rotation of the screw and A4 is dimensionless constant.

The following are the dimensions of the units involved:

_ _m .
P=1Ir

m .
H =77
D=1L:
7 1.
N =%

3
9=

Viscosity is defined as the “the ratio of shear stress to rate of shear”, and a plastic

¢

material as “ one which shows no appreciable flow below a certain finite stress”. A

viscous fluid will be understood to show appreciable flow at all stresses. It should
be noted that no account has been taken of density it can usually be omitted in such
consideration when the speed at which material advances slow viscosity is high.
Since the power series must be dimensionally identical with p, it follows that

p=puNo (yv-%s)
The function ¢ may be determined by consideration of the limiting cases. With
die fully closed, p = uN® (0), so that, if p is to have a finite value, ®(0) = k or
p &« uN, a fact that does not appear to be generally realized. When die is fully
or partly opened, ;}-’T]s a constant, all other conditions remaining steady. Hence ®
is a constant, so that necessarily, ¢ o ND®. If this analysis is carried further and
applied to the movement of plastic between the die chamber and die, the pressure
can be expressed as the function of D, u, and ¢ only. The relation is found to be
p=RK¥%¥

It must be stressed that these conclusions are drawn for an assumption of
geometrical similarity[4]. Consequently, any practical attempt to study it with the
use of one machine only must be carried out by varying N and u. Variation ¢ by

means of bleed-off cock will destroy the condition of geometrical similarity.

2.4 Effect of Temperature on Flow Properties

Temperature is one of the most critical operating variablesin any processing method.
This 1s the consequence of the dependence of the flow properties on temperature.
Viscosity on polymer melts, like that if liquid generally decreases with temperature.
Eyring and co-workers ? developed an approximate theory for liquids which permits
a rough estimation of the viscosity on temperature| 3]. It also predicts an Arrhenius

type dependence of viscosity on temperature:

*References listed at the end of the text.

10

Q= Ae#r
Where R is the gas constant, 4 is coeflicient dependent on the fluid, and F is an
activation energy. If the fluid is nonNewtonian ®, the viscosity , u in the above eqn.
can be replaced by the apparent viscosity 7 . In such a case two equations result,
because the activation energy E assumes different values if temperature is varied

with constant shear rate or constant shear stress :

n = Ae%
and
n= Ae'ﬁ%

For fluids following above mentioned equ., the ratio of activation energy is
%f =1- V%T

For a pseudoplastic fluid , 3%-’;- < 0, and therefore E, > E,. If the fluid
behaves according to the power low model, the following relationship exists between
the activation energies:

E.=1E,

The activation energy of a nonNewtonian fluid varies with temperature in
addition to shear rate or shear stress. An increase in temperature causes a decrease
in activation energy and also tends to suppress nonNewtonian effects. Therefore if
wide temperature ranges are encount ered, the activation energy and the fluid mod-
els parameters have to be repeatedly reevaluated under local conditions in relatively
narrow temperature ranges.

Hopkins | 3] showed that the temperature dependence of apparent viscosity

is incorporated in flow equations, it often leads to mathematical difficulties. A more

convenient empirical form of temperature dependence is therefore, frequently used:

®The term nonNewtonian refers to all those fluids which , for various reasons, do not follow
Newton's law of viscosity.

11

n = noe® T=To) Where 7, is the apparent viscosity at T = T;. The constant ¢* has

*

a negative value. By expressing temperature dependence in this way ,a” , will also

assume different values at constant shear rate and shear stress.

2.5 Effect of Pressure on Flow Properties

The viscosity of liquids depends on the intermolecular forces, which in turn are
dependent on intermolecular distances. It is not surprising, therefore to find, that
the compression of liquids tend to increase their viscosity. Moreover, the compress-
ibility of polymer melts at processing temperature is higher than that of ordinary
liquids. Hence a greater effect of pressure on viscosity can be expected. Eyrings’
“hole theory” of liquid predicts the follow ing relationship between viscosity and
pressure. L, = ppoe?®"?°) Where u, and p,, are respectively, the viscosities at pres-
sure p and atmospheric pressure po.

According to this theory,b is the pressure coefficient which is propotional to the hole
volume Vg and inversely proportional to absolute temperature: b = % Pressure
coefficients for polymer melts were measured by Semjonow and Westover, | 3]who

developed and build special capillary rehometer to measure this effect.

12

Chapter 3

HARDWARE DESIGN

Before designing the hardware interfacing , we need to know the form of the available
data. It can be either in the analog form or in the digital form. Analog meters on
the control penal gives the output in analog form. Since most computers are made
up of digital circuitry it is required to convert the analog form of data in the digital.

Following circuitry can help us designing hardware interface.

3.1 Logical Gates

Logical Gates are helpful to design logical circuits . Output of the gate depends
upon the combination of the inputs. It can be either logic ‘High’ or logic ‘Low’.
There are different types of logic gates which can be used as required. The output
of gates according to different input combinations are mentioned in the table, which

is also called truth table of the gate.

13

Geagtue symbols

Dty e Red tangulan Algebrasn Truth
N oo whape shape tuatian tatie
X .y (L
X X—1 & 0 0
AN J_r —17F Xy o 1 o
P ga— Y 1 o] ¢
1 1 1
— X_ vy | r
. Xo—my 21 0 0 |oU
OR ’ :D_r b——F F=X+Y 0 1 1
¥ Y] 1 0 |1
L 1 1 1
;
! . Xt
lnverter X ——-Do——-——-f-‘ P e F- X) 1
1 [¢]
! L
Butfer X —-D-}-————F X F F=X o | o
1 1
— X Y 1r
x— 7T X & N G 0)
tIAtiD }»——,’ S Sy o F - X .y 0 7 1
' e Y — 10 1
— 10 0
O S
X BN X =1 ——— o 0 1
NOH y O F ——F F=Xx ¥ o 1 | u?
14 1 0 0
1 H 0
Exclu-r.ee OR X v ;
{XOR) Xt =1 - 1
X:FF £ F= XY 4+ XY 8 ? (1)
Y - .
— Y — - Xy 10 |
I 1 1 0
Exciusive NOR X Y 2
(\NIOR) —_— - - n
X X F=Xx) i XY 0 0 1
y £ > e 0 1 |G
— =X oo |0
. 1 1 i

Figure 3.1: Digital Logic Gates

14

Gk
?5

o
P

Figure 3.2: 4 to 1 line Multiplexer

15

3.2 Line Multiplexer

Line multiplexer is used when we have data coming up from number of lines and
going to same or different destinations. Line multiplexer allows us to select one line
at a time and sends the data to particular destination. Hence if we have different
data (e.g. temp. of zone 1, zone 2 , ..etc) line multiplexer allows cpu to select one

line at a time.

3.3 Analog to Digital Converter

As mentioned earlier it is important for us to convert analog form of data to digital
in order to make them compatible with digital equipments. Circuit mentioned
here uses compares the input voltage level with the reference voltage and converts
them in either binary zero or one. Which is in turn either logic high or low. The
graphical representation of voltage levels at the end of each clock pulse explains the
conversion. The method mentioned here is of the successive approximation method,
in which the digital output will be approximated by comparator circuitry with the

help of the reference voltage.

3.4 Phase Locked Loop

Function of this circuitry is to give constant output frequency . It contains a filter
, frequency divider and a voltage controlled oscillator. (VCO) Output of VCO de-
pends upon input voltage. Whenever input voltage of VCO changes , the output
frequency will be changed. The output of the VCO is fed beck to the frequency

divider which changes the input to the comparator circuit and the input to the

16

L1

Start

ANALOG TO DIGITAL CONVERTER

Ein

End of

Comparatonr

Conversion

Digital
Logic Cutput
Clock
Ve f
DAC

Figure 3.3 Analog to Digital Converter

Comparator

[T le s
-0
1
.
W ot

. Outou=
» low prass ol U 5
' . b C 0 : S
filter % N
o %
%
feed backk
T T ,_=
) ! loop ;
] -
\ ! T
1]
i 1
1 1
] "]
! frequency§ 1
| S, | |
divider :

Labiis MM 63

Iigure 3.4: Phase Locked Loop

18

VCO remains unchanged. Phase locked loop circuit is designed to give the constant
output frequency with the given reference input voltage. Hence the total analog to
digital conversion will take place as follows.

1) Analog data will be filtered using lowpass or highpass filter (depending upon the
input frequency) and will be fed to the multiplexer.

2) Output of multiplexer will be given to an analog to digital converter .

3) Analog to digital converter will be triggered at the fixed interval (whose frequency

is determined by PLL) and converted digital data will be fed to the system bus.

3.5 TUniversal Synchronous Asynchronous Receiver
Transmitter

USART is an acronym for Universal Synchronous/Asynchronous Receiver/ Trans-
mitter. Early personal computer systems used software method for serial commu-
nications. The trouble is that it really ties up cpu and prevents the use of higher
speed transmissions. USART was developed to simultaneously transmit and receive
serial data , performing the appropriate parallel /serial conversion and inserting and
checking the extra bits used to keep the serial data synchronized. The 8251A (US-
ART) is used as a peripheral device and is programmed by CPU to operate using
virtually any serial data transmission technique presently in use[5]. The USART
accepts data characters from CPU in parallel format and then converts them in to
a continuous serial datastream for transmission. Simultaneously, it can receive a
serial data stream and convert them in to parallel data characters for the CPU. The
USART will signal the CPU whenever it has received a character for the CPU or
whenever it can accept the new character for the transmission. The CPU can read

the complete status of USART at any time. This includes data transmission errors

19

and control signals such as SYNDET, TxEMPTY.

3.5.1 Features and Enhancements

The 8251A (USART) was considered for the design purpose because of following
features. 8251A is a standered design of industry standered USART, the intel 8251.
The 8251 A operates with extended range of the microprocessors, and also maintains
compatibilty with 8251. The 8251A incorporates all the key features of the 8251

and has the following additional features and enhancements:

o 8251A has double buffered data paths with separate 1/O registers for control,
status, Data In, Data out which considerably simplifies control programing

and minimizes CPU overhead.

o In asynchronous operations, receiver detects and handles ‘break’ automati-

cally,reliving the CPU of this task.

o A refined Rx initialization prevents the receiver from starting when in ‘break’

state,preventing unwanted intrrupts from a disconnected USART.

e At the conclusion of a transmission, TxD line will always return to the marking

state unless SBRK is programmed.

o Tx Enable logic enhancement prevents a Tx Disable command from halting
transmission until all data previously written has been transmitted. The logic

also prevents the transmitter from turning off in the middle of a word.

o When External Sync Detect is programmed, Internal Sync Detect is dis-
abled,and External Sync Detect status is provided via a flip—flop which clears

itself upon a status read.

20

o Aslong as 8251A is not selected, the RD and the WR donot affect the internal

operation of the device.

o The 8251A status can be read at any time but the status update will be

inhibited during status read.

3.5.2 8251A Basic Functional Description

Like other I/O devices in a microcomputer system, 8251A’s functional configuration
is programmed by the system software for maximum flexibiliy.

In a communication environment an interface device must convert parallel
format system data in to serial format for transmission and convert in coming
serial format data into parallel system data for reception. The interface device
must also delete or insert bits or characters that are functionally unique to the
communication technique. In essence, the interface should appear ‘transparent’ to

the CPU, a simple input or output byte oriented system data.

o Data Bus Buffer This 3-state,bidirectional, 8-bit buffer is used to interface
the 8251A to system data bus. Data is transmitted or received by the buffer
upon execution of INput or OUTput instructions of the CPU. Control words,
Command words and the status information are also transffered through Data
Bus Buffer. The Command status and data in and data out are separate 8
bit registers to provide double buffering. This functional block accepts input
from the system control bus and generates control signals for overall device
operation. It contains Control word register and Command word register that

store various control formats for the device functional definition.

o Read/Write Control Logic This block contains Pins which informs 8251A

whether CPU is writing/reading data or Status information. Reset will put

21

D7..0O
Data Bus 1 N
Buffer
resaet
Read/Write
CLK |
c/D Comntrol
RO LLogtc
WR
DsSR___|
DTR __| Modem
CTS Control
RTa.__]

o » 4 » O SR

C

o

I

S

Fmramnsm1 T

Buf fer

TxD

Tramsmilt

Comntrol

TxROY

T<EMPTY

TxC

AN

Recelve

Buf fer

R=xD

Receilive

Control

RxRDY

N RxC
Syndet/Brkdet

Functional diagram of

RoN

Figure 3

()]
[

8251A in "idle” mode until next control word is written by CPU. Chip SelectCS
will select 8251A. No reading or writing will occur unless the chip is being

selected.

Modem Control: The 8251A has a set of control inputs and outputs that can
be used to simplify the interface to almost any Modem. The Modem control
functions are general purpose in nature and can be used for functions other

than Modem control.

Transmitter Buffer: The Transmitter Buffer accepts parallel data from the
Data Bus Buffer converts it to a serial stream, inserts appropriate characters

and bits and outputs a composite serial stream of data.

Transmitter Control: The transmitter control manages all activities associ-
ated with the transmission of serial data. It accepts and issues signals both

externally and internally to accomplish this function.

Receiver Buffer: The Receiver accepts the serial data, converts this serial
input to parallel format, checks the bits or characters that are unique to the

communication technique and sends an “assembled” character to the CPU.

Receiver Control: This functional block manages all receiver related activities,

issues and accepts signals to accomplish this function.

3.6 RS-232

The most important interfacing device is RS 232 which is a 25 pin serial port pack-

age. This port is used to transfer the data from device to the computer and from

computer to the device. RS- 232 is a standard set by Electronic Industries Associ-

ation (EIA) and works on negative logic levels. It gives larger voltage swings and

23

more noise-immune than conventional TTL. In terms of data communication, the
device which behaves like a terminal (Extruder in this case) is called Data Terminal
Equipment (DTE) and the device which behaves like a computer (computer in our
case) is called Data Communication Equipment. (DCE)

The characteristics of RS5-232 are as below:

e Maximum cable length 50 feet.

Maximum data rate 20 kbps

o Maximum output current - 500ma to +500 ma.

¢ Maximum output voltage -15 or - 5 volts to +15 or +5 volts.
o Direct output resistance 300 ohms

s Form of operation is single handed

It has 25 signal lines, but most of the computers supports a set of seven. They are

o T * DATA: A serial data output from terminal (DTE) to modem (DEC). The

line / signal through which the terminal sends data to modem.

e R * DATA: Control output from terminal DTE to DCE. The line/signal

through which terminal requests permission to transmit the data to the DCE.

o RTS: Assertion of RTS instructs the DCE to receive data from DTE and to

signify that is ready to receive by asserting CTS.

24

e CTS:Control input from terminal to DCE acknowledges the acceptance of ter-

minal request to send data.

e DSR : Control input to the terminal DTE from DCE. The line through which

DEC indicates whether data may be sent. DSR is not used in making decision.

¢ DTR: Control output from terminal to modem (DCE). The line through which

terminal DTE indicates whether its on-line , inservice or active status.

¢ DCD: Control input from terminal to modem (DTE to DCE) . The line/signal
through which modem (DCE) indicates that the communication channel to
which DCE interface the other nonterminal side of DCE is an acceptable
active state. This signal has meaning only in a communication context. DCD
is off when no signal is being received or received signal is unsuitable for

demodulation.

The general rule may be established as follow. When cross connecting between the
devices make sure that output signal of one goes to the input of the another and

viceversa.

25

pin no. | Common | RS 232 | Description

1 AA protective ground

2 Txd BA Transmit Data

3 Rxd BB Receive Data

4 Rts CA Request to send

5 Cts CB Clear to send

6 Dsr CcC Data set ready

7 Gnd AB Signal ground

8 Cd CF Received line Signal Detector

9 - Reserved for data testing

10 - Reserved for data testing

11 Un assigned

12 SCF Secondary received line signal detector
13 SCB Secondary clear to send

14 SBA Secondary Transmitted data

15 DB Transmission signal element timing
16 SBB Secondary Received Data

17 DD Receiver Signal element timing
18 Unassigned

19 SCA Secondary Request to send

20 Dtr CD Data terminal ready

21 CG Signal Quality detector

22 CE Ring Detector

23 CH/CI | Data signal rate selector

24 DA Transmit Signal element timing
25 un assigned

Another important chips we need to know about are MC 1488 and MC 1489.
MC 1488 converts TTL signals to RS 232 signals and MC 1489 converts RS232

signals back to TTL signals.

3.7 Physical Interface

The block diagram of the hardware interfacing of the instrument is as shown be-
low. The functional operation of the device centers on the single chip instrument

controller. e.g. of this could be given as INTEL 8748 microprocessor which has 2 k

26

NATARIIS

Jc

USART

-

"INSTRUMENT

CONTRALLER

AN

ﬂ ANALOG
\\r TO
DIGITAL
CONVE -
RTER

AN

MULTI—

PLEXER

COUNTER

TO RS 232 BUFFER

BAUD RATE SELECTION

FROM CONTROL PANEL

Figure 3.6: Block Diagram

27

Byte of EPROM (Electrically Programmable Read Only Memory) and 64 K byte
of RAM on board and 8 bit timer installed. Personal Computer is connected to the
device through RS232 and which is connected to the USART. The data conversion
begins when the USART receives an ASCII character to initiate the data conversion.
A/D converter will start receiving data from the control panel and will transfer the
converted data to the data bus. Instrument controller will be programmed to stop
the data acquisition after receiving a set of data. i.e. It will put the A/D con-
verter to hold mode and transfer the data to USART. Program will append linefeed
characters and carriage return characters along with ASCII characters. High level
program demonstrated here will convert the ASCII character to its decimal mode
and will store the data to the data base. The counter is used to synchronize all the
sequence of operations and multiplexer could be used to select the different baud
rates.

The assembly language program could be written in the particular processor’s

assembly language. The sequence of operations should be as following.

Immediately after power up the microprocessor configures the I/O ports for
input or output,enables the the clock and resets the USART. The A/D will be in
the “hold” mode at this stage. Microprocessor will determine the status of 8748’s
pins ,after determining the status, it will generate two control words, which are
written to USART via databus. These control words will configure the USART
for asynchronous communications with appropriate combinations of data,stop and
parity bits.

An A/D conversion will begin when USART receives an ASCII character * ,
the arrival of which is detected by polling the RXRDY flag in USART with status

register. The A/D converter is then released from ‘hold’ mode and its status output

1This character will be generated by user when user selects the option to start data acquisition

28

Figure 3.7: Assembly Language Flow Diagram

Power 0On

Reset Mi-—

cro proc.

T
L8 Qe
[Tk o 4
O A
ocaD
“QO

S
X 60

/

Perform AD

Conversion

coco
- C AP

[a TS
N\ O~

|———— TG

OT—
G b
0 T
Ly Jediy}
——t @ C<
pRO%MO

/

!fmfhff

d line ter-—
rs to data
ransmit via

NO

Stop

29

is polled until a high to low transmission is detected, indicating that the valid data
from most recent conversions are available. The data are read by microprocessor and
a binary to integer conversion is performed, with the resultant numbers than being
converted to ASCII format. Following this leading zeros should be suppressed and
should be loaded in to USART for transmission. The ASCII charecters of “carriage -
return ” and “linefeed” are appended to the data to complete transmission sequence.
During the data transmission, the TXRDY flag of the USART status register is
polled to provide “ready for next byte” signal. Following the transmission of data

a 1 second time out period is generated after which RXRDY flag of the USART

status register is reset.

30

Chapter 4
SOFTWARE DESIGN

4.1 Software Requirement Characteristics

These requirements are the basis for all software development activities. Before
the plans for the projects are solidified, the technical interface and performance
requirements for the software must be allocated by the program systems engineer-
ing organization. These requirements should define clearly, in a non ambiguous,
traceable and a testable fashion, what the software must do to satisfy system re-
quirements. Specification of the software requirement is the first technical task of
the software development activity. The requirements are the basic specification of
what the integrated software must do to satisfy the allocated requirements of the
system.

The methodologies used to define and document the software requirements
must interface with those used to specify the system level requirements. These
methodologies results in an allocated set of system requirements upon which the
functional design may be initiated.

The linking of these requirements to lower and higher level requirements is

31

an ongoing task which must be an integral parts of the methodologies selected and

used by the projects.

4.1.1 Functional Design

Functional design is an orderly process which decomposes the functional definition
of the system in to lower and lower level until the final level is reached and the
software system design can proceed. There are several key elements which must
be considered in definition and allocation of the functional requirements to system

design components. These are,

s Requirements Traceability By decomposing software functional require-
ments from the system requirements and interface definition complete and

clear Traceability is maintained back to the specified needs of the user.

¢ Functional allocation By Defining the top level flow of system support, and
vigorously decomposing each of the elements which comprise the support to
lower function levels, a system designer assures that what specifies as function
system requirements accurately reflects the top level design of the system as

well as the needs and requirements of the user.

¢ Data Collection and Control By vigorously maintaining a dictionary of
system data elements, keyed to the functional allocation and decomposition
process, a complete definition of internal system data requirements is main-

tained as design processes.

32

The purpose of the functional decomposition process is to successively break the
individual software subsystems in to successively lower levels of details, adding es-
sential derived and functional requirements as the decomposition proceeds. The
lowest level of abstraction represents the basic division of subsystem in to sepa-
rate loadable components which may then be described in program design language
or some other form of representation. This decomposition process ensures that a
system perspective is retained throughout the functional definition of the software
and that requirement traceability is maintained throughout all levels of functional

design.

4.2 Program Design

The function of the design technique is the following three step procedure.

¢ Consider problem environment and record our understanding of it by defining

structures for the data to be processed.
¢ Form a program structure based on the data structure.

o Define the task to be performed in terms of the elementary operations avail-
able, and allocate each of those operations to suitable components of the

program structure.

When the program structure is formed from the data structure, it is only skeleton.
We will usually need to add some components when we come to allocate executable
operations. If the task is entirely trivial, we may be able to express it directly in

primitive operations. But a realistic program may contain hundreds or thousands

33

of instructions and cannot be written down directly, the task is too large and com-
plex to be held, all at one time, in a human mind. The way of tackling this task
is hierarchical structuring a program. Suppose if we wish to create a program P
which, when executed performs the desired task T, we decompose T in to a number
of sub tasks say T1, T2, T3 and we make corresponding decomposition in program
P say P1, P2, P3. When P1 is executed it performs T1 and so on. So we now
have to create four components P1, P2, P3 and P. P is needed to bring P1, P2
and P3 in to the correct relationship with each other. But P1, P2, P3 is prob-
ably too complex to be written down directly in the programming language and,
we apply the same technique of decomposition to them in turn. We decompose
T1 in to sub task say, T11, T12, T13 and we decompose P1 correspondingly. The
process continues level by level until no component remains which 1s too complex

to be coded directly in the programming language as a single executable instruction.

4.3 Design of an Efficient Software

Following are the tools to design an efficient software. It should have the following
properties.

1) Be of low complexity.

2) Be easily understood.

3) Be easily documented.

4) Have a high probability of being correct.

5) Be easily modified and maintained.

To develop above mentioned properties, the methodology should include following
1) Top down Design

2) Modularity

34

3) Design Language

4} Documentation

4.3.1 Top Down Design

The design should be partitioned in to different functional levels. At the top lev-
els, which is completed first, the design should be most general and at the bottom
level it should be most detailed. This approach allows design to proceed from the

abstract at the top to the specific at the bottom in a natural systematic way.

4.3.2 Modularity

All the system functions which belong together or which manipulate a common
data structure should be placed in to a single module. This provides a way of
systematically design a system. It also provides a control of access to each data
structure since only the procedures which are in a particular module have access
to the data structure within that module. Each module should be broken down in

to procedures so that each procedures implements only a single function, if possible.

4.3.3 Design Language

The design language should consist of natural language which includes a small
number of ‘programming construct’ such as DO, DO WHILE, FORi =1 to N
Doetc. The design language also have provision for specifying inter procedure

parameters clearly and un ambiguously.

35

4.3.4 Documentation

The design language version of the system design provides a high degree of visibility
in to the system. When combine with the module documentation and additional
information,the design language should provide a base for the next level of docu-
mentation.

There are two types of software design necessary to complete an interfacing

requirements

4.4 Assembly language program

Which enables the communication of data between DCE and DTE and stores it
in the memory of the computer. It can be written in the assembly language of
the processor. The assembly language program used for plasticating extruder was
developed in assembly language of Intel 8086 processor, and is discussed in detail
in this section. Appendix A gives the whole listing of the program. It is however
important to mention here that the module developed here is only the part of
the complete data acquisition requirements, and could be used for loading and
executing a file. This could be used when a user wants to communicate with the
processor. The execution procedure is as follows. The program begins by printing
a message on the screen “program starting”. The next section of the code (starting
at ASSUME DS:PREFIX) does the setup for loading a file from the disk. What
we need to find is the paragraph number at the end of the program. A paragraph
is 16 bytes. Hence the paragraph number is the memory address divided by 16,
in other words, the segment address. To get this, the end address of the current

program is obtained by loading the offset address of eop+10h. This is divided by

36

16 and added to the program segment address to give the paragraph number of the
end of the program. The paragraph numberof the program prefix segment is then
subtracted from the program and end paragraph number to get the total program
length in paragraphs in BX register. Making sure that ES points to the starting
segment of the program (the program prefix), DOS function 4A is called to free all
memory above the program. This is necessary because the DOS internally marks
all the memory as being allocated to a program when it is loaded in to memory.
Next four quantities are initialized in a parameter block (PBLOCK) that’s
been setup in the data segment: the segment address of the environment string, a
DWORD pointer (offset and segment) to a command line and DWORD pointers
to the two file control blocks (FCB’S) in the original program prefix (ENVSEG).
Since the default value of the environment are used here, the environment address is
just picked up from the original program prefix(ENVSEG). Similarly, the program
uses the original command line and two default FCB setups in the original program
prefix so, pointers to them are stored in PBLOCK. Since the offsets of these three
quantities in the program prefix are known in advance, they are fixed in the defi-
nition of PBLOCK, and only the segment address of the original program need to
be filled in. Now ES:BX is pointed to the beginning of the parameter block, and
DS:DX is pointed to the name of the file to be loaded and executed. Unless the
file name is preceded by the drive specification, the computer looks for the file on
default drive only. In the example file name is given as “asc-file”, we can change
this to whatever file we want to load. The file name is given by an “ASCIIZ” string,
which is just an ASCII string followed by a byte of zero. Finally, the current value
of SS:SP is saved in the data segment. Everything is now set up to load and execute
the new program using DOS function call 4BH (set AH=4BH and AL= 0). When

this function call is executed, “asc-file” is loaded in the memory and executed.

37

When “asc-file” is executed, control is automatically passed to the next in-
struction in the program following the INT 21H (that is, to MOV AX,DSEG). Since
all registers are destroyed by function call 4BH, the first action must be to restore
DS so it points to the data area again, and then to reload the stack pointer. The
program then finishes by printing “program completed” message.

One limitation of this program is that you cannot use it load a program and
modify it before execution.

In order to write to the file we need to develop an assembly language module
which can create a file containing ASCII characters, so that a program demon-
strated here can read the file and perform required operations. The explanation of
the assembly language program module 2 is given below. The program begins by
creating file whose name is MYFILE.TXT. This 1s done by pointing DS:DX at the
file name, putting the desired file attribute in CX, and calling DOS function 3CH.
The file name must be an ASCIIZ string - that is, a string of ASCII characters
ending with a byte of 00. If you wish, you can optionally precede the file name
with a drive specification such as “A:”. If no drive is specified, as is done in this
example program, the current default drive is assumed. Also, if you’re using a hard
disk system with subdirectories, You must specify a path name in front of the file
name just as you do to specify a file when you’re in the operating system.

The file attribute byte is 00 for normal files, so it is set to 0 in the program.
If you want to create a special type of file such as a read-only file, a system file, or
a hidden file, you must change this value accordingly. DOS function call 43H can
also be used to change the file attribute byte.

When the file is created by function call 3CH, It’s automatically opened fo
for either reading or writing, and the file handle is returned in AX. If no other disk

files are open, you normally get a file handle of 5.

38

Immediately after the function call that creates the file, the program checks
the carry flag and jumps to an error routine if it is set. You should always make this
check immediately after the Dos function call that creates or opens a file. When
an error occurs during a DOS file handling call, it returns with carry flag set and
an error code in AX If you simply ignore the error and continue, you’ll be using
the error code as the file handle. This is likely to produce behaviour that is at best
unpredictable, and worst disastrous.

The error routine used in the example is very minimal. It simply announces
that an error has occured and quits. A more sophisticated routine would examine
AX to find out what kind of error it was and then send the appropriate message
and/or take other appropriate recovery actions.

The next section of code writes the contents of BUFR into the newly created
file. All that’s required to do this is to point DS:DX at the beginning address of
BUFR, put the number of cbytes to write in CX, and have the file handle in BX.
DOS function call 40H then takes care of everything else. Although it has not been
done in the skeletal routine here, you should also follow all disk write function calls
with a check for errors and an appropriate error handling routine. This is especially
important if the data being written to disk is valuable or not easily replaceable. In
a good file-handling assembly program, at least half the code should probably be
devoted to error handling.

The program ends by closing the file with a call to DOS function 3EH. All
that needs to be done here is put the file handle in BX and make the call. It’s vital
that the file be explicitly closed with the call before the program ends; otherwise
you’ll lose some or all of the data. The reason is that when you write to a disk file
with DOS function 40H, the data is first written into a 512-byte buffer (the size of

one disk sector) in memory. Only when a full 512 bytes have been written into the

39

buffers: is the data actually written onto the disk. This speeds up disk operations
tremendously, but unless you’ve written an exact multiple of 512 bytes, part of the

disk file remains in memory until a close file command is executed.

4.5 High level Program

This reads stored data and converts it in the form of an information. It requires
two settings.
1) Setup: Which is nothing but selection of menu and display of the required
information.
2) Acquire: This is very important part of the design . This acquires data from the
process at intermediate levels and stores it and retain the address of the stored data.
Also it performs the required transformation convert the data in to information.
When ever the process ends it closes all the files and concludes the run of the
software.

The source code of the program is mentioned in the Appendix. The expla-
nation of the program is given in detail in this section.
The program starts with the menu asking user to start data acquisition or to quit.
Upon selection of 1 or 2 it goes to particular option. If option 1 has been selected
than, it will display another menu and ask for the choice. If user wants to see the
format of ASCII character,which (output from assembly language program) the pro-
gram will accept, it will show the file ‘Test.data’, in which data for demonstration
purpose has been stored. Choice no. 2 is to convert the ASCII characters stored in
to ‘Test.data’ and will write to a file ‘Out.Data’. The file Out.data is in its append
mode. Hence each time the program runs, the output will be appended and not be
overwritten.

The procedure “re-ad()”, and “pr-int()” are used to put the converted output

40

in formatted form. The “re-ad()” will read the data form the out.data, and will
allocate the memory according to the specified structure and store the data in a link
list. “Pr-int()” will read the list and put the formatted output in the file ‘outl.data.’
The limitation here is that, the input data has to be in the specified format. If the
user has a specific file that is to be converted in to ASCII, the program gives the
option to enter the file name. It reads the file using file pointers and than stores

the converted output to the file named “asc-flie”.

41

Chapter 5
RESULTS

The total data acquisition process is explained as foliows. The output of the control
panel data will be transmitted in terms of electrical signals to the instrument.
USART on the instrument will receive the data and transmit it to the personal
computer via RS 232 protocols. Functional details are given in Chapter 3 (section
3.5, 3.6).

An assembly language program will control whole sequence of operations. It
will convert received electrical signals to ASCII format and will append line feed
characters to it. Flow diagram of the program is mentioned in fig 3.7. Two modules
of assembly language program for loading and executing the file and to write the
data in the disk are developed using 8086 processors assembly language and are
listed in the appendix. Explanation of the modules are given in section 4.4. The
output of the assembly language will be in ASCII string format, which is nothing but
the data received from the control panel of the extruder machine. One example of
output of assembly language program is mentioned below. The computer program

was developed to acquire data. Input to the program was given in the ASCII format

42

1574

'S89001J uonIsmboy eje(y jo wreiderq yoolg :1-c anSig

r o 4 Z 0o 0

PANE

CONTROLLED BY

%

ASSEMBLY LANGUAGE PROGRAM

ELECTRICAL

SIGNALS7

HCUZH

INSTRUMENT
CONVERTS
SIGNALS TO

ASCII STRING

HCD4CO

HIGH LEVEL
PROGRAM DECOOES
ASCII STRINGS

ANB STORES THE
PARAMETERS

FERSOMAL COMPUTER

/**/

/ Example Of ASCII string /
/ Input to the Program /
Output of the assembly language program /

/**/

50533232484648323256564653323248464832324846483232505448
32484648324846483253514832484648324846483253574648324846
48324846483252574648324846481053483248464832495357324846
48324846483253484832484648324846483255545332484648324846
48324948554653324846483248464832565746533248464810555332
48464832495756324846483248464832545448324846483248464832
56564832484648324846483249525032484648324846483249504846
48324846481049484832484648325050483248464832484648325649
48324846483248464832575048324846483248464832495552324846
48324846483249525246483248464810505332484655523257494648
32495146483251465254324957563249574653325046555732525353
32495046533248324846483248464832484655533252564648325049
46531053483249465057324952573249514656325646485332515748
32504846483253465553325453483249524653323248324832483249
46524932565646483250494653105553324946545132495652324953
46483249524657325351533250504655325746485332555148324956
46483232483232483248464832494657563249495146533250494653
10494848324946575632504857324953465332505246503254505332
50524648324950465332575648324957465032483248324832325046
53533249515532504946531050533255464853325550483249524648
32494946523253493249574652324949465532495053324951464832
55465154325154464832504946531054464953325057465332504946
53105348324950465632494855324954464832505246563249485632
50484648325050464832495655324953464932495246543254534653
32505046483249494652105351465332504946531055533251564648
32574946483249564650325252464832555532504946543252504655
32495049324956464832515546493253514648325051464832505746
50321052524653325050465310494848325350465032494851325048
46533253574648325753325050464832535546543249514832495746
53325350464832555146523250524648325248465332535446481050
514652103210-1

44

and in a file called TEST.DATA. The format was specified according to the output
of the assembly language, and hardware design. Output is obtained in an output
file. The name of the output file is specified as OUT.DATA and tabulated output
is kept in a file called OUT2.DATA. The program was tested with two sets of data.
During the first run of data , it creates two output files,out.data and out2.data.
During the second run it appends both files, and does not overwrite them. In case
of missing data it gives an error message. Input data is in the form of ASCII string
with line feed character appended to it, and the output of the program is mentioned
here.

Where R.P.M.(revolutions per miniute) is the number of screw rotations per
minute.
Ratela — is the flow rate of the polymers in zone 1 A.
Presla — is the pressure indicated on the control panel for Zone 1 A.
Templa — is the temprature of the mold in zone 1 A.
Similarly , Ratelb is the flow rate of the polymers in zone 1 B. and so on.
Readings are taken at the fixed interval of screw rotations. Functional details of

the program are given in the section 4.5.

45

OUTPUT OF THE PROGRAM

DATA SET # 1
(OUT2 .DATA)

R.P.M 25.00 50.00 75.00 100.00
Ratela 0.00 0.00 0.00 0.00
Prsla 88.50 159.00 198.00 220.00
Templa 0.00 0.00 0.00 0.00
Ratelb 0.00 0.00 0.00 0.00
Prsib 260.00 500.00 660.00 810.00
Templb 0.00 0.00 0.00 0.00
Rate2 0.00 0.00 0.00 0.00
Prs2 530.00 765.00 880.00 920.00
Temp2 0.00 0.00 0.00 0.00
Rate3a 0.00 0.00 0.00 0.00
Prs3a 59.00 107.50 142.00 174.00
Temp3a 0.00 0.00 0.00 0.00
Rate3b 0.00 0.00 0.00 0.00
Prs3b 49,00 89.50 120.00 144.00
Temp3b 0.00 0.00 0.00 0.00
R.P.M 25.00 50.00 75.00 100.00
Ratela 0.74 1.29 1.63 1.98
Prsla 91.00 149.00 184.00 20%9.00
Templa 13.00 13.80 15.00 15.50
Ratelb 3.46 8.05 14.90 24.20
Prsib 198.00 390.00 535.00 625.00
Templb 19.50 20.00 22.70 24.00
Rate2 2.79 5.75 9.05 12.50
Prs2 455.00 650.00 730.00 980.00
Temp?2 12.50 14.50 18.00 19.20
Rate3a 0.00 0.00 0.00 0.00
Prs3a 0.00 0.00 0.00 0.00
Temp3a 0.00 0.00 0.00 0.00
Rate3b 0.75 1.41 1.98 2.55
Prs3b 48.00 88.00 113.50 137.00
Temp3b 21.50 21.50 21.50 21.50

46

R.P.M 25.00 50.00 75.00 100.00

Ratela 7.05 12.80 38.00 52.20
Prsila 720.00 107.00 91.00 103.00
Templa 14.00 16.00 18.20 20.50
Ratelb 11.40 24.80 44.00 59.00
Prsib 51.00 108.00 77.00 95.00
Templb 19.40 20.00 21.60 22.00
Rate2 11.70 22.00 42.70 57.60
Prs2 125.00 187.00 121.00 130.00
Temp2 13.00 15.10 18.00 19.50
Rate3a 7.36 14.60 37.10 52.00
Prs3a 36.00 65.50 53.00 73.40
Temp3a 21.50 22.00 23.00 24.00
Rate3b 6.15 11.40 29.20 40.50
Prs3b 29.50 53.50 44 .50 56.00
Temp3b 21.50 21.50 22.50 23.40

47

OUTPUT OF THE PROGRAM

DATA SET # 2
(OUT2 .DATA)

R.P.M 25.00 50.00 75.00 100.00
Ratela 0.00 0.00 0.00 0.00
Prsla 88.50 159.00 198.00 220.00
Templa 0.00 0.00 0.00 0.00
Ratelb 0.00 0.00 0.00 0.00
Prsilb 260.00 500.00 660.00 810.00
Templb 0.00 0.00 0.00 0.00
Rate2 0.00 0.00 0.00 0.00
Prs2 530.00 765.00 880.00 920.00
Temp2 0.00 0.00 0.00 0.00
Rate3a 0.00 0.00 0.00 0.00
Prs3a 59.00 107.50 142.00 174.00
Tenp3a 0.00 0.00 0.00 0.00
Rate3b 0.00 0.00 0.00 0.00
Prs3b 49.00 89.50 120.00 144.00
Temp3b 0.00 0.00 0.00 0.00
R.P.M 25.00 50.00 75.00 100.00
Ratela 0.74 1.29 1.63 1.98
Prsla 91.00 149.00 184.00 209.00
Templa 13.00 13.80 15.00 15.50
Ratelb 3.46 8.05 14.90 24.20
Prsib 198.00 390.00 535.00 625.00
Templb 19.50 20.00 22.70 24.00
Rate2 2.79 5.75 9.05 12.50
Prs2 455.00 650.00 730.00 980.00
Temp2 12.50 14.50 18.00 19.20
Rate3a 0.00 0.00 0.00 0.00
Prs3a 6.00 0.00 0.00 0.00
Temp3a 0.00 0.00 0.00 0.00
Rate3b 0.75 1.41 1.98 2.55
Prs3b 48.00 88.00 113.50 137.00
Tenp3b 21.50 21.50 21.50 21.50

48

R.P.M
Ratela
Prsila
Templa
Ratelb
Prsilib
Tenmplb
Rate2
Prs2
Temp?2
Rate3a
Prs3a
Temp3a
Rate3b
Prs3b
Temp3b

R.P.M
Ratela
Prsla
Templa
Ratelb
Prslb
Templb
Rate2
Prs2
Tenmp?2
Rate3a
Prs3a
Temp3a
Rate3b
Prs3b
Temp3b

25.00
7.05
720.00
14.00
11.40
51.00
19.40
11.70
125.00
13.00
7.36
36.00
21.50
6.15
29.50
21.50

25.00
0.00
1380.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
2100.00
0.00

50.00
12.80
107.00
16.00
24.80
108.00
20.00
22.00
187.00
15.10
14.60
65.50
22.00
11.40
53.50
21.50

50.00
0.00
1800.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
2750.00
0.00

75.00
38.00
91.00
18.20
44.00
77.00
21.60
42.70
121.00
18.00
37.10
53.00
23.00
29.20
44.50
22.50

75.00
0.00
1970.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
2950.00
0.00

49

100.00
52.20
103.00
20.50
59.00
95.00
22.00
57.60
130.00
19.50
52.00
73.40
24.00
40.50
56.00
23.40

100.00
0.00
2170.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
3000.00
0.00
0.00
7300.00
0.00

R.P.M
Ratela
Prsla
Templa
Ratelb
Prsilb
Templb
Rate?2
Prs2
Temp?2
Rate3a
Prs3a
Temp3a
Rate3b
Prs3b
Temp3b

R.P.M
Ratela
Prsla
Templa
Ratelb
Prsib
Templb
Rate2
Prs2
Temp?2
Rate3a
Prs3a
Temp3a
Rate3b
Prs3b
Temp3b

50.00
16.10
1480.00
206.00
23.30
1620.00
205.00
28.30
1750.00
205.00
27.60
1750.00
198.00
18.20
1520.00
204.00

75.00
51.00
910.00
204.00
44.50
810.00
204.00
46.00
875.00
204.00
56.00
975.00
200.00
43.30
850.00
195.00

75.00
26.40
1610.00
214.00
38.80
1810.00
208.00
40.30
1850.00
210.00
40.70
1900.00
199.00
27.00
1580.00
210.00

100.00
69.30
1000.00
208.00
67.20
900.00
208.00
64.00
950.00
206.00
78.80
1010.00
204.00
57.70
900.00
204.00

100.00
36.70
1725.00
216.00
58.60
1975.00
216.00
55.80
2000.00
215.00
57.00
2025.00
210.00
36.70
1650.00
215.00

50.00
42.00
560.00
195.00
26.00
400.00
198.00
32.80
500.00
200.00
42.00
550.00
190.00
31.20
500.00
194.00

50

50.00
35.00
780.00
201.00
25.50
675.00
200.00
31.30
810.00
204.00
38.60
880.00
198.00
27.90
750.00
194.00

75.00
61.10
620.00
200.00
46.00
510.00
196.00
51.50
575.00
204.00
62.80
603.00
192.00
46.20
575.00
194.00

R.P.M
Ratela
Prsla
Templa
Ratelb
Prslb
Templb
Rate2
Prs2
Temp?2
Rate3a
Prs3a
Temp3a
Rate3b
Prs3b
Temp3b

R.P.M
Ratela
Prsla
Templa
Ratelb
Prsilb
Templb
Rate?2
Prs2
Temp?2
Rate3a
Prs3a
Temp3a
Rate3b
Prs3b
Temp3b

100.00
82.50
680.00
204.00
68.80
575.00
206.00
70.00
625.00
204.00
85.00
680.00
194.00
63.70
625.00
198.00

25.00
28.00
0.00
186.00
12.30
0.00
192.00
0.00
0.00
0.00
0.00
0.00
0.00
20.20
0.00
190.00

50.00
48.50
255.00
190.00
26.20
175.00
199.00
36.30
225.00
196.00
44.00
270.00
190.00
36.90
240.00
190.00

50.00
57.50
0.00
185.00
28.30
0.00
195.00
40.20
0.00
0.00
50.30
0.00
184.00
44.50
0.00
182.00

75.00
70.40
290.00
194.00
46.70
210.00
202.00
52.30
240.00
200.00
66.00
330.00
196.00
53.40
255.00
194.00

75.00
86.30
0.00
186.00
47.00
0.00
198.00
59.00
0.00
0.00
76.20
0.00
186.00
65.00
0.00
188.00

51

100.00
96.00
305.00
202.00
72.50
270.00
208.00
73.00
260.00
206.00
87.40
350.00
202.00
70.70
280.00
198.00

100.00
112.00
0.00
190.00
75.00
0.00
200.00
80.30
0.00
0.00
102.00
0.00
190.00
89.00
0.00
186.00

Chapter 6
DISCUSSION

6.1 Pressure and Temprature Effects

As mentioned in section 2.4 and 2.5, temperature and pressure have a significant
effect on the final product in the extrusion process. The activation energy of a
nonNewtonian fluid varies with temperature in addition to shear rate or shear stress.
An increasing temperature causes a decrease in the activation energy and also tends
to suppress nonNewtonian effects.

Also, according to Duvdevani and Klein® theory, 10,000 psi increase in the
pressure will cause the viscosity to increase about 35%,which also can cause a sig-
nificant effect on the output.Hence it very important to study the changes in the

temperature and pressure while the process is running.

6.2 Use of program

The software program developed here will expect data from assembly language pro-

gram in ASCII format. Since according to hardware design mentioned in chapter 3,

!References marked at the end of the text

the transmission of the data will be in the serial format , the output of the assembly
language should append a linefeed character after each transmitted character. The
sequence of operation will be as follows
When the user presses a key to start data acquisition, an ASCII character will be
transmitted to the USART and the data conversion will start. Assembly language
program will select proper channel and will start conversion. Details are mentioned
in chapter 4. High level program demonstrated here will accept data characters in
ASCII format and convert them in to readable decimal format. Parameters will
be stored in a file called ‘out.data’. Each time program runs , the file will be ap-
pended (example of which is given in the results) and the previous data will not
be lost. If the user wants to communicate with the microprocessor, the program
does have an option to convert a file to ASCII format, a small assembly language
program routine mentioned in the appendix will transfer the file to the interfacing
unit, thus allowing user to control operation through the computer. The program
uses ‘dynamic memory allocation’ concept which is more advantegious compared to
static memory allocation, as it does not have any space restriction and also there
will not be any wastage of the space. Assembly language program mentioned here
is written in the assembly language of Intel 8086 processor and can be used for file
loading and execution.

Microprocessor based data acquisition not only saves manual key board entry,
but also provides fast and permenant storage of information. It also provides an

option to control the process from the key board.

53

Chapter 7
CONCLUSIONS

The following conclusions are made from thorough analysis of the material pre-
sented in the previous chapters.

(1) The microprocessor based software control system was developed for data acqui-
sition. Suggested hardware design was developed using Intel 8086 microprocessor
and software is developed in C. The module of assembly language program demon-
strated here is written in the assembly language of 8086 processor. Data acquisition
format was developed based on the data sheet given from ‘Killion Extruders Inc.’
Simulation of the system operation with instrument controller Intel 8748 and pe-
ripherals with associated software can be effectively used for software based data
acquisition system as demonstrated for the plasticating extruders.

(2) The use of microprocessor based instrument allows the results of an A/D con-
version to be transmitted as an ASCII number terminated by “carriage-return,line-
feed”. Data transmitted by the instrument are thus in the same format as those
expected from a video terminal, allowing high-level language programming to be

used for data reception.

54

(3) Also, problems which can arises when using unintelligent instruments, such as
transmission of binary data which constitutes an ASCII control code — are avoided.
(4) The program mentioned in the appendix will receive an ascii string as an input,
convert it in the form of information and will store the data in the files. Error

message will be displayed where required.

55

Chapter 8
FUTURE WORK

Further enhancement of the thesis could be

(1) Interfacing the files to a database for permanent storage of the acquired data.
The program listed in the appendix creates the file to store the data,but it does not
store the data to a database.

(2) Two modules of assembly language program has been developed. It may be of
further interest to develop other modules, to control the input output sequence and
to control extrussion process through the keyboard.

(3) The block diagram designed here is for 8 channel data acquisition. It could
be expanded to 16 channel data acquisition. For this, conversion sequence remains
similar to one mentioned in ch.3. The major difference trigger character is assumed
to be an ASCII no. between 0 and 15,and should be appropriately decoded on to

the multiplexer channel,prior to releasing A/D converter from “ hold” mode.

56

REFERENCES

[1] Michale W. Evans, “ Productive software Test Management ,” A Wiley-Interscience

Publications NY, 1984

[2] C.M. Trotter, W.W. Carson, “Data Acquistion from a parallax bar via an

RS232C interface,” Review of Scientific Instruments, Nov 1985

[8] Zehav Tadmor, Imrich Klien,“ Engineering Principles of Plasticating Extru-

sion.” Robert E. Krieger Publishing Company , 1978

[4] ArchieJ. Weith, Herbert Simonds, William Schack, “Extrusion of Plastics,Rubber
and Metals,” Reinhold Publishing Corporation, NY 1957

[5] N.J.Rao, “ The Intel 8085/A Family Data Manual,” Center for Electronics De-
sign and Technology, IISC Bangalore India 1988

[6] Kim Jaeho, “ Design of a Microcomputer controller for Mechanical Engineering

applications,” Master’s Thesis , NJIT 1985.

[7] Murray Sargent III, Richard L. Shoemaker, “The IBM PC from the inside
out,” Addision-Wesley Publishing Company Aug. 1990.

[8] Len Egol, “ PCs Simplify Data Collection And Management,” Chemical Engi-
neering pp 157-161 July 1990.

9] W. Carlson, “Applications of data acquisition system,” Computers in Industry
P

Vol:13, Iss 1,pp 49-59, Sep 1989.

57

[10] M. Liu, “ PC makes it easier to collect and analyse data,” Electronic Business

Vol:14, Iss 19, pp 115-116 , Oct. 1988.

[11] Milis A.J., “ PC Data Acquisition,” Systems Inter national (UK) Vol: 13 Iss
10, pp 35-36, oct. 1985.

[12] Rowan O’Riley,“PC not for just office anymore,” Production Engineering Vol:

32, Iss 11, pp 60-69, Nov 1985.

[13] Keith R. Kreisher.,“The Screw-Design Debate: Flexibility or Job Dedica-

tion?,” Modern Plastics pp 60-61, April 1990.

[14] Jack K. Rogers.,“ Big parts blow molders grow more complex; more versatile,”

Modern Plastics pp 64-68,April 1990.

[15] Ayyagari A.J.,“ Simulation of a micro processor control led drill pres,” Master’s

Thesis, NJIT 1986

[16] Govindraju,” Computer Simulation for studying the performence of plasti-

cating extruders,” Master’s Thesis, NJIT 1984

58

Appendix A
CODE FOR PROGRAM

59

/***/

/* Supprot program to convert assembly language %/
/* program output to decimal mode for data acquisition * /
/* purposes */
/* */
/* */

/***/

include <stdio.h>
include <string.h>
include <fecntl.h>

typedef struct data {
float points[17];
struct data #*next;} datal;
datal *head, *p, *q;
FILE *fpt1l;

char header[16]{20] = {

{ IRI ' I.I ’IPI’ l.l’ IMI}’
{ IRI’ Ial,ItI’ leI' llI, lal},
{ IPI, lrI, lsl, Ill’ Ial},
{ ITI, lel, Iml’ Ipl' lll’ lal},
{ IRI’ IaI,ItI' lel’ IlI’ lbl}’
{ IPI' lrI, ISI’ I1I’ Ibl}’
{ ITI, leI’ Iml, IpI, ll" lbl},
{ IRI, laI,ltI, Iel, IZI}’
{ IPI’ Irl, ,S,, ’2’},
{ lTl, Iel, lmI, lpI, ’2’},
{ IRI, lal’ltl' Iel’ I3I, Ial},
{ lPl, Irl’ lsl, I3I' lal}'
{ ITI, lel’ Iml’ lpI, I3I' lal}’
{ IRI, lallltl’ IeI, I3I' lbl},
{ IPI’ IrI, Isl’ I3I, Ibl}’
{ ITl' IeI, lmI’ Ipl, I3I, lbl}’
}i
int i;
int kj;
[K e e * /
re ad() /* read data from the file */
{

datal *pl, *qi;
FILE *fptl;

fptl fopen ("in","r");

head

(datal *)malloc(sizeof(datal));

for (i1 = 0; 1 <= 15; i++)
fscanf (fptl,"%f", &head->points{i]);

head->next = NULL;

60

gl= head;
while (!feof(fptl)) /* allocate memory dynamically */
{
pl = (datal *)malloc(sizeof (datal));
for (i = 0; i <= 15; i++)
fscanf (fptl,"%f",&pl->points{i]);

pl->next = NULL;
gl->next = pl;
ql= pl;
}

fclose(fptl);

void pr_int() /* print the data */

datal *ptri;
datal *first;
datal *temp;
FILE *fpt;
ptrl = (datal *)malloc(sizeof(datal));
first = (datal *)malloc(sizeof(datal));
temp = (datal *)malloc(sizeof(datal));
first = ptrl = head;

fpt = fopen("outz.data","w");

while (ptril->next != NULL)
{
for (i = 0; 1 <= 15; 1i++)
{

fprintf (fpt,"\n%-10s",header(i]);

for(k =0; k <= 3; k++)

{

fprintf (fpt," %7.2f",ptri->points([i]);
ptri=ptrl->next;

}

temp = ptril;

ptrl = first;
}

fprintf (f£pt, "\n\n\n\n\n\n\n\n\n\n");

first = temp;
ptrl = first;

}

}

L T e e L P e */
/*¥void co_nvert() converts integer to ASCII

int atoi ()

{

int i,n;

61

n = 0;

for (i = 0 ; s[i] >= 70’ && s [i] <= '9' ; ++i)
n=10 * n + (s[i] - '0’);
return n;
} o*/
] H o e oo * /
err _msg()

{
printf (YINVALID KEY\n");
printf ("Please try again...\n");
sleep(1);
men_u2();

conver_ t()
{ int c¢;
int m;
FILE *fpt3,*fpt4,*fpt5;

fpts = fopen ("test2","w"); /* writes ASCII charecters to a
filex/

fpt3 = fopen ("data","r"); /* input file pointer */

fpt4 = fopen ("testl","w"); /* output file ponter */

while (!feof(fpt3))

{
c = getc(fpt3); /* read from input file */
putc((c), fptd); /* prints to output file */
fprintf (fpt5,"%d\n",c); /* converts to ascii */
}
fclose (fpt3);
fclose(fpt4);
fclose (fptb) ;
}
] K e e * /
men_u()

{

char ch,chois;

printf (" \n") ;

printf (" Please Enter the Choice\n ");

printf (" 1 - Start Data Acquisition\n ");
printf (" 2 - Quit \n ");
printf ("----——-----—-—-— s s e ——— oo oo \n");

62

scanf ("%c", &chois) ;
ch=getchar () ;

switch (chois)

{
case ‘1’ : printf("Please wait\n");
sleep(2);
men_u2();
break;
case 2/
printf ("BYE BYE ..\n ");
break;
default : err_msg();
break;
}
}
] e
men_u2 ()
{

char ch, optio nj;

printf("—=—=—mmmm e
printf(" 1 - Display data file (Ascii Charecters) \n");
printf(" 2 - Convert Ascii Charecters and store \n");
printf (" 3 - Convert data to Ascii file \n");
printf(" 4 - Go Back to Main Menu \n");
printf("-———m=mr e

scanf ("%c", &optio n);
ch = getchar();
switch(optio n)

{

case ‘1’ : optio ni();
break;

case 2’ : optio_n2();
break;

case ‘3’ : optio n3();
break;

case ’4’ : optio n4();
break;

default: err msg();
break;

63

optio ni()
{

char ch,answer;
printf ("\n The file for demonstration purpose is TEST.DATA \n");
printf ("\n Do You want to see Data in Test.data (y/n) ? \n");

scanf ("%c", &answer) ;
ch = getchar();
switch (answer) {
case 'y’ : optio nii();

break;
case 'n’ : optio ni2();
break;
default : err_msg();
break;
}
}
ettt e e e L T S */
optio ni1i()
{
FILE *fpté6;
int ¢, t;
char ch;
fpte = fopen('"test.data","r");
while (!feof(fpt6))
{
c = getc(fpts);
putc(c,stdout) ;
}
ch = getchar();
men u2();
}
[H e * /
optio nil12()
{

FILE *fpt7;

char ch,file name[16];

int ¢, t;

printf("\n Please Enter The File name\n");
printf("\n Warning! \n");

printf("\n For Data Acquisition purpose the file \n");

64

printf ("\n should be in the ASCII format \n");
scanf ("%s",file name);

fpt7 = fopen(file name,"r");
while (!feof(fpt7))

if (fpt7 = NULL)

{

printf ("\n Can not find the file ..\n");
printf ("\n Please Try again....\n");
men_u2();

}

else

{
c = getc(fpt7);
putc(c, stdout) ;
}

}
ch = getchar();

men_u2();

optio n2()
{ FILE *fpt8,*fpt9;
char ch,file name[];
int ¢, t;
printf ("Please Enter the file name\n");
printf("\n File for demo. purpose is test.data\n");
printf ("\n The Output will be available in out.data\n");
scanf ("%s",file name);
fpts fopen(file name,"r");

fpt9 = fopen('"out.data","a");
while (!feof (fpt8))

fscanf (fpt8,"%d\n", &c) ;
putc(c, fpt9) ;
putc(c,stdout) ;
1
fclose(fpt8) ;
fclose (fpt9) ;
ch =getchar () ;

men_u2();

}

65

optio n3()
{
FILE *fptl0,*fptll;
char ch,file name[16] ;
int c,t;

fptll = fopen("asc file","w");
printf("\n Please Enter the file to be converted \n");
scanf ("%s",file name);
printf (" The output will be avialable in file asc file\n");
fpt10 = fopen(file name,"r"); -
while (!feof (fpt10))
{
c = getc(fptl0);
fprintf (fpti1,"%d\n",c);
fprintf (stdout,"%d\n",c);

}
fclose(fptlo);
fclose(fptll);

ch = getchar();
men_u2();

e .
optio n4()
{
men_u();
}
T Sttty * /
main()
{ /* main program */
re_ad();
pr_int();
men_u() ;
}

66

Assembly language program to load the file and
execute it.

Module -1
; ——
prefix segment at O ; program prefix segment template
org 2ch
envseg dw ?
prefix ends
; parameter block. Pointed by ES:BX before a program is loaded
dseg segment public ‘data’
pblock dw ? ;segment address of environment
dw 80h H
aw ? ;Segment pointer to command line
dw 5ch ;
dw ? ; segment pointer to default FCB
dw 6ch ;
dw ? ;segment pointer to 2nd default FCB
spsave dw ? ;storage area for SS:SP
sssave aw ? ’
filname dw ‘asc_file’,0
errmsg db ’File not found’,0dh,0ah,’$’
msgl db 'program starting’,0dh,0ah,’$’
msg2 db ’'Program completed’,0dh,0ah,’$’
dseg ends
sseg segment stack ‘data’
dw 80h dup (?)
sseqg ends
cseg segment public ‘code’
assume cs:cseqg, ds:dseg
setup proc far
cld ;all string moves go up
push ds
sub ax,ax
push ax
push ds ;print a program starting message
mov ax,dseqg
mov ds,ax
lea dx,msgl
mov ah,9
int 21h
pop ds
assume ds:prefix
lea bx,eop+10h ; get paragraph # of end of
prog.
mov cl,4
shr bx,cl
add bx,cseg

67

start
length
segment

prog size

mov
sub
mov
mov

int
mov

environment

address

filblk:
pointers

block;

data

return

message

finish:
message

setup
eop

mov

mov
mov
assume
lea
mov
add
mov
mov

add
loop
lea

mov
mov
lea
mov
mov
mov
int
mov

mov
mov
mov
jnc

lea

mov
int
ret
lea

mov
int
ret
endp

end

ax,ds
bx,ax
es,ax
ah,4ah

21h
bx,envseg

dx,ds

ax,dseg
ds,ax
ds:dseg
di,pblock
[di],bx
di,4

cx,3
(di],dx

di,4
filblk
bx,pblock

ax,ds
es,ax
dx,filnam
spsave, sp
sssave, ss
ax,4b00h
21h
ax,dseqg

ds,ax
Ss,sssave
sp, spsave
finish
dx,errmsg

ah,9
21h

dx,msg2

ah,9
21h

‘end of program’

setup

;get paragraph # of program
;difference is total prog.
;Point ES at program prefix

;Shrink allocated memory to

;Get segment address of
;get program prefix segment

;print DS to local data area

14

;£ill in parameter block
;with environment segment

;AND command line and FCB

;point ES:BX at parameter

;point DS:DX
;save stack location

!
;load and execute new program

;restore ds to local area

;then restore original stack
;leave if CF not set on

;if CF set, print an error

;print a "program completed"

;and quit

[
;Assembly language program to write the data to
;the file in ASCII format.

Module 2
L T e e L
7
dseg segment
bufr db ‘This is a disk file’
filnam db ‘anyfile.txt’,00
crerr db 'Error : cannot execute
file’,0DH, OAH,"$"
dseg ends
sseg segment stack ; The dos will automatically
setup
dw 80h dup(?); a stack in the stack
segment
sseg ends
cseq segment
assume cs:cseq,ds:dseqg,ss:sseg
main proc far
push ds ;push atart address at prog.
prefix
sub ax,ax ; segment on the stack
push ax
mov ax,dseg ;point DS:DX at file name in
dseg
lea dx,filnam
mov cx,0 ;make file attribute byte 0
mov ah, 3ch ;creat the file
int 21h
jc error ; abort if there was a problem
mov bx,ax ;else store file in BX
mov cx,36 ;
lea dx, bufr ;
mov ah, 40h ; close the file
int 21h ;
done ret ; far return gets back to dos
error: lea dx,crerr ; 1f error occures during file
creation
mov ah,9 ; print an error message

69

main
cseg

int
ret

endp
ends
end

21h

main

-e

70

	Interfacing plasticating extruders with personal computers for data acquisition, information analysis and retrieval purposes
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Acknowledgements
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Extrusion Process
	Chapter 3: Hardware Design
	Chapter 4: Software Design
	Chapter 5: Results
	Chapter 6: Discussion
	Chapter 7: Conclusions
	Chapter 8: Future Work
	References
	Appendix A: Code For Program

	List of Figures

